Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.768
Filtrar
Más filtros

Intervalo de año de publicación
1.
EMBO Rep ; 25(3): 1623-1649, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253690

RESUMEN

Psychiatric and neurological symptoms, as well as cognitive deficits, represent a prominent phenotype associated with variable forms of autoimmune encephalitis, regardless of the neurotransmitter receptor targeted by autoantibodies. The mechanistic underpinnings of these shared major neuropsychiatric symptoms remain however unclear. Here, we investigate the impacts of patient-derived monoclonal autoantibodies against the glutamatergic NMDAR (NMDAR mAb) and inhibitory GABAaR (GABAaR mAb) signalling in the hippocampal network. Unexpectedly, both excitatory and inhibitory synaptic receptor membrane dynamics, content and transmissions are altered by NMDAR or GABAaR mAb, irrespective of the affinity or antagonistic effect of the autoantibodies. The effect of NMDAR mAb on inhibitory synapses and GABAaR mAb on excitatory synapses requires neuronal activity and involves protein kinase signalling. At the cell level, both autoantibodies increase the excitation/inhibition balance of principal cell inputs. Furthermore, NMDAR or GABAaR mAb leads to hyperactivation of hippocampal networks through distinct alterations of principal cell and interneuron properties. Thus, autoantibodies targeting excitatory NMDAR or inhibitory GABAaR trigger convergent network dysfunctions through a combination of shared and distinct mechanisms.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Encefalitis , Enfermedad de Hashimoto , Humanos , Receptores de GABA-A/metabolismo , Autoanticuerpos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
2.
Am J Hum Genet ; 109(9): 1692-1712, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36055214

RESUMEN

Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) encodes an inner mitochondrial membrane protein with an osmoregulatory function controlling mitochondrial volume and ion homeostasis. The putative association of LETM1 with a human disease was initially suggested in Wolf-Hirschhorn syndrome, a disorder that results from de novo monoallelic deletion of chromosome 4p16.3, a region encompassing LETM1. Utilizing exome sequencing and international gene-matching efforts, we have identified 18 affected individuals from 11 unrelated families harboring ultra-rare bi-allelic missense and loss-of-function LETM1 variants and clinical presentations highly suggestive of mitochondrial disease. These manifested as a spectrum of predominantly infantile-onset (14/18, 78%) and variably progressive neurological, metabolic, and dysmorphic symptoms, plus multiple organ dysfunction associated with neurodegeneration. The common features included respiratory chain complex deficiencies (100%), global developmental delay (94%), optic atrophy (83%), sensorineural hearing loss (78%), and cerebellar ataxia (78%) followed by epilepsy (67%), spasticity (53%), and myopathy (50%). Other features included bilateral cataracts (42%), cardiomyopathy (36%), and diabetes (27%). To better understand the pathogenic mechanism of the identified LETM1 variants, we performed biochemical and morphological studies on mitochondrial K+/H+ exchange activity, proteins, and shape in proband-derived fibroblasts and muscles and in Saccharomyces cerevisiae, which is an important model organism for mitochondrial osmotic regulation. Our results demonstrate that bi-allelic LETM1 variants are associated with defective mitochondrial K+ efflux, swollen mitochondrial matrix structures, and loss of important mitochondrial oxidative phosphorylation protein components, thus highlighting the implication of perturbed mitochondrial osmoregulation caused by LETM1 variants in neurological and mitochondrial pathologies.


Asunto(s)
Proteínas de Unión al Calcio , Enfermedades Mitocondriales , Proteínas de Unión al Calcio/genética , Homeostasis/genética , Humanos , Proteínas de la Membrana/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Sistema Nervioso/metabolismo , Saccharomyces cerevisiae/metabolismo
3.
J Med Genet ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39084904

RESUMEN

We aim to describe double gonosomal mosaicism in the GRIN2A gene in a mother who passed on two different pathogenic variants at the same nucleotide to her two affected children. We studied a boy with epilepsy and intellectual disability, along with his sister and mother who exhibited language impairment and learning difficulties without epilepsy. We identified in the proband a splice-site variant in GRIN2A (c.1008-1G>A) inherited from his mother. Subsequent testing of his sister revealed a different change at the same nucleotide c.1008-1G>T, which was also present in the mother's DNA at 3.9% allele frequency. The co-occurrence of two mutational events at the same nucleotide is extremely rare. Since a chance occurrence is unlikely, we hypothesise that a base mismatch may introduce instability triggering a second event. In this family, the mother carries three alleles, of which one is at very low frequency. This complex genetic landscape poses diagnostic challenges since low-level mosaicism may escape detection via conventional methods. Applying specific technology becomes crucial, as double mosaicism might prove to be more prevalent than anticipated severely impacting diagnostic accuracy and genetic counselling.

4.
J Med Genet ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38825366

RESUMEN

Encephalocraniocutaneous lipomatosis (ECCL) is a sporadic congenital condition characterised by ocular, cutaneous and central nervous system involvement. Mosaic activating variants in FGFR1 and KRAS have been reported in several individuals with this syndrome. We report on a patient with neurofibromatosis type 1 (NF1) with a germline pathogenic variant in the NF1 gene and an ECCL phenotype, suggesting ECCL to be part of a spectrum of malformations associated with NF1 pathogenic variants. An anatomical hemispherectomy was performed for intractable epilepsy. Through genetic analysis of blood, cerebral tissue and giant cell lesions in both jaws, we identified the germline NF1 pathogenic variant in all samples and a second-hit pathogenic NF1 variant in cerebral tissue and both giant cell lesions. Both NF1 variants were located on different alleles resulting in somatic mosaicism for a biallelic NF1 inactivation originating in early embryogenesis (second-hit mosaicism or Happle type 2 mosaicism). The biallelic deficit in NF1 in the left hemicranium explains the severe localised, congenital abnormality in this patient. Identical first and second-hit variants in a giant cell lesion of both upper and lower jaws provide confirmatory evidence for an early embryonic second hit involving at least the neural crest. We suggest that the ECCL phenotype may be part of a spectrum of congenital problems associated with mosaic NF1 nullisomy originating during early embryogenesis. The biallelic NF1 inactivation during early embryogenesis mimics the severe activation of the RAS-MAPK pathway seen in ECCL caused by embryonic mosaic activating FGFR1 and KRAS variants in the cranial region. We propose that distinct mechanisms of mosaicism can cause the ECCL phenotype through convergence on the RAS-MAPK pathway.

5.
J Med Genet ; 61(4): 340-346, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-37923380

RESUMEN

BACKGROUND: Oculopharyngodistal myopathy (OPDM) is a rare adult-onset neuromuscular disease, associated with CGG repeat expansions in the 5' untranslated region of LRP12, GIPC1, NOTCH2NLC and RILPL1. However, the genetic cause of a proportion of pathoclinically confirmed cases remains unknown. METHODS: A total of 26 OPDM patients with unknown genetic cause(s) from 4 tertiary referral hospitals were included in this study. Clinical data and laboratory findings were collected. Muscle samples were observed by histological and immunofluorescent staining. Long-read sequencing was initially conducted in six patients with OPDM. Repeat-primed PCR was used to screen the CGG repeat expansions in LOC642361/NUTM2B-AS1 in all 26 patients. RESULTS: We identified CGG repeat expansion in the non-coding transcripts of LOC642361/NUTM2B-AS1 in another two unrelated Chinese cases with typical pathoclinical features of OPDM. The repeat expansion was more than 70 times in the patients but less than 40 times in the normal controls. Both patients showed no leucoencephalopathy but one showed mild cognitive impairment detected by Montreal Cognitive Assessment. Rimmed vacuoles and p62-positive intranuclear inclusions (INIs) were identified in muscle pathology, and colocalisation of CGG RNA foci with p62 was also found in the INIs of patient-derived fibroblasts. CONCLUSIONS: We identified another two unrelated cases with CGG repeat expansion in the long non-coding RNA of the LOC642361/NUTM2B-AS1 gene, presenting with a phenotype of OPDM. Our cases broadened the recognised phenotypic spectrum and pathogenesis in the disease associated with CGG repeat expansion in LOC642361/NUTM2B-AS1.


Asunto(s)
Distrofias Musculares , Adulto , Humanos , Distrofias Musculares/genética , Fenotipo , Cuerpos de Inclusión Intranucleares/genética , Expansión de Repetición de Trinucleótido/genética
6.
J Med Genet ; 61(3): 244-249, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-37857482

RESUMEN

BACKGROUND: The neurodevelopmental prognosis of anomalies of the corpus callosum (ACC), one of the most frequent brain malformations, varies extremely, ranging from normal development to profound intellectual disability (ID). Numerous genes are known to cause syndromic ACC with ID, whereas the genetics of ACC without ID remains poorly deciphered. METHODS: Through a collaborative work, we describe here ZEB1, a gene previously involved in an ophthalmological condition called type 3 posterior polymorphous corneal dystrophy, as a new dominant gene of ACC. We report a series of nine individuals with ACC (including three fetuses terminated due to ACC) carrying a ZEB1 heterozygous loss-of-function (LoF) variant, identified by exome sequencing. RESULTS: In five cases, the variant was inherited from a parent with a normal corpus callosum, which illustrates the incomplete penetrance of ACC in individuals with an LoF in ZEB1. All patients reported normal schooling and none of them had ID. Neuropsychological assessment in six patients showed either normal functioning or heterogeneous cognition. Moreover, two patients had a bicornuate uterus, three had a cardiovascular anomaly and four had macrocephaly at birth, which suggests a larger spectrum of malformations related to ZEB1. CONCLUSION: This study shows ZEB1 LoF variants cause dominantly inherited ACC without ID and extends the extraocular phenotype related to this gene.


Asunto(s)
Discapacidad Intelectual , Malformaciones del Sistema Nervioso , Recién Nacido , Femenino , Humanos , Cuerpo Calloso , Agenesia del Cuerpo Calloso/genética , Malformaciones del Sistema Nervioso/genética , Discapacidad Intelectual/genética , Cognición , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética
7.
J Med Genet ; 61(6): 536-542, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38272663

RESUMEN

BACKGROUND: PHACTR1 (phosphatase and actin regulators) plays a key role in cortical migration and synaptic activity by binding and regulating G-actin and PPP1CA. This study aimed to expand the genotype and phenotype of patients with de novo variants in PHACTR1 and analyse the impact of variants on protein-protein interaction. METHODS: We identified seven patients with PHACTR1 variants by trio-based whole-exome sequencing. Additional two subjects were ascertained from two centres through GeneMatcher. The genotype-phenotype correlation was determined, and AlphaFold-Multimer was used to predict protein-protein interactions and interfaces. RESULTS: Eight individuals carried missense variants and one had CNV in the PHACTR1. Infantile epileptic spasms syndrome (IESS) was the unifying phenotype in eight patients with missense variants of PHACTR1. They could present with other types of seizures and often exhibit drug-resistant epilepsy with a poor prognosis. One patient with CNV displayed a developmental encephalopathy phenotype. Using AlphaFold-Multimer, our findings indicate that PHACTR1 and G-actin-binding sequences overlap with PPP1CA at the RPEL3 domain, which suggests possible competition between PPP1CA and G-actin for binding to PHACTR1 through a similar polymerisation interface. In addition, patients carrying missense variants located at the PHACTR1-PPP1CA or PHACTR1-G-actin interfaces consistently exhibit the IESS phenotype. These missense variants are mostly concentrated in the overlapping sequence (RPEL3 domain). CONCLUSIONS: Patients with variants in PHACTR1 can have a phenotype of developmental encephalopathy in addition to IESS. Moreover, our study confirmed that the variants affect the binding of PHACTR1 to G-actin or PPP1CA, resulting in neurological disorders in patients.


Asunto(s)
Secuenciación del Exoma , Estudios de Asociación Genética , Proteínas de Microfilamentos , Mutación Missense , Fenotipo , Espasmos Infantiles , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Actinas/genética , Predisposición Genética a la Enfermedad , Genotipo , Proteínas de Microfilamentos/genética , Mutación Missense/genética , Enfermedades del Sistema Nervioso/genética , Proteína Fosfatasa 1/genética , Espasmos Infantiles/genética
8.
J Med Genet ; 61(7): 661-665, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38458755

RESUMEN

All people with motor neuron disease (pwMND) in England are eligible for genome sequencing (GS), with panel-based testing. With the advent of genetically targeted MND treatments, and increasing demand for GS, it is important that clinicians have the knowledge and skills to support pwMND in making informed decisions around GS. We undertook an online survey of clinical genomic knowledge and genetic counselling skills in English clinicians who see pwMND. There were 245 respondents to the survey (160 neurology clinicians and 85 genetic clinicians). Neurology clinicians reported multiple, overlapping barriers to offering pwMND GS. Lack of time to discuss GS in clinic and lack of training in genetics were reported. Neurology clinicians scored significantly less well on self-rated genomic knowledge and genetic counselling skills than genetic clinicians. The majority of neurology clinicians reported that they do not have adequate educational or patient information resources to support GS discussions. We identify low levels of genomic knowledge and skills in the neurology workforce. This may impede access to GS and precision medicine for pwMND.


Asunto(s)
Enfermedad de la Neurona Motora , Humanos , Enfermedad de la Neurona Motora/genética , Enfermedad de la Neurona Motora/epidemiología , Encuestas y Cuestionarios , Inglaterra , Neurología/educación , Secuenciación Completa del Genoma , Asesoramiento Genético , Masculino , Medicina Estatal , Pruebas Genéticas , Femenino , Genómica/métodos
9.
J Med Genet ; 61(3): 212-223, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-37788905

RESUMEN

INTRODUCTION: Chediak-Higashi syndrome (CHS) is a rare autosomal recessive disorder characterised by partial oculocutaneous albinism, a bleeding diathesis, immunological dysfunction and neurological impairment. Bi-allelic loss-of-function variants in LYST cause CHS. LYST encodes the lysosomal trafficking regulator, a highly conserved 429 kDa cytoplasmic protein with an unknown function. METHODS: To further our understanding of the pathogenesis of CHS, we conducted clinical evaluations on individuals with CHS enrolled in our natural history study. Using genomic DNA Sanger sequencing, we identified novel pathogenic LYST variants. Additionally, we performed an extensive literature review to curate reported LYST variants and classified these novel and reported variants according to the American College of Medical Genetics/Association for Molecular Pathology variant interpretation guidelines. RESULTS: Our investigation unveiled 11 novel pathogenic LYST variants in eight patients with a clinical diagnosis of CHS, substantiated by the presence of pathognomonic giant intracellular granules. From these novel variants, together with a comprehensive review of the literature, we compiled a total of 147 variants in LYST, including 61 frameshift variants (41%), 44 nonsense variants (30%), 23 missense variants (16%), 13 splice site variants or small genomic deletions for which the coding effect is unknown (9%), 5 in-frame variants (3%) and 1 start-loss variant (1%). Notably, a genotype-phenotype correlation emerged, whereby individuals harbouring at least one missense or in-frame variant generally resulted in milder disease, while those with two nonsense or frameshift variants generally had more severe disease. CONCLUSION: The identification of novel pathogenic LYST variants and improvements in variant classification will provide earlier diagnoses and improved care to individuals with CHS.


Asunto(s)
Síndrome de Chediak-Higashi , Humanos , Síndrome de Chediak-Higashi/genética , Síndrome de Chediak-Higashi/diagnóstico , Síndrome de Chediak-Higashi/patología , Mutación , Proteínas/genética , Mutación Missense , Secuencia de Bases , Proteínas de Transporte Vesicular/genética
10.
J Med Genet ; 61(5): 430-434, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38050071

RESUMEN

BACKGROUND: Cases of RNF216-related disorder have been reported sporadically. However, the clinical and genetic spectrum of this disorder has not been fully studied. METHODS: We identified an individual with a novel causative RNF216 variant in our institution and reviewed all individuals with causative RNF216 variants in previous reports. The clinical and genetic features of all the described individuals were analysed and summarised. RESULTS: Twenty-four individuals from 17 families with causative RNF216 variants were identified. The mean age at the onset of neurological symptoms was 29.2 years (range 18-49 years). Ataxia (57%) was the most frequent initial symptoms in individuals under 30 years old, while chorea (63%) was the most frequent initial symptom in individuals over 30 years old. Over 90% of individuals presented with cognitive impairment and hypogonadotropic hypogonadism throughout the disease. White matter lesions (96%) and cerebellar atrophy (92%) were the most common imaging findings. Twenty pathogenic variants in RNF216 were detected. The variants in 12 (71%) families were inherited in a monogenic recessive pattern, whereas the variants in 5 (29%) were inherited in a digenic pattern by acting with variants in other genes. The majority of the RNF216 variants (85%) resulted in amino acid changes or the truncation of the 'RING between RING' (RBR) domain or C-terminal extension. CONCLUSION: RNF216-related disorder is an inherited neuroendocrine disease characterised by cerebellar ataxia, chorea, cognitive impairment and hypogonadotropic hypogonadism. Most causative variants in patients with RNF216-related disorder influence the RBR domain or C-terminal extension of RNF216.

11.
J Med Genet ; 61(6): 578-585, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38290825

RESUMEN

OBJECTIVES: Speech and language impairments are core features of the neurodevelopmental genetic condition Kleefstra syndrome. Communication has not been systematically examined to guide intervention recommendations. We define the speech, language and cognitive phenotypic spectrum in a large cohort of individuals with Kleefstra syndrome. METHOD: 103 individuals with Kleefstra syndrome (40 males, median age 9.5 years, range 1-43 years) with pathogenic variants (52 9q34.3 deletions, 50 intragenic variants, 1 balanced translocation) were included. Speech, language and non-verbal communication were assessed. Cognitive, health and neurodevelopmental data were obtained. RESULTS: The cognitive spectrum ranged from average intelligence (12/79, 15%) to severe intellectual disability (12/79, 15%). Language ability also ranged from average intelligence (10/90, 11%) to severe intellectual disability (53/90, 59%). Speech disorders occurred in 48/49 (98%) verbal individuals and even occurred alongside average language and cognition. Developmental regression occurred in 11/80 (14%) individuals across motor, language and psychosocial domains. Communication aids, such as sign and speech-generating devices, were crucial for 61/103 (59%) individuals including those who were minimally verbal, had a speech disorder or following regression. CONCLUSIONS: The speech, language and cognitive profile of Kleefstra syndrome is broad, ranging from severe impairment to average ability. Genotype and age do not explain the phenotypic variability. Early access to communication aids may improve communication and quality of life.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 9 , Cognición , Anomalías Craneofaciales , Discapacidad Intelectual , Fenotipo , Humanos , Masculino , Discapacidad Intelectual/genética , Discapacidad Intelectual/fisiopatología , Niño , Adolescente , Femenino , Adulto , Preescolar , Cromosomas Humanos Par 9/genética , Adulto Joven , Lactante , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/fisiopatología , Habla , Trastornos del Habla/genética , Trastornos del Habla/fisiopatología , Lenguaje , Inteligencia/genética , Trastornos del Lenguaje/genética , Trastornos del Lenguaje/fisiopatología , Cardiopatías Congénitas
12.
J Med Genet ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38960580

RESUMEN

BACKGROUND: SINE-VNTR-Alu (SVA) retrotransposons move from one genomic location to another in a 'copy-and-paste' manner. They continue to move actively and cause monogenic diseases through various mechanisms. Currently, disease-causing SVA retrotransposons are classified into human-specific young SVA_E or SVA_F subfamilies. In this study, we identified an evolutionarily old SVA_D retrotransposon as a novel cause of occipital horn syndrome (OHS). OHS is an X-linked, copper metabolism disorder caused by dysfunction of the copper transporter, ATP7A. METHODS: We investigated a 16-year-old boy with OHS whose pathogenic variant could not be detected via routine molecular genetic analyses. RESULTS: A 2.8 kb insertion was detected deep within the intron of the patient's ATP7A gene. This insertion caused aberrant mRNA splicing activated by a new donor splice site located within it. Long-read circular consensus sequencing enabled us to accurately read the entire insertion sequence, which contained highly repetitive and GC-rich segments. Consequently, the insertion was identified as an SVA_D retrotransposon. Antisense oligonucleotides (AOs) targeting the new splice site restored the expression of normal transcripts and functional ATP7A proteins. AO treatment alleviated excessive accumulation of copper in patient fibroblasts in a dose-dependent manner. Pedigree analysis revealed that the retrotransposon had moved into the OHS-causing position two generations ago. CONCLUSION: This is the first report of a human monogenic disease caused by the SVA_D retrotransposon. The fact that the evolutionarily old SVA_D is still actively transposed, leading to increased copy numbers may make a notable impact on rare genetic disease research.

13.
Stroke ; 55(5): 1438-1448, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38648281

RESUMEN

ARISE (Aneurysm/AVM/cSDH Roundtable Discussion With Industry and Stroke Experts) organized a one-and-a-half day meeting and workshop and brought together representatives from academia, industry, and government to discuss the most promising approaches to improve outcomes for patients with chronic subdural hematoma (cSDH). The emerging role of middle meningeal artery embolization in clinical practice and the design of current and potential future trials were the primary focuses of discussion. Existing evidence for imaging, indications, agents, and techniques was reviewed, and areas of priority for study and key questions surrounding the development of new and existing treatments for cSDH were identified. Multiple randomized, controlled trials have met their primary efficacy end points, providing high-level evidence that middle meningeal artery embolization is a potent adjunctive therapy to the standard (surgical and nonsurgical) management of neurologically stable cSDH patients in terms of reducing rates of disease recurrence. Pooled data analyses following the formal conclusion and publication of these trials will form a robust foundation upon which guidelines can be strengthened for cSDH treatment modalities and optimal patient selection, as well as delineate future lines of investigation.


Asunto(s)
Hematoma Subdural Crónico , Humanos , Consenso , Embolización Terapéutica/métodos , Hematoma Subdural Crónico/terapia , Ensayos Clínicos Controlados Aleatorios como Asunto
14.
J Neurophysiol ; 131(5): 825-831, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38533950

RESUMEN

This article evaluates the ethical implications of utilizing artificial intelligence (AI) algorithms in neurological diagnostic examinations. Applications of AI technology have been utilized to aid in the determination of pharmacological dosages of gadolinium for brain lesion detection, localization of seizure foci, and the characterization of large vessel occlusion in ischemic stroke patients. Multiple subtypes of AI/machine learning (ML) algorithms are analyzed, as AI-assisted neurology utilizes supervised, unsupervised, artificial neural network (ANN), and deep neural network (DNN) learning models. As ANN and DNN analyses can be applied to data with an unknown clinical diagnosis, these algorithms are evaluated according to Bayesian statistical analyses. Bayesian neural network analyses are incorporated, as these algorithms indicate that the predictive accuracy and model performance are dependent upon accurate configurations of the model's hyperparameters and neural inputs. Thus, mathematical evaluations of AI algorithms are comprehensively explored to examine their clinical utility, as underperformance of AI/ML models may have deleterious consequences that affect patient outcomes due to misdiagnosis and false-negative test results.


Asunto(s)
Inteligencia Artificial , Aprendizaje Automático , Humanos , Redes Neurales de la Computación , Algoritmos , Teorema de Bayes
15.
Annu Rev Med ; 73: 113-127, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34416121

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created a global pandemic. Beyond the well-described respiratory manifestations, SARS-CoV-2 may cause a variety of neurologic complications, including headaches, alteration in taste and smell, encephalopathy, cerebrovascular disease, myopathy, psychiatric diseases, and ocular disorders. Herein we describe SARS-CoV-2's mechanism of neuroinvasion and the epidemiology, outcomes, and treatments for neurologic manifestations of COVID-19.


Asunto(s)
COVID-19 , Enfermedades del Sistema Nervioso , Humanos , Enfermedades del Sistema Nervioso/etiología , Pandemias , SARS-CoV-2
16.
J Clin Immunol ; 44(6): 140, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829425

RESUMEN

Autoimmune polyendocrine syndrome type 1 (APS-1) is a rare monogenic disease caused by mutations in the autoimmune regulator gene. Although the disease-associated autoantibodies mostly target endocrine organs, autoantibodies from patients with APS-1 bind also to rat brain structures. The patients often have GAD65-antibodies, that can cause autoimmune encephalitis. However, neurological manifestations of APS-1 have not been systematically explored. We conducted a retrospective chart review on 44 Finnish patients with APS-1 (median age 38 years, 61% females) and collected all their neurological diagnoses. To assess the prevalence of serum antineuronal antibodies in APS-1, serum samples of 24 patients (median age 36 years, 63% females) were analyzed using a fixed cell-based assay. Of the 44 APS-1 patients, 10 (23%) had also received a diagnosis of a neurological disease. Of these neurological comorbidities, migraine (n = 7; 16%), central nervous system infections (n = 3; 7%), and epilepsy (n = 2; 5%) were the most prevalent. Other diagnoses recorded for single patients were axonal sensorimotor polyneuropathy, essential tremor, idiopathic intracranial hypertension, ischemic stroke, and trigeminal neuralgia. Serum antineuronal antibodies were detected in 42% of patients tested (10/24, 50% females, median age 42 years), GAD65 antibodies being the most common finding. Antibodies against glycine and aquaporin 4 were found in low titers. In four patients, relatively high titers of GAD65 antibodies without coexisting type 1 diabetes were found, but none presented with GAD65-encephalitis. Our study suggests an association between APS-1 and neurological disorders, the mechanisms of which are to be further investigated.


Asunto(s)
Autoanticuerpos , Poliendocrinopatías Autoinmunes , Humanos , Poliendocrinopatías Autoinmunes/inmunología , Poliendocrinopatías Autoinmunes/epidemiología , Poliendocrinopatías Autoinmunes/sangre , Femenino , Masculino , Adulto , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Persona de Mediana Edad , Finlandia/epidemiología , Prevalencia , Estudios Retrospectivos , Estudios de Cohortes , Adulto Joven , Enfermedades del Sistema Nervioso/inmunología , Enfermedades del Sistema Nervioso/epidemiología , Enfermedades del Sistema Nervioso/etiología , Neuronas/inmunología , Adolescente , Glutamato Descarboxilasa/inmunología , Anciano
17.
J Gene Med ; 26(1): e3591, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37721116

RESUMEN

BACKGROUND: Intellectual disability (ID) can be associated with different syndromes such as Rubinstein-Taybi syndrome (RSTS) and can also be related to conditions such as metabolic encephalomyopathic crises, recurrent,with rhabdomyolysis, cardiac arrhythmias and neurodegeneration. Rare congenital RSTS1 (OMIM 180849) is characterized by mental and growth retardation, significant and duplicated distal phalanges of thumbs and halluces, facial dysmorphisms, and an elevated risk of malignancies. Microdeletions and point mutations in the CREB-binding protein (CREBBP) gene, located at 16p13.3, have been reported to cause RSTS. By contrast, TANGO2-related metabolic encephalopathy and arrhythmia (TRMEA) is a rare metabolic condition that causes repeated metabolic crises, hypoglycemia, lactic acidosis, rhabdomyolysis, arrhythmias and encephalopathy with cognitive decline. Clinicians need more clinical and genetic evidence to detect and comprehend the phenotypic spectrum of this disorder. METHODS: Exome sequencing was used to identify the disease-causing variants in two affected families A and B from District Kohat and District Karak, Khyber Pakhtunkhwa. Affected individuals from both families presented symptoms of ID, developmental delay and behavioral abnormalities. The validation and co-segregation analysis of the filtered variant was carried out using Sanger sequencing. RESULTS: In the present study, two families (A and B) exhibiting various forms of IDs were enrolled. In Family A, exome sequencing revealed a novel missense variant (NM 004380.3: c.4571A>G; NP_004371.2: p.Lys1524Arg) in the CREBBP gene, whereas, in Family B, a splice site variant (NM 152906.7: c.605 + 1G>A) in the TANGO2 gene was identified. Sanger sequencing of both variants confirmed their segregation with ID in both families. The in silico tools verified the aberrant changes in the CREBBP protein structure. Wild-type and mutant CREBBP protein structures were superimposed and conformational changes were observed likely altering the protein function. CONCLUSIONS: RSTS and TRMEA are exceedingly rare disorders for which specific clinical characteristics have been clearly established, but more investigations are underway and required. Multicenter studies are needed to increase our understanding of the clinical phenotypes, mainly showing the genotype-phenotype associations.


Asunto(s)
Discapacidad Intelectual , Rabdomiólisis , Síndrome de Rubinstein-Taybi , Humanos , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/química , Discapacidad Intelectual/genética , Mutación , Mutación Missense , Fenotipo , Rabdomiólisis/genética , Síndrome de Rubinstein-Taybi/genética , Síndrome de Rubinstein-Taybi/diagnóstico , Síndrome de Rubinstein-Taybi/patología
18.
Cancer Immunol Immunother ; 73(3): 48, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349393

RESUMEN

Monoamine oxidase A (MAOA) is a membrane-bound mitochondrial enzyme present in almost all vertebrate tissues that catalyzes the degradation of biogenic and dietary-derived monoamines. MAOA is known for regulating neurotransmitter metabolism and has been implicated in antitumor immune responses. In this review, we retrospect that MAOA inhibits the activities of various types of tumor-associated immune cells (such as CD8+ T cells and tumor-associated macrophages) by regulating their intracellular monoamines and metabolites. Developing novel MAOA inhibitor drugs and exploring multidrug combination strategies may enhance the efficacy of immune governance. Thus, MAOA may act as a novel immune checkpoint or immunomodulator by influencing the efficacy and effectiveness of immunotherapy. In conclusion, MAOA is a promising immune target that merits further in-depth exploration in preclinical and clinical settings.


Asunto(s)
Monoaminooxidasa , Neoplasias , Humanos , Adyuvantes Inmunológicos , Aminas , Linfocitos T CD8-positivos , Inhibidores de Puntos de Control Inmunológico , Factores Inmunológicos , Neoplasias/tratamiento farmacológico
19.
Mol Genet Metab ; 141(3): 108149, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38277988

RESUMEN

We investigated a syndromic disease comprising blindness and neurodegeneration in 11 Saarlooswolfdogs. Clinical signs involved early adult onset retinal degeneration and adult-onset neurological deficits including gait abnormalities, hind limb weakness, tremors, ataxia, cognitive decline and behavioral changes such as aggression towards the owner. Histopathology in one affected dog demonstrated cataract, retinal degeneration, central and peripheral axonal degeneration, and severe astroglial hypertrophy and hyperplasia in the central nervous system. Pedigrees indicated autosomal recessive inheritance. We mapped the suspected genetic defect to a 15 Mb critical interval by combined linkage and autozygosity analysis. Whole genome sequencing revealed a private homozygous missense variant, PCYT2:c.4A>G, predicted to change the second amino acid of the encoded ethanolamine-phosphate cytidylyltransferase 2, XP_038402224.1:(p.Ile2Val). Genotyping of additional Saarlooswolfdogs confirmed the homozygous genotype in all eleven affected dogs and demonstrated an allele frequency of 9.9% in the population. This experiment also identified three additional homozygous mutant young dogs without overt clinical signs. Subsequent examination of one of these dogs revealed early-stage progressive retinal atrophy (PRA) and expansion of subarachnoid CSF spaces in MRI. Dogs homozygous for the pathogenic variant showed ether lipid accumulation, confirming a functional PCYT2 deficiency. The clinical and metabolic phenotype in affected dogs shows some parallels with human patients, in whom PCYT2 variants lead to a rare form of spastic paraplegia or axonal motor and sensory polyneuropathy. Our results demonstrate that PCYT2:c.4A>G in dogs cause PCYT2 deficiency. This canine model with histopathologically documented retinal, central, and peripheral neurodegeneration further deepens the knowledge of PCYT2 deficiency.


Asunto(s)
Enfermedades de los Perros , Degeneración Retiniana , Humanos , Perros , Animales , Degeneración Retiniana/genética , Genotipo , Retina/patología , Fenotipo , Mutación Missense , Enfermedades de los Perros/genética
20.
J Pediatr ; 272: 114089, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38734133

RESUMEN

OBJECTIVE: To assess cognitive, behavioral, and adaptive functions in children and young adults with hemophilia treated according to contemporary standards of care. STUDY DESIGN: Evolving Treatment of Hemophilia's Impact on Neurodevelopment, Intelligence, and Other Cognitive Functions (eTHINK) is a US-based, prospective, cross-sectional, observational study (September 2018 through October 2019). Males (aged 1-21 years) with hemophilia A or B of any severity, with or without inhibitors, were eligible. Participants underwent neurologic examinations and age-appropriate neuropsychological assessments, including standardized tests/ratings scales of early development, cognition, emotional/behavioral adjustment, and adaptive skills. RESULTS: Five hundred and fifty-one males with hemophilia A (n = 433) or B (n = 101) were enrolled. Performance on cognitive tests was largely comparable with that of age-matched US population norms, although participants in certain age groups (4-5 and 10-21 years) performed worse on measures of attention and processing speed. Furthermore, adolescents and young adults and those with comorbid attention-deficit/hyperactivity disorder (ADHD; n = 64) reported more adaptive and executive function problems in daily life. Incidence of ADHD in adolescents (21%) was higher than expected in the general population. CONCLUSIONS: In general, males with hemophilia demonstrated age-appropriate intellectual, behavioral, and adaptive development. However, specific patient/age groups showed poorer attention performance and concerns for executive and adaptive development. This study established a normative data set for monitoring neurodevelopment in individuals with hemophilia and highlight the importance of screening and intervention for challenges with cognitive and adaptive skills in this population. CLINICAL TRIAL REGISTRATION: Evolving Treatment of Hemophilia's Impact on Neurodevelopment, Intelligence, and Other Cognitive Functions (eTHINK); NCT03660774; https://clinicaltrials.gov/ct2/show/NCT03660774.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA