Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(8): 1736-1749, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39053459

RESUMEN

Mendelian randomization (MR) provides valuable assessments of the causal effect of exposure on outcome, yet the application of conventional MR methods for mapping risk genes encounters new challenges. One of the issues is the limited availability of expression quantitative trait loci (eQTLs) as instrumental variables (IVs), hampering the estimation of sparse causal effects. Additionally, the often context- or tissue-specific eQTL effects challenge the MR assumption of consistent IV effects across eQTL and GWAS data. To address these challenges, we propose a multi-context multivariable integrative MR framework, mintMR, for mapping expression and molecular traits as joint exposures. It models the effects of molecular exposures across multiple tissues in each gene region, while simultaneously estimating across multiple gene regions. It uses eQTLs with consistent effects across more than one tissue type as IVs, improving IV consistency. A major innovation of mintMR involves employing multi-view learning methods to collectively model latent indicators of disease relevance across multiple tissues, molecular traits, and gene regions. The multi-view learning captures the major patterns of disease relevance and uses these patterns to update the estimated tissue relevance probabilities. The proposed mintMR iterates between performing a multi-tissue MR for each gene region and joint learning the disease-relevant tissue probabilities across gene regions, improving the estimation of sparse effects across genes. We apply mintMR to evaluate the causal effects of gene expression and DNA methylation for 35 complex traits using multi-tissue QTLs as IVs. The proposed mintMR controls genome-wide inflation and offers insights into disease mechanisms.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Sitios de Carácter Cuantitativo , Humanos , Análisis de la Aleatorización Mendeliana/métodos , Estudio de Asociación del Genoma Completo/métodos , Especificidad de Órganos/genética , Modelos Genéticos , Polimorfismo de Nucleótido Simple
2.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38920342

RESUMEN

Effective molecular representation learning is very important for Artificial Intelligence-driven Drug Design because it affects the accuracy and efficiency of molecular property prediction and other molecular modeling relevant tasks. However, previous molecular representation learning studies often suffer from limitations, such as over-reliance on a single molecular representation, failure to fully capture both local and global information in molecular structure, and ineffective integration of multiscale features from different molecular representations. These limitations restrict the complete and accurate representation of molecular structure and properties, ultimately impacting the accuracy of predicting molecular properties. To this end, we propose a novel multi-view molecular representation learning method called MvMRL, which can incorporate feature information from multiple molecular representations and capture both local and global information from different views well, thus improving molecular property prediction. Specifically, MvMRL consists of four parts: a multiscale CNN-SE Simplified Molecular Input Line Entry System (SMILES) learning component and a multiscale Graph Neural Network encoder to extract local feature information and global feature information from the SMILES view and the molecular graph view, respectively; a Multi-Layer Perceptron network to capture complex non-linear relationship features from the molecular fingerprint view; and a dual cross-attention component to fuse feature information on the multi-views deeply for predicting molecular properties. We evaluate the performance of MvMRL on 11 benchmark datasets, and experimental results show that MvMRL outperforms state-of-the-art methods, indicating its rationality and effectiveness in molecular property prediction. The source code of MvMRL was released in https://github.com/jedison-github/MvMRL.


Asunto(s)
Redes Neurales de la Computación , Algoritmos , Aprendizaje Automático , Modelos Moleculares , Diseño de Fármacos , Programas Informáticos , Estructura Molecular , Inteligencia Artificial
3.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38605642

RESUMEN

MicroRNAs (miRNAs) synergize with various biomolecules in human cells resulting in diverse functions in regulating a wide range of biological processes. Predicting potential disease-associated miRNAs as valuable biomarkers contributes to the treatment of human diseases. However, few previous methods take a holistic perspective and only concentrate on isolated miRNA and disease objects, thereby ignoring that human cells are responsible for multiple relationships. In this work, we first constructed a multi-view graph based on the relationships between miRNAs and various biomolecules, and then utilized graph attention neural network to learn the graph topology features of miRNAs and diseases for each view. Next, we added an attention mechanism again, and developed a multi-scale feature fusion module, aiming to determine the optimal fusion results for the multi-view topology features of miRNAs and diseases. In addition, the prior attribute knowledge of miRNAs and diseases was simultaneously added to achieve better prediction results and solve the cold start problem. Finally, the learned miRNA and disease representations were then concatenated and fed into a multi-layer perceptron for end-to-end training and predicting potential miRNA-disease associations. To assess the efficacy of our model (called MUSCLE), we performed 5- and 10-fold cross-validation (CV), which got average the Area under ROC curves of 0.966${\pm }$0.0102 and 0.973${\pm }$0.0135, respectively, outperforming most current state-of-the-art models. We then examined the impact of crucial parameters on prediction performance and performed ablation experiments on the feature combination and model architecture. Furthermore, the case studies about colon cancer, lung cancer and breast cancer also fully demonstrate the good inductive capability of MUSCLE. Our data and code are free available at a public GitHub repository: https://github.com/zht-code/MUSCLE.git.


Asunto(s)
Neoplasias del Colon , Neoplasias Pulmonares , MicroARNs , Humanos , Músculos , Aprendizaje , MicroARNs/genética , Algoritmos , Biología Computacional
4.
Brief Bioinform ; 24(6)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37930024

RESUMEN

Development of robust and effective strategies for synthesizing new compounds, drug targeting and constructing GEnome-scale Metabolic models (GEMs) requires a deep understanding of the underlying biological processes. A critical step in achieving this goal is accurately identifying the categories of pathways in which a compound participated. However, current machine learning-based methods often overlook the multifaceted nature of compounds, resulting in inaccurate pathway predictions. Therefore, we present a novel framework on Multi-View Multi-Label Learning for Metabolic Pathway Inference, hereby named MVML-MPI. First, MVML-MPI learns the distinct compound representations in parallel with corresponding compound encoders to fully extract features. Subsequently, we propose an attention-based mechanism that offers a fusion module to complement these multi-view representations. As a result, MVML-MPI accurately represents and effectively captures the complex relationship between compounds and metabolic pathways and distinguishes itself from current machine learning-based methods. In experiments conducted on the Kyoto Encyclopedia of Genes and Genomes pathways dataset, MVML-MPI outperformed state-of-the-art methods, demonstrating the superiority of MVML-MPI and its potential to utilize the field of metabolic pathway design, which can aid in optimizing drug-like compounds and facilitating the development of GEMs. The code and data underlying this article are freely available at https://github.com/guofei-tju/MVML-MPI. Contact:  jtang@cse.sc.edu, guofei@csu.edu.com or wuxi_dyj@csj.uestc.edu.cn.


Asunto(s)
Aprendizaje Automático , Redes y Vías Metabólicas
5.
BMC Bioinformatics ; 25(1): 188, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745112

RESUMEN

BACKGROUND: Microbiome dysbiosis has recently been associated with different diseases and disorders. In this context, machine learning (ML) approaches can be useful either to identify new patterns or learn predictive models. However, data to be fed to ML methods can be subject to different sampling, sequencing and preprocessing techniques. Each different choice in the pipeline can lead to a different view (i.e., feature set) of the same individuals, that classical (single-view) ML approaches may fail to simultaneously consider. Moreover, some views may be incomplete, i.e., some individuals may be missing in some views, possibly due to the absence of some measurements or to the fact that some features are not available/applicable for all the individuals. Multi-view learning methods can represent a possible solution to consider multiple feature sets for the same individuals, but most existing multi-view learning methods are limited to binary classification tasks or cannot work with incomplete views. RESULTS: We propose irBoost.SH, an extension of the multi-view boosting algorithm rBoost.SH, based on multi-armed bandits. irBoost.SH solves multi-class classification tasks and can analyze incomplete views. At each iteration, it identifies one winning view using adversarial multi-armed bandits and uses its predictions to update a shared instance weight distribution in a learning process based on boosting. In our experiments, performed on 5 multi-view microbiome datasets, the model learned by irBoost.SH always outperforms the best model learned from a single view, its closest competitor rBoost.SH, and the model learned by a multi-view approach based on feature concatenation, reaching an improvement of 11.8% of the F1-score in the prediction of the Autism Spectrum disorder and of 114% in the prediction of the Colorectal Cancer disease. CONCLUSIONS: The proposed method irBoost.SH exhibited outstanding performances in our experiments, also compared to competitor approaches. The obtained results confirm that irBoost.SH can fruitfully be adopted for the analysis of microbiome data, due to its capability to simultaneously exploit multiple feature sets obtained through different sequencing and preprocessing pipelines.


Asunto(s)
Algoritmos , Aprendizaje Automático , Microbiota , Humanos
6.
Brief Bioinform ; 23(3)2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35289352

RESUMEN

Determining drug indications is a critical part of the drug development process. However, traditional drug discovery is expensive and time-consuming. Drug repositioning aims to find potential indications for existing drugs, which is considered as an important alternative to the traditional drug discovery. In this article, we propose a multi-view learning with matrix completion (MLMC) method to predict the potential associations between drugs and diseases. Specifically, MLMC first learns the comprehensive similarity matrices from five drug similarity matrices and two disease similarity matrices based on the multi-view learning (ML) with Laplacian graph regularization, and updates the drug-disease association matrix simultaneously. Then, we introduce matrix completion (MC) to add some positive entries in original association matrix based on low-rank structure, and re-execute the multi-view learning algorithm for association prediction. At last, the prediction results of the above two operations are integrated as the final output. Evaluated by 10-fold cross-validation and de novo tests, MLMC achieves higher prediction accuracy than the current state-of-the-art methods. Moreover, case studies confirm the ability of our method in novel drug-disease association discovery. The codes of MLMC are available at https://github.com/BioinformaticsCSU/MLMC. Contact: jxwang@mail.csu.edu.cn.


Asunto(s)
Biología Computacional , Reposicionamiento de Medicamentos , Algoritmos , Biología Computacional/métodos , Descubrimiento de Drogas , Reposicionamiento de Medicamentos/métodos
7.
Brief Bioinform ; 23(5)2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35988924

RESUMEN

Recently, N6-methylation (m6A) has recently become a hot topic due to its key role in disease pathogenesis. Identifying disease-related m6A sites aids in the understanding of the molecular mechanisms and biosynthetic pathways underlying m6A-mediated diseases. Existing methods treat it primarily as a binary classification issue, focusing solely on whether an m6A-disease association exists or not. Although they achieved good results, they all shared one common flaw: they ignored the post-transcriptional regulation events during disease pathogenesis, which makes biological interpretation unsatisfactory. Thus, accurate and explainable computational models are required to unveil the post-transcriptional regulation mechanisms of disease pathogenesis mediated by m6A modification, rather than simply inferring whether the m6A sites cause disease or not. Emerging laboratory experiments have revealed the interactions between m6A and other post-transcriptional regulation events, such as circular RNA (circRNA) targeting, microRNA (miRNA) targeting, RNA-binding protein binding and alternative splicing events, etc., present a diverse landscape during tumorigenesis. Based on these findings, we proposed a low-rank tensor completion-based method to infer disease-related m6A sites from a biological standpoint, which can further aid in specifying the post-transcriptional machinery of disease pathogenesis. It is so exciting that our biological analysis results show that Coronavirus disease 2019 may play a role in an m6A- and miRNA-dependent manner in inducing non-small cell lung cancer.


Asunto(s)
COVID-19 , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Adenosina/metabolismo , Empalme Alternativo , COVID-19/genética , Humanos , Metilación , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular , Proteínas de Unión al ARN/metabolismo
8.
Sensors (Basel) ; 24(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38257712

RESUMEN

Federated learning (FL) is a privacy-preserving collective machine learning paradigm. Vertical federated learning (VFL) deals with the case where participants share the same sample ID space but have different feature spaces, while label information is owned by one participant. Early studies of VFL supported two participants and focused on binary-class logistic regression problems, while recent studies have put more attention on specific aspects such as communication efficiency and data security. In this paper, we propose the multi-participant multi-class vertical federated learning (MMVFL) framework for multi-class VFL problems involving multiple parties. By extending the idea of multi-view learning (MVL), MMVFL enables label sharing from its owner to other VFL participants in a privacy-preserving manner. To demonstrate the effectiveness of MMVFL, a feature selection scheme is incorporated into MMVFL to compare its performance against supervised feature selection and MVL-based approaches. The proposed framework is capable of quantifying feature importance and measuring participant contributions. It is also simple and easy to combine with other communication and security techniques. The experiment results on feature selection for classification tasks on real-world datasets show that MMVFL can effectively share label information among multiple VFL participants and match the multi-class classification performance of existing approaches.

9.
Methods ; 204: 418-427, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35114401

RESUMEN

Elucidating the mechanisms of Compound-Protein Interactions (CPIs) plays an essential role in drug discovery and development. Many computational efforts have been done to accelerate the development of this field. However, the current predictive performance is still not satisfactory, and existing methods consider only protein and compound features, ignoring their interactive information. In this study, we propose a multi-view deep learning method named MDL-CPI for CPI prediction. To sufficiently extract discriminative information, we introduce a hybrid architecture that leverages BERT (Bidirectional Encoder Representations from Transformers) and CNN (Convolutional Neural Network) to extract protein features from a sequential perspective, use the GNN (Graph Neural Networks) to extract compound features from a structural perspective, and generate a unified feature space by using AE2 (Autoencoder in Autoencoder Networks) network to learn the interactive information between BERT-CNN and Graph embeddings. Comparative results on benchmark datasets show that our proposed method exhibits better performance compared to existing CPI prediction methods, demonstrating the strong predictive ability of our model. Importantly, we demonstrate that the learned interactive information between compounds and proteins is critical to improve predictive performance. We release our source code and dataset at: https://github.com/Longwt123/MDL-CPI.


Asunto(s)
Aprendizaje Profundo , Ciclopropanos , Indoles , Redes Neurales de la Computación , Proteínas/química , Programas Informáticos
10.
Methods ; 207: 29-37, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36087888

RESUMEN

DNA-binding proteins actively participate in life activities such as DNA replication, recombination, gene expression and regulation and play a prominent role in these processes. As DNA-binding proteins continue to be discovered and increase, it is imperative to design an efficient and accurate identification tool. Considering the time-consuming and expensive traditional experimental technology and the insufficient number of samples in the biological computing method based on structural information, we proposed a machine learning algorithm based on sequence information to identify DNA binding proteins, named multi-view Least Squares Support Vector Machine via Hilbert-Schmidt Independence Criterion (multi-view LSSVM via HSIC). This method took 6 feature sets as multi-view input and trains a single view through the LSSVM algorithm. Then, we integrated HSIC into LSSVM as a regular term to reduce the dependence between views and explored the complementary information of multiple views. Subsequently, we trained and coordinated the submodels and finally combined the submodels in the form of weights to obtain the final prediction model. On training set PDB1075, the prediction results of our model were better than those of most existing methods. Independent tests are conducted on the datasets PDB186 and PDB2272. The accuracy of the prediction results was 85.5% and 79.36%, respectively. This result exceeded the current state-of-the-art methods, which showed that the multi-view LSSVM via HSIC can be used as an efficient predictor.


Asunto(s)
Proteínas de Unión al ADN , Máquina de Vectores de Soporte , Proteínas de Unión al ADN/química , Análisis de los Mínimos Cuadrados , Aprendizaje Automático , Algoritmos
11.
Sensors (Basel) ; 23(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37571685

RESUMEN

Zero-shot neural decoding aims to decode image categories, which were not previously trained, from functional magnetic resonance imaging (fMRI) activity evoked when a person views images. However, having insufficient training data due to the difficulty in collecting fMRI data causes poor generalization capability. Thus, models suffer from the projection domain shift problem when novel target categories are decoded. In this paper, we propose a zero-shot neural decoding approach with semi-supervised multi-view embedding. We introduce the semi-supervised approach that utilizes additional images related to the target categories without fMRI activity patterns. Furthermore, we project fMRI activity patterns into a multi-view embedding space, i.e., visual and semantic feature spaces of viewed images to effectively exploit the complementary information. We define several source and target groups whose image categories are very different and verify the zero-shot neural decoding performance. The experimental results demonstrate that the proposed approach rectifies the projection domain shift problem and outperforms existing methods.

12.
Entropy (Basel) ; 25(2)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36832736

RESUMEN

The ability to build more robust clustering from many clustering models with different solutions is relevant in scenarios with privacy-preserving constraints, where data features have a different nature or where these features are not available in a single computation unit. Additionally, with the booming number of multi-view data, but also of clustering algorithms capable of producing a wide variety of representations for the same objects, merging clustering partitions to achieve a single clustering result has become a complex problem with numerous applications. To tackle this problem, we propose a clustering fusion algorithm that takes existing clustering partitions acquired from multiple vector space models, sources, or views, and merges them into a single partition. Our merging method relies on an information theory model based on Kolmogorov complexity that was originally proposed for unsupervised multi-view learning. Our proposed algorithm features a stable merging process and shows competitive results over several real and artificial datasets in comparison with other state-of-the-art methods that have similar goals.

13.
Stat Med ; 41(3): 580-594, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34897772

RESUMEN

To link a clinical outcome with compositional predictors in microbiome analysis, the linear log-contrast model is a popular choice, and the inference procedure for assessing the significance of each covariate is also available. However, with the existence of multiple potentially interrelated outcomes and the information of the taxonomic hierarchy of bacteria, a multivariate analysis method that considers the group structure of compositional covariates and an accompanying group inference method are still lacking. Motivated by a study for identifying the microbes in the gut microbiome of preterm infants that impact their later neurobehavioral outcomes, we formulate a constrained integrative multi-view regression. The neurobehavioral scores form multivariate responses, the log-transformed sub-compositional microbiome data form multi-view feature matrices, and a set of linear constraints on their corresponding sub-coefficient matrices ensures the sub-compositional nature. We assume all the sub-coefficient matrices are possible of low-rank to enable joint selection and inference of sub-compositions/views. We propose a scaled composite nuclear norm penalization approach for model estimation and develop a hypothesis testing procedure through de-biasing to assess the significance of different views. Simulation studies confirm the effectiveness of the proposed procedure. We apply the method to the preterm infant study, and the identified microbes are mostly consistent with existing studies and biological understandings.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro , Modelos Lineales , Análisis Multivariante
14.
Artículo en Inglés | MEDLINE | ID: mdl-36119152

RESUMEN

Analyzing multi-source data, which are multiple views of data on the same subjects, has become increasingly common in molecular biomedical research. Recent methods have sought to uncover underlying structure and relationships within and/or between the data sources, and other methods have sought to build a predictive model for an outcome using all sources. However, existing methods that do both are presently limited because they either (1) only consider data structure shared by all datasets while ignoring structures unique to each source, or (2) they extract underlying structures first without consideration to the outcome. The proposed method, supervised joint and individual variation explained (sJIVE), can simultaneously (1) identify shared (joint) and source-specific (individual) underlying structure and (2) build a linear prediction model for an outcome using these structures. These two components are weighted to compromise between explaining variation in the multi-source data and in the outcome. Simulations show sJIVE to outperform existing methods when large amounts of noise are present in the multi-source data. An application to data from the COPDGene study explores gene expression and proteomic patterns associated with lung function.

15.
Appl Intell (Dordr) ; 52(13): 14693-14710, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36199853

RESUMEN

In clinical medicine, magnetic resonance imaging (MRI) is one of the most important tools for diagnosis, triage, prognosis, and treatment planning. However, MRI suffers from an inherent slow data acquisition process because data is collected sequentially in k-space. In recent years, most MRI reconstruction methods proposed in the literature focus on holistic image reconstruction rather than enhancing the edge information. This work steps aside this general trend by elaborating on the enhancement of edge information. Specifically, we introduce a novel parallel imaging coupled dual discriminator generative adversarial network (PIDD-GAN) for fast multi-channel MRI reconstruction by incorporating multi-view information. The dual discriminator design aims to improve the edge information in MRI reconstruction. One discriminator is used for holistic image reconstruction, whereas the other one is responsible for enhancing edge information. An improved U-Net with local and global residual learning is proposed for the generator. Frequency channel attention blocks (FCA Blocks) are embedded in the generator for incorporating attention mechanisms. Content loss is introduced to train the generator for better reconstruction quality. We performed comprehensive experiments on Calgary-Campinas public brain MR dataset and compared our method with state-of-the-art MRI reconstruction methods. Ablation studies of residual learning were conducted on the MICCAI13 dataset to validate the proposed modules. Results show that our PIDD-GAN provides high-quality reconstructed MR images, with well-preserved edge information. The time of single-image reconstruction is below 5ms, which meets the demand of faster processing.

16.
BMC Bioinformatics ; 21(Suppl 18): 483, 2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33375940

RESUMEN

BACKGROUND: In recent years, to investigate challenging bioinformatics problems, the utilization of multiple genomic and proteomic sources has become immensely popular among researchers. One such issue is feature or gene selection and identifying relevant and non-redundant marker genes from high dimensional gene expression data sets. In that context, designing an efficient feature selection algorithm exploiting knowledge from multiple potential biological resources may be an effective way to understand the spectrum of cancer or other diseases with applications in specific epidemiology for a particular population. RESULTS: In the current article, we design the feature selection and marker gene detection as a multi-view multi-objective clustering problem. Regarding that, we propose an Unsupervised Multi-View Multi-Objective clustering-based gene selection approach called UMVMO-select. Three important resources of biological data (gene ontology, protein interaction data, protein sequence) along with gene expression values are collectively utilized to design two different views. UMVMO-select aims to reduce gene space without/minimally compromising the sample classification efficiency and determines relevant and non-redundant gene markers from three cancer gene expression benchmark data sets. CONCLUSION: A thorough comparative analysis has been performed with five clustering and nine existing feature selection methods with respect to several internal and external validity metrics. Obtained results reveal the supremacy of the proposed method. Reported results are also validated through a proper biological significance test and heatmap plotting.


Asunto(s)
Algoritmos , Marcadores Genéticos/genética , Análisis por Conglomerados , Bases de Datos Genéticas , Ontología de Genes , Humanos , Neoplasias/genética , Neoplasias/patología , Mapas de Interacción de Proteínas
17.
Sensors (Basel) ; 20(3)2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32050581

RESUMEN

Maritime surveillance videos provide crucial on-spot kinematic traffic information (traffic volume, ship speeds, headings, etc.) for varied traffic participants (maritime regulation departments, ship crew, ship owners, etc.) which greatly benefits automated maritime situational awareness and maritime safety improvement. Conventional models heavily rely on visual ship features for the purpose of tracking ships from maritime image sequences which may contain arbitrary tracking oscillations. To address this issue, we propose an ensemble ship tracking framework with a multi-view learning algorithm and wavelet filter model. First, the proposed model samples ship candidates with a particle filter following the sequential importance sampling rule. Second, we propose a multi-view learning algorithm to obtain raw ship tracking results in two steps: extracting a group of distinct ship contour relevant features (i.e., Laplacian of Gaussian, local binary pattern, Gabor filter, histogram of oriented gradient, and canny descriptors) and learning high-level intrinsic ship features by jointly exploiting underlying relationships shared by each type of ship contour features. Third, with the help of the wavelet filter, we performed a data quality control procedure to identify abnormal oscillations in the ship positions which were further corrected to generate the final ship tracking results. We demonstrate the proposed ship tracker's performance on typical maritime traffic scenarios through four maritime surveillance videos.

18.
Sensors (Basel) ; 20(12)2020 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-32575798

RESUMEN

Recognition of motor imagery intention is one of the hot current research focuses of brain-computer interface (BCI) studies. It can help patients with physical dyskinesia to convey their movement intentions. In recent years, breakthroughs have been made in the research on recognition of motor imagery task using deep learning, but if the important features related to motor imagery are ignored, it may lead to a decline in the recognition performance of the algorithm. This paper proposes a new deep multi-view feature learning method for the classification task of motor imagery electroencephalogram (EEG) signals. In order to obtain more representative motor imagery features in EEG signals, we introduced a multi-view feature representation based on the characteristics of EEG signals and the differences between different features. Different feature extraction methods were used to respectively extract the time domain, frequency domain, time-frequency domain and spatial features of EEG signals, so as to made them cooperate and complement. Then, the deep restricted Boltzmann machine (RBM) network improved by t-distributed stochastic neighbor embedding(t-SNE) was adopted to learn the multi-view features of EEG signals, so that the algorithm removed the feature redundancy while took into account the global characteristics in the multi-view feature sequence, reduced the dimension of the multi-visual features and enhanced the recognizability of the features. Finally, support vector machine (SVM) was chosen to classify deep multi-view features. Applying our proposed method to the BCI competition IV 2a dataset we obtained excellent classification results. The results show that the deep multi-view feature learning method further improved the classification accuracy of motor imagery tasks.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía , Imaginación , Intención , Algoritmos , Humanos
19.
BMC Genomics ; 20(Suppl 11): 944, 2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31856727

RESUMEN

BACKGROUND: Comprehensive molecular profiling of various cancers and other diseases has generated vast amounts of multi-omics data. Each type of -omics data corresponds to one feature space, such as gene expression, miRNA expression, DNA methylation, etc. Integrating multi-omics data can link different layers of molecular feature spaces and is crucial to elucidate molecular pathways underlying various diseases. Machine learning approaches to mining multi-omics data hold great promises in uncovering intricate relationships among molecular features. However, due to the "big p, small n" problem (i.e., small sample sizes with high-dimensional features), training a large-scale generalizable deep learning model with multi-omics data alone is very challenging. RESULTS: We developed a method called Multi-view Factorization AutoEncoder (MAE) with network constraints that can seamlessly integrate multi-omics data and domain knowledge such as molecular interaction networks. Our method learns feature and patient embeddings simultaneously with deep representation learning. Both feature representations and patient representations are subject to certain constraints specified as regularization terms in the training objective. By incorporating domain knowledge into the training objective, we implicitly introduced a good inductive bias into the machine learning model, which helps improve model generalizability. We performed extensive experiments on the TCGA datasets and demonstrated the power of integrating multi-omics data and biological interaction networks using our proposed method for predicting target clinical variables. CONCLUSIONS: To alleviate the overfitting problem in deep learning on multi-omics data with the "big p, small n" problem, it is helpful to incorporate biological domain knowledge into the model as inductive biases. It is very promising to design machine learning models that facilitate the seamless integration of large-scale multi-omics data and biomedical domain knowledge for uncovering intricate relationships among molecular features and clinical features.


Asunto(s)
Algoritmos , Genómica , Modelos Biológicos , Biología de Sistemas/métodos , Sesgo , Minería de Datos , Bases de Datos Genéticas , Humanos , Bases del Conocimiento , Aprendizaje Automático , Neoplasias/genética , Neoplasias/mortalidad , Neoplasias/patología
20.
Hum Brain Mapp ; 40(3): 833-854, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30357998

RESUMEN

Functional connectivity network provides novel insights on how distributed brain regions are functionally integrated, and its deviations from healthy brain have recently been employed to identify biomarkers for neuropsychiatric disorders. However, most of brain network analysis methods utilized features extracted only from one functional connectivity network for brain disease detection and cannot provide a comprehensive representation on the subtle disruptions of brain functional organization induced by neuropsychiatric disorders. Inspired by the principles of multi-view learning which utilizes information from multiple views to enhance object representation, we propose a novel multiple network based framework to enhance the representation of functional connectivity networks by fusing the common and complementary information conveyed in multiple networks. Specifically, four functional connectivity networks corresponding to the four adjacent values of regularization parameter are generated via a sparse regression model with group constraint ( l2,1 -norm), to enhance the common intrinsic topological structure and limit the error rate caused by different views. To obtain a set of more meaningful and discriminative features, we propose using a modified version of weighted clustering coefficients to quantify the subtle differences of each group-sparse network at local level. We then linearly fuse the selected features from each individual network via a multi-kernel support vector machine for autism spectrum disorder (ASD) diagnosis. The proposed framework achieves an accuracy of 79.35%, outperforming all the compared single network methods for at least 7% improvement. Moreover, compared with other multiple network methods, our method also achieves the best performance, that is, with at least 11% improvement in accuracy.


Asunto(s)
Trastorno del Espectro Autista/diagnóstico por imagen , Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Vías Nerviosas/diagnóstico por imagen , Trastorno del Espectro Autista/fisiopatología , Encéfalo/fisiopatología , Niño , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Vías Nerviosas/fisiopatología , Máquina de Vectores de Soporte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA