Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Pathol ; 262(1): 76-89, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37842959

RESUMEN

A 'classical' and a 'basal-like' subtype of pancreatic cancer have been reported, with differential expression of GATA6 and different dosages of mutant KRAS. We established in situ detection of KRAS point mutations and mRNA panels for the consensus subtypes aiming to project these findings to paraffin-embedded clinical tumour samples for spatial quantitative analysis. We unveiled that, next to inter-patient and intra-patient inter-ductal heterogeneity, intraductal spatial phenotypes exist with anti-correlating expression levels of GATA6 and KRASG12D . The basal-like mRNA panel better captured the basal-like cell states than widely used protein markers. The panels corroborated the co-existence of the classical and basal-like cell states in a single tumour duct with functional diversification, i.e. proliferation and epithelial-to-mesenchymal transition respectively. Mutant KRASG12D detection ascertained an epithelial origin of vimentin-positive cells in the tumour. Uneven spatial distribution of cancer-associated fibroblasts could recreate similar intra-organoid diversification. This extensive heterogeneity with functional cooperation of plastic tumour cells poses extra challenges to therapeutic approaches. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Pancreáticas/patología , Fenotipo , ARN Mensajero , Carcinoma Ductal Pancreático/patología
2.
BMC Genomics ; 25(1): 789, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160478

RESUMEN

BACKGROUND: Detecting very minor (< 1%) subpopulations using next-generation sequencing is a critical need for multiple applications, including the detection of drug resistant pathogens and somatic variant detection in oncology. A recently available sequencing approach termed 'sequencing by binding (SBB)' claims to have higher base calling accuracy data "out of the box." This paper evaluates the utility of using SBB for the detection of ultra-rare drug resistant subpopulations in Mycobacterium tuberculosis (Mtb) using a targeted amplicon assay and compares the performance of SBB to single molecule overlapping reads (SMOR) error corrected sequencing by synthesis (SBS) data. RESULTS: SBS displayed an elevated error rate when compared to SMOR error-corrected SBS and SBB techniques. SMOR error-corrected SBS and SBB technologies performed similarly within the linear range studies and error rate studies. CONCLUSIONS: With lower sequencing error rates within SBB sequencing, this technique looks promising for both targeted and unbiased whole genome sequencing, leading to the identification of minor (< 1%) subpopulations without the need for error correction methods.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Humanos , Secuenciación Completa del Genoma/métodos
3.
Genet Med ; 26(10): 101220, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39041334

RESUMEN

PURPOSE: The gold standard for identification of post-zygotic variants (PZVs) is droplet digital polymerase chain reaction or high-depth sequencing across multiple tissues types. These approaches are yet to be systematically implemented for monogenic disorders. We developed PZV detection pipelines for correct classification of de novo variants. METHOD: Our pipelines detect PZV in parents (gonosomal mosaicism [pGoM]) and children (somatic mosaicism, "M3"). We applied them to research exome sequencing (ES) data from the Australian Cerebral Palsy Biobank (n = 145 trios) and Simons Simplex Collection (n = 405 families). Candidate mosaic variants were validated using deep amplicon sequencing or droplet digital polymerase chain reaction. RESULTS: 69.2% (M3trio), 63.9% (M3single), and 92.7% (pGoM) of detected variants were validated, with 48.6%, 56.7%, and 26.2% of variants, respectively, meeting strict criteria for mosaicism. In the Australian Cerebral Palsy Biobank, 16.6% of probands and 20.7% of parents had at least 1 true-positive somatic or pGoM variant, respectively. A large proportion of PZVs detected in Simons Simplex Collection parents (79.8%) and child (94.5%) were not previously reported. We reclassified 3.7% to 8.0% of germline de novo variants as mosaic. CONCLUSION: Many PZVs were incorrectly classified as germline variants or missed by previous approaches. Systematic application of our pipelines could increase genetic diagnostic rate, improve estimates of recurrence risk in families, and benefit novel disease gene identification.

4.
Int J Exp Pathol ; 105(3): 90-99, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38717047

RESUMEN

Management of lung cancer today obligates a mutational analysis of the epidermal growth factor receptor (EGFR) gene particularly when Tyrosine Kinase Inhibitor (TKI) therapy is being considered as part of prognostic stratification. This study evaluates the performance of automated microfluidics-based EGFR mutation detection and its significance in clinical diagnostic settings. Formalin-fixed, paraffin-embedded (FFPE) samples from NSCLC patients (n = 174) were included in a two-phase study. Phase I: Validation of the platform by comparing the results with conventional real-time PCR and next-generation sequencing (NGS) platform. Phase II: EGFR mutation detection on microfluidics-based platform as part of routine diagnostics workup. The microfluidics-based platform demonstrates 96.5% and 89.2% concordance with conventional real-time PCR and NGS, respectively. The system efficiently detects mutations across the EGFR gene with 88.23% sensitivity and 100% specificity. Out of 144 samples analysed in phase II, the platform generated valid results in 94% with mutation detected in 41% of samples. This microfluidics-based platform can detect as low as 5% mutant allele fractions from the FFPE samples. Therefore the microfluidics-based platform is a rapid, complete walkaway, with minimum tissue requirement (two sections of 5 µ thickness) and technical skill requirement. The method can detect clinically actionable EGFR mutations efficiently and can be considered a reliable diagnostic platform in resource-limited settings. From receiving samples to reporting the results this platform provides accurate data without much manual intervention. The study helped to devise an algorithm that emphasizes effective screening of the NSCLC cases for EGFR mutations with varying tumour content. Thus it helps in triaging the cases judiciously before proceeding with multigene testing.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Receptores ErbB , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias Pulmonares , Mutación , Humanos , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Análisis Mutacional de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Microfluídica/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Técnicas Analíticas Microfluídicas/métodos , Adhesión en Parafina
5.
Mol Biol Rep ; 51(1): 289, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329653

RESUMEN

BACKGROUND: The accurate and expeditious detection of SARS-CoV-2 mutations is critical for monitoring viral evolution, assessing its impact on transmission, virulence, and vaccine efficacy, and formulating public health interventions. In this study, a detection system utilizing micro temperature gradient gel electrophoresis (µTGGE) was developed for the identification of the D614 and G614 variants of the SARS-CoV-2 spike protein. METHODS: The in vitro synthesized D614 and G614 gene fragments of the SARS-CoV-2 spike protein were amplified via polymerase chain reaction and subjected to µTGGE analysis. RESULTS: The migration patterns exhibited by the D614 and G614 variants on the polyacrylamide gel were distinctly dissimilar and readily discernible by µTGGE. In particular, the mid-melting pattern of D614 was shorter than that of G614. CONCLUSIONS: Our results demonstrate the capability of µTGGE for the rapid, precise, and cost-effective detection of SARS-CoV-2 spike protein D614 and G614 variants without the need for sequencing. Therefore, this approach holds considerable potential for use in point-of-care mutation assays for SARS-CoV-2 and other pathogens.


Asunto(s)
SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Electroforesis en Gel de Gradiente Desnaturalizante , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
6.
BMC Med Inform Decis Mak ; 24(1): 198, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039464

RESUMEN

Genes, expressed as sequences of nucleotides, are susceptible to mutations, some of which can lead to cancer. Machine learning and deep learning methods have emerged as vital tools in identifying mutations associated with cancer. Thyroid cancer ranks as the 5th most prevalent cancer in the USA, with thousands diagnosed annually. This paper presents an ensemble learning model leveraging deep learning techniques such as Long Short-Term Memory (LSTM), Gated Recurrent Units (GRUs), and Bi-directional LSTM (Bi-LSTM) to detect thyroid cancer mutations early. The model is trained on a dataset sourced from asia.ensembl.org and IntOGen.org, consisting of 633 samples with 969 mutations across 41 genes, collected from individuals of various demographics. Feature extraction encompasses techniques including Hahn moments, central moments, raw moments, and various matrix-based methods. Evaluation employs three testing methods: self-consistency test (SCT), independent set test (IST), and 10-fold cross-validation test (10-FCVT). The proposed ensemble learning model demonstrates promising performance, achieving 96% accuracy in the independent set test (IST). Statistical measures such as training accuracy, testing accuracy, recall, sensitivity, specificity, Mathew's Correlation Coefficient (MCC), loss, training accuracy, F1 Score, and Cohen's kappa are utilized for comprehensive evaluation.


Asunto(s)
Aprendizaje Profundo , Mutación , Neoplasias de la Tiroides , Humanos , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/diagnóstico , Progresión de la Enfermedad
7.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38203788

RESUMEN

Detection of the Kirsten rat sarcoma gene (KRAS) mutational status is an important factor for the treatment of various malignancies. The most common KRAS-activating mutations are caused by single-nucleotide mutations, which are usually determined by using PCR, using allele-specific DNA primers. Oligonucleotide primers with uncharged or partially charged internucleotide phosphate modification have proved their ability to increase the sensitivity and specificity of various single nucleotide mutation detection. To enhance the specificity of single nucleotide mutation detection, the novel oligonucleotides with four types of uncharged and partially charged internucleotide phosphates modification, phosphoramide benzoazole (PABA) oligonucleotides (PABAO), was used to prove the concept on the KRAS mutation model. The molecular effects of different types of site-specific PABA modification in a primer or a template on a synthesis of full-length elongation product and PCR efficiency were evaluated. The allele-specific PCR (AS-PCR) on plasmid templates showed a significant increase in analysis specificity without changes in Cq values compared with unmodified primer. PABA modification is a universal mismatch-like disturbance, which can be used for single nucleotide polymorphism discrimination for various applications. The molecular insights of the PABA site-specific modification in a primer and a template affect PCR, structural features of four types of PABAO in connection with AS-PCR results, and improvements of AS-PCR specificity support the further design of novel PCR platforms for various biological targets testing.


Asunto(s)
Ácido 4-Aminobenzoico , Amidas , Oligonucleótidos , Fosforamidas , Ácidos Fosfóricos , Oligonucleótidos/genética , Polimorfismo de Nucleótido Simple , Proteínas Proto-Oncogénicas p21(ras) , Fosfatos , Nucleótidos , Azoles , Reacción en Cadena de la Polimerasa
8.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256178

RESUMEN

Unintended genetic modifications that occur during the differentiation and proliferation of human induced pluripotent stem cells (hiPSCs) can lead to tumorigenicity. This is a crucial concern in the development of stem cell-based therapies to ensure the safety and efficacy of the final product. Moreover, conventional genetic stability testing methods are limited by low sensitivity, which is an issue that remains unsolved. In this study, we assessed the genetic stability of hiPSCs and hiPSC-derived cardiomyocytes using various testing methods, including karyotyping, CytoScanHD chip analysis, whole-exome sequencing, and targeted sequencing. Two specific genetic mutations in KMT2C and BCOR were selected from the 17 gene variants identified by whole-exome and targeted sequencing methods, which were validated using droplet digital PCR. The applicability of this approach to stem cell-based therapeutic products was further demonstrated with associated validation according to the International Council for Harmonisation (ICH) guidelines, including specificity, precision, robustness, and limit of detection. Our droplet digital PCR results showed high sensitivity and accuracy for quantitatively detecting gene mutations, whereas conventional qPCR could not avoid false positives. In conclusion, droplet digital PCR is a highly sensitive and precise method for assessing the expression of mutations with tumorigenic potential for the development of stem cell-based therapeutics.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Miocitos Cardíacos , Carcinogénesis , Diferenciación Celular/genética , Reacción en Cadena de la Polimerasa
9.
Small ; : e2307985, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38084466

RESUMEN

Genetic variations are always related to human diseases or susceptibility to therapies. Nucleic acid probes that precisely distinguish closely related sequences become an indispensable requisite both in research and clinical applications. Here, a Sequence-guided DNA LOCalization for leaKless DNA detection (SeqLOCK) is introduced as a technique for DNA hybridization, where the intended targets carrying distinct "guiding sequences" act selectively on the probes. In silicon modeling, experimental results reveal considerable agreement (R2  = 0.9228) that SeqLOCK is capable of preserving high discrimination capacity at an extraordinarily wide range of target concentrations. Furthermore, SeqLOCK reveals high robustness to various solution conditions and can be directly adapted to nucleic acid amplification techniques (e.g., polymerase chain reaction) without the need for laborious pre-treatments. Benefiting from the low hybridization leakage of SeqLOCK, three distinct variations with a clinically relevant mutation frequency under the background of genomic DNA can be discriminated simultaneously. This work establishes a reliable nucleic acid hybridization strategy that offers great potential for constructing robust and programmable systems for molecular sensing and computing.

10.
Hum Genomics ; 16(1): 73, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36587211

RESUMEN

BACKGROUND: Blood plasma, one of the most studied liquid biopsies, contains various molecules that have biomarker potential for cancer detection, including cell-free DNA (cfDNA) and cell-free RNA (cfRNA). As the vast majority of cell-free nucleic acids in circulation are non-cancerous, a laboratory workflow with a high detection sensitivity of tumor-derived nucleic acids is a prerequisite for precision oncology. One way to meet this requirement is by the combined analysis of cfDNA and cfRNA from the same liquid biopsy sample. So far, no study has systematically compared the performance of cfDNA and cfRNA co-purification to increase sensitivity. RESULTS: First, we set up a framework using digital PCR (dPCR) technology to quantify cfDNA and cfRNA from human blood plasma in order to compare cfDNA/cfRNA co-purification kit performance. To that end, we optimized two dPCR duplex assays, designed to quantify both cfDNA and cfRNA with the same assays, by ensuring that primers and probes are located within a highly abundant exon. Next, we applied our optimized workflow to evaluate the co-purification performance of two manual and two semi-automated methods over a range of plasma input volumes (0.06-4 mL). Some kits result in higher nucleic acid concentrations in the eluate, while consuming only half of the plasma volume. The combined nucleic acid quantification systematically results in higher nucleic acid concentrations as compared to a parallel quantification of cfDNA and cfRNA in the eluate. CONCLUSIONS: We provide a framework to evaluate the performance of cfDNA/cfRNA co-purification kits and have tested two manual and two semi-automated co-purification kits in function of the available plasma input amount and the intended use of the nucleic acid eluate. We demonstrate that the combined quantification of cfDNA and cfRNA has a benefit compared to separate quantification. We foresee that the results of this study are instrumental for clinical applications to help increase mutation detection sensitivity, allowing improved disease detection and monitoring.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias , Ácidos Nucleicos , Humanos , Ácidos Nucleicos Libres de Células/genética , Neoplasias/genética , ARN/genética , Medicina de Precisión , Reacción en Cadena de la Polimerasa/métodos
11.
Virol J ; 20(1): 192, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626353

RESUMEN

BACKGROUND: The SARS-CoV-2 Omicron strain has multiple immune-escape mutations in the spike protein receptor-binding domain (RBD). Rapid detection of these mutations to identify Omicron and its lineages is essential for guiding public health strategies and patient treatments. We developed a two-tube, four-color assay employing asymmetric polymerase chain reaction (PCR)-based melting curve analysis to detect Omicron mutations and discriminate the BA.1, BA.2, BA.4/5, and BA.2.75 lineages. METHODS: The presented technique involves combinatory analysis of the detection of six fluorescent probes targeting the immune-escape mutations L452R, N460K, E484A, F486V, Q493R, Q498R, and Y505H within one amplicon in the spike RBD and probes targeting the ORF1ab and N genes. After protocol optimization, the analytical performance of the technique was evaluated using plasmid templates. Sensitivity was assessed based on the limit of detection (LOD), and reliability was assessed by calculating the intra- and inter-run precision of melting temperatures (Tms). Specificity was assessed using pseudotyped lentivirus of common human respiratory pathogens and human genomic DNA. The assay was used to analyze 40 SARS-CoV-2-positive clinical samples (including 36 BA.2 and 4 BA.4/5 samples) and pseudotyped lentiviruses of wild-type and BA.1 viral RNA control materials, as well as 20 SARS-CoV-2-negative clinical samples, and its accuracy was evaluated by comparing the results with those of sequencing. RESULTS: All genotypes were sensitively identified using the developed method with a LOD of 39.1 copies per reaction. The intra- and inter-run coefficients of variation for the Tms were ≤ 0.69% and ≤ 0.84%, with standard deviations ≤ 0.38 °C and ≤ 0.41 °C, respectively. Validation of the assay using known SARS-CoV-2-positive samples demonstrated its ability to correctly identify the targeted mutations and preliminarily characterize the Omicron lineages. CONCLUSION: The developed assay can provide accurate, reliable, rapid, simple and low-cost detection of the immune-escape mutations located in the spike RBD to detect the Omicron variant and discriminate its lineages, and its use can be easily generalized in clinical laboratories with a fluorescent PCR platform.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Reproducibilidad de los Resultados , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19/diagnóstico , Mutación , Prueba de COVID-19
12.
J Am Acad Dermatol ; 89(3): 569-576, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-34118299

RESUMEN

Over 1000 heritable disorders have cutaneous manifestations, some of which are syndromicin association with extracutaneous manifestations, whereas others are limited to the skin. The genetic basis of many of these conditions has been deciphered, and mutation analyses using next-generation sequencing approaches, including whole-exome sequencing, whole-genome sequencing, and whole-transcriptome analysis, are now increasingly becoming part of the diagnostic process. Besides confirming the diagnosis, information on the specific mutations can be used for subclassification with prognostication and identification of the carriers, leading to accurate genetic counseling. It also forms a basis for prenatal testing and preimplantation genetic diagnosis. Furthermore, the ongoing therapeutics developments for heritable skin diseases are often allele-specific, necessitating the knowledge of the specific genes and mutations. Although practicing clinicians increasingly employ molecular diagnostics for heritable skin diseases, they often lack the sufficient knowledge required to interpret the implications of the mutations with precision. The purpose of this primer is to provide an overview of mutation-detection strategies and how to interpret genetic information for improved diagnostics and the management of such patients.


Asunto(s)
Enfermedades de la Piel , Piel , Embarazo , Femenino , Humanos , Enfermedades de la Piel/diagnóstico , Enfermedades de la Piel/genética , Genómica , Mutación , Pruebas Genéticas
13.
Anal Bioanal Chem ; 415(14): 2849-2863, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37097304

RESUMEN

The success of personalized medicine depends on the discovery of biomarkers that allow oncologists to identify patients that will benefit from a particular targeted drug. Molecular tests are mostly performed using tumor samples, which may not be representative of the tumor's temporal and spatial heterogeneity. Liquid biopsies, and particularly the analysis of circulating tumor DNA, are emerging as an interesting means for diagnosis, prognosis, and predictive biomarker discovery. In this study, the amplification refractory mutation system (ARMS) coupled with high-resolution melting analysis (HRMA) was developed for detecting two of the most relevant KRAS mutations in codon 12. After optimization with commercial cancer cell lines, KRAS mutation screening was validated in tumor and plasma samples collected from patients with pancreatic ductal adenocarcinoma (PDAC), and the results were compared to those obtained by Sanger sequencing (SS) and droplet digital polymerase chain reaction (ddPCR). The developed ARMS-HRMA methodology stands out for its simplicity and reduced time to result when compared to both SS and ddPCR but showing high sensitivity and specificity for the detection of mutations in tumor and plasma samples. In fact, ARMS-HRMA scored 3 more mutations compared to SS (tumor samples T6, T7, and T12) and one more compared to ddPCR (tumor sample T7) in DNA extracted from tumors. For ctDNA from plasma samples, insufficient genetic material prevented the screening of all samples. Still, ARMS-HRMA allowed for scoring more mutations in comparison to SS and 1 more mutation in comparison to ddPCR (plasma sample P7). We propose that ARMS-HRMA might be used as a sensitive, specific, and simple method for the screening of low-level mutations in liquid biopsies, suitable for improving diagnosis and prognosis schemes.


Asunto(s)
Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Pronóstico , Reacción en Cadena de la Polimerasa/métodos , Mutación , Biomarcadores de Tumor/genética
14.
Anal Bioanal Chem ; 415(17): 3535-3547, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37254002

RESUMEN

Circulating tumor cells (CTCs) are cells shed from primary or metastatic tumors and spread into the peripheral bloodstream. Mutation detection in CTCs can reveal vital genetic information about the tumors and can be used for "liquid biopsy" to indicate cancer treatment and targeted medication. However, current methods to measure the mutations in CTCs are based on PCR or DNA sequencing which are cumbersome and time-consuming and require sophisticated equipment. These largely limited their applications especially in areas with poor healthcare infrastructure. Here we report a simple, convenient, and rapid method for mutation detection in CTCs, including an example of a deletion at exon 19 (Del19) of the epidermal growth factor receptor (EGFR). CTCs in the peripheral blood of NSCLC patients were first sorted by a double spiral microfluidic chip with high sorting efficiency and purity. The sorted cells were then lysed by proteinase K, and the E19del mutation was detected via real-time recombinase polymerase amplification (RPA). Combining the advantages of microfluidic sorting and real-time RPA, an accurate mutation determination was realized within 2 h without professional operation or complex data interpretation. The method detected as few as 3 cells and 1% target variants under a strongly interfering background, thus, indicating its great potential in the non-invasive diagnosis of E19del mutation for NSCLC patients. The method can be further extended by redesigning the primers and probes to detect other deletion mutations, insertion mutations, and fusion genes. It is expected to be a universal molecular diagnostic tool for real-time assessment of relevant mutations and precise adjustments in the care of oncology patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Microfluídica , Recombinasas/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Receptores ErbB/genética , Mutación , Células Neoplásicas Circulantes/patología
15.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36674433

RESUMEN

Low-level tumor somatic DNA mutations in tissue and liquid biopsies obtained from cancer patients can have profound implications for development of metastasis, prognosis, choice of treatment, follow-up, or early cancer detection. Unless detected, such low-frequency DNA alterations can misinform patient management decisions or become missed opportunities for personalized medicine. Next-generation sequencing technologies and digital-PCR can resolve low-level mutations but require access to specialized instrumentation, time, and resources. Enzymatic-based approaches to detection of low-level mutations provide a simple, straightforward, and affordable alternative to enrich and detect such alterations and is broadly available to low-resource laboratory settings. This review summarizes the traditional uses of enzymatic mutation detection and describes the latest exciting developments, potential, and applications with specific reference to the field of liquid biopsy in cancer.


Asunto(s)
Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Biopsia Líquida/métodos , ADN de Neoplasias , Mutación , Reacción en Cadena de la Polimerasa/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biomarcadores de Tumor/genética
16.
Br J Haematol ; 196(1): 19-30, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34124782

RESUMEN

With the focus of leukaemia management shifting to the implications of low-level disease burden, increasing attention is being paid on the development of highly sensitive methodologies required for detection. There are various techniques capable of identification of measurable residual disease (MRD) either evidencing as relevant mutation detection [e.g. nucleophosmin 1 (NPM1) mutation] or trace levels of leukaemic clonal populations. The vast majority of these methods only permit detection of a single clone or mutation. However, mass spectrometry and next-generation sequencing enable the interrogation of multiple genes simultaneously, facilitating a more complete genomic profile. In the present review, we explore the methodologies of both techniques in conjunction with the important advantages and limitations associated with each assay. We also highlight the evidence and the various instances where either technique has been used and propose future strategies for MRD detection.


Asunto(s)
Biomarcadores de Tumor , Análisis Mutacional de ADN/métodos , Leucemia/diagnóstico , Leucemia/etiología , Mutación , Neoplasia Residual/diagnóstico , Análisis Costo-Beneficio , Análisis Mutacional de ADN/economía , Análisis Mutacional de ADN/normas , Secuenciación de Nucleótidos de Alto Rendimiento/economía , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Humanos , Espectrometría de Masas/métodos , Espectrometría de Masas/normas , Tasa de Mutación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
17.
J Clin Lab Anal ; 36(11): e24735, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36253962

RESUMEN

BACKGROUND AND OBJECTIVE: Wilson disease (WD) is an autosomal recessive copper metabolic disorder caused by mutations in ATP7B. Sanger sequencing is currently used for ATP7B variant identification. However, the ATP7B gene contains 21 exons, which makes sequencing of the entire gene both complex and time-consuming. Therefore, a simpler assay is urgently needed. METHODS: We performed a laboratory and clinical evaluation of an oligonucleotide microarray for the detection of 24 ATP7B recurrent mutations (except p.P992L) in Chinese patients with WD. RESULTS: The accuracy of the microarray was evaluated by screening for ATP7B mutations in 126 patients including 106 suspected WD samples and 20 patients with other liver diseases as negative control. Results were confirmed by Sanger sequencing. We established a reliable microarray system for the rapid detection of the 24 ATP7B mutations, with a sensitivity of 30 ng/test genomic DNA and specificity of 100% for all loci; the coefficient of variation in repeatability tests was <10%. Clinical evaluation showed an overall concordance between the microarray detection and sequencing of 100%, and 81.13% (86/106) of suspected WD cases showed ATP7B mutations by microarray detection. Microarray and Sanger sequencing identified p.R778L (50.94%), p.A874V (17.92%), p.P992L (11.32%), p.V1106I (11.32%), and p.I1148T (6.60%) as the most common mutations in WD patients. CONCLUSIONS: Our microarray system is customizable and easily used for high-throughput detection of certain recurrent ATP7B mutations, providing a simpler method suitable for WD genetic diagnosis in China.


Asunto(s)
ATPasas Transportadoras de Cobre , Degeneración Hepatolenticular , Humanos , Análisis Mutacional de ADN , Exones , Degeneración Hepatolenticular/diagnóstico , Degeneración Hepatolenticular/genética , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , ATPasas Transportadoras de Cobre/genética
18.
Proc Natl Acad Sci U S A ; 116(28): 13921-13926, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31221755

RESUMEN

Amplification of signals by the hybridization chain reaction (HCR) is a powerful approach for increasing signal strength in single-molecule fluorescence in situ hybridization, but probes tagged with an HCR initiator sequence are prone to producing false signals. Here we describe a system of interacting hairpin binary probes in which the HCR initiator sequence is conditionally sequestered. The binding of these probes to a perfectly complementary target unmasks the initiator, enabling the generation of an amplified signal. This probe system can distinguish single-nucleotide variations within single mRNA molecules and produces amplified signals in situ for both mutant and wild-type variants, each in a distinguishable color. This technology will augment studies of imbalanced allelic expression and will be useful for the detection of somatic mutations in cancer biopsies. By tiling these probes along the length of an mRNA target, enhanced signals can be obtained, thereby enabling the scanning of tissue sections for gene expression utilizing lower magnification microscopy, overcoming tissue autofluorescence, and allowing the detection of low-abundance biomarkers in flow cytometry.


Asunto(s)
Citometría de Flujo , Neoplasias/diagnóstico , ARN Mensajero/genética , Imagen Individual de Molécula , Alelos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/aislamiento & purificación , Colorantes Fluorescentes/química , Genotipo , Humanos , Hibridación Fluorescente in Situ/métodos , Mutación/genética , Neoplasias/genética , Polimorfismo de Nucleótido Simple/genética , ARN Mensajero/química , ARN Mensajero/aislamiento & purificación
19.
Pestic Biochem Physiol ; 187: 105209, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36127073

RESUMEN

Insecticide resistance monitoring is essential in assessing the efficacy of vector control measures. However, gold standard PCR-based molecular analyses for insecticide resistance detection are often hindered by time-consuming sample processing, as well as considerable infrastructure and resourcing requirements. In this study, we combined a novel one-step sample preparation reagent with a rapid isothermal molecular test that detects a knock down resistance (kdr) mutation (F1534C) that enables pyrethroid resistance in Aedes aegypti mosquitoes. We trialled the rapid F1534C pyrethroid resistance test using insecticide resistant Ae. aegypti mosquito bodies and compared results to a conventional, allele-specific quantitative PCR (AS-qPCR) coupled with melt curve genotyping in corresponding mosquito heads. From a strain of Ae. aegypti established from an insecticide resistant population in Merida, Mexico (n = 27), all the mosquito bodies (n = 27) tested positive with the rapid F1534C test regardless of whether they were homozygous or heterozygous. To assess diagnostic test specificity, we confirmed that F1534 was not detected in laboratory-reared, fully susceptible Ae. aegypti mosquito bodies (n = 28) using the rapid F1534C test or the conventional AS-qPCR melt curve analysis. All corresponding mosquito heads (n = 28) were homozygous wild-type FF1534. The rapid F1534C test thus demonstrated 100% diagnostic sensitivity (95% CI: 87.23% to 100%) and 100% diagnostic specificity (95% CI: 87.66% to 100.00%) for detection of the F1534C pyrethroid resistant single nucleotide polymorphism (SNP) in both heterozygous and homozygous Ae. aegypti. In the collection of mutant mosquitoes from Mexico, CC1534 homozygous mutants occurred at a frequency of 74.1% (n = 20) and FC heterozygous mutants at a frequency of 25.9% (n = 7). The rapid F1534C test significantly reduced the sample processing and testing time from approximately 6 h for the AS-qPCR melt curve analysis to only 25 min. These results demonstrate significant potential for our approach to resistance testing as a field-based, low-resource, rapid alternative to time-consuming and expensive laboratory-based detection.


Asunto(s)
Aedes , Insecticidas , Piretrinas , Aedes/genética , Animales , Insecticidas/farmacología , Mosquitos Vectores/genética , Mutación , Piretrinas/farmacología , Recombinasas/genética
20.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36232477

RESUMEN

Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by multiple dysplastic organ lesions and neuropsychiatric symptoms, caused by loss of function mutations in either TSC1 or TSC2. Genotype and phenotype analyses are conducted worldwide, but there have been few large-scale studies on Japanese patients, and there are still many unclear points. This study analyzed 283 Japanese patients with TSC (225 definite, 53 possible, and 5 genetic diagnoses). A total of 200 mutations (64 TSC1, 136 TSC2) were identified, of which 17 were mosaic mutations, 11 were large intragenic deletions, and four were splicing abnormalities due to deep intronic mutations. Several lesions and symptoms differed in prevalence and severity between TSC1 and TSC2 patients and were generally more severe in TSC2 patients. Moreover, TSC2 missense and in-frame mutations may attenuate skin and renal symptoms compared to other TSC2 mutations. Genetic testing revealed that approximately 20% of parents of a proband had mild TSC, which could have been missed. The patient demographics presented in this study revealed a high frequency of TSC1 patients and a low prevalence of epilepsy compared to global statistics. More patients with mild neuropsychiatric phenotypes were diagnosed in Japan, seemingly due to a higher utilization of brain imaging, and suggesting the possibility that a significant amount of mild TSC patients may not be correctly diagnosed worldwide.


Asunto(s)
Esclerosis Tuberosa , Humanos , Análisis Mutacional de ADN/métodos , Genotipo , Japón/epidemiología , Mutación , Fenotipo , Esclerosis Tuberosa/epidemiología , Esclerosis Tuberosa/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA