RESUMEN
Members of the phloem protein 16 (PP16) gene family are induced by elicitors in rice and the corresponding proteins from cucurbits, which display RNA binding and intercellular transport activities, are accumulated in phloem sap. These proteins facilitate the movement of protein complexes through the phloem translocation flow and may be involved in the response to water deficit, among other functions. However, there is scant information regarding their function in other plants, including the identification of paralog genes in non-vascular plants and chlorophytes. In the present work, an evolutionary and structural analysis of the PP16 family in green plants (Viridiplantae) was carried out. Data mining in different databases indicated that PP16 likely originated from a larger gene present in an ancestral lineage that gave rise to chlorophytes and multicellular plants. This gene encodes a protein related to synaptotagmin, which is involved in vesicular transport in animal systems, although other members of this family play a role in lipid turnover in endomembranes and organelles. These proteins contain a membrane-binding C2 domain shared with PP16 proteins in vascular plants. In silico analysis of the predicted structure of the PP16 protein family identified several ß-sheets, one α-helix, and intrinsically disordered regions. PP16 may have been originally involved in vesicular trafficking and/or membrane maintenance but specialized in long-distance signaling during the emergence of the plant vascular system.
Asunto(s)
Proteínas de Plantas , Viridiplantae , Proteínas de Plantas/genética , Floema/metabolismo , Plantas/metabolismo , Transporte Biológico , Viridiplantae/metabolismoRESUMEN
Plasmodesmata (PD) are plasma membrane-lined cytoplasmic nanochannels that mediate cell-to-cell communication across the cell wall. A range of proteins are embedded in the PD plasma membrane and endoplasmic reticulum (ER), and function in regulating PD-mediated symplasmic trafficking. However, knowledge of the nature and function of the ER-embedded proteins in the intercellular movement of non-cell-autonomous proteins is limited. Here, we report the functional characterization of two ER luminal proteins, AtBiP1/2, and two ER integral membrane proteins, AtERdj2A/B, which are located within the PD. These PD proteins were identified as interacting proteins with cucumber mosaic virus (CMV) movement protein (MP) in co-immunoprecipitation studies using an Arabidopsis-derived plasmodesmal-enriched cell wall protein preparation (PECP). The AtBiP1/2 PD location was confirmed by TEM-based immunolocalization, and their AtBiP1/2 signal peptides (SPs) function in PD targeting. In vitro/in vivo pull-down assays revealed the association between AtBiP1/2 and CMV MP, mediated by AtERdj2A, through the formation of an AtBiP1/2-AtERdj2-CMV MP complex within PD. The role of this complex in CMV infection was established, as systemic infection was retarded in bip1/bip2w and erdj2b mutants. Our findings provide a model for a mechanism by which the CMV MP mediates cell-to-cell trafficking of its viral ribonucleoprotein complex.
Asunto(s)
Arabidopsis , Cucumovirus , Infecciones por Citomegalovirus , Arabidopsis/metabolismo , Plasmodesmos/metabolismo , Cucumovirus/metabolismo , Retículo Endoplásmico/metabolismo , Infecciones por Citomegalovirus/metabolismo , Proteínas de Movimiento Viral en Plantas/genética , Proteínas de Movimiento Viral en Plantas/metabolismo , Nicotiana/metabolismoRESUMEN
In plants, RNA interference (RNAi) plays a pivotal role in growth and development, and responses to environmental inputs, including pathogen attack. The intercellular and systemic trafficking of small interfering RNA (siRNA)/microRNA (miRNA) is a central component in this regulatory pathway. Currently, little is known with regards to the molecular agents involved in the movement of these si/miRNAs. To address this situation, we employed a biochemical approach to identify and characterize a conserved SMALL RNA-BINDING PROTEIN 1 (SRBP1) family that mediates non-cell-autonomous small RNA (sRNA) trafficking. In Arabidopsis, AtSRBP1 is a glycine-rich (GR) RNA-binding protein, also known as AtGRP7, which we show binds single-stranded siRNA. A viral vector, Zucchini yellow mosaic virus (ZYMV), was employed to functionally characterized the AtSRBP1-4 (AtGRP7/2/4/8) RNA recognition motif and GR domains. Cellular-based studies revealed the GR domain as being necessary and sufficient for SRBP1 cell-to-cell movement. Taken together, our findings provide a foundation for future research into the mechanism and function of mobile sRNA signaling agents in plants.
Asunto(s)
Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cucurbita/genética , Cucurbita/metabolismo , Cucurbita/virología , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Potyvirus/genética , Potyvirus/fisiología , Dominios Proteicos , Motivo de Reconocimiento de ARN , ARN de Planta/metabolismo , ARN Viral/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genéticaRESUMEN
Translationally Controlled Tumor Protein (TCTP) is an almost ubiquitous protein found in eukaryotes, fundamental for the regulation of development and general growth. The multiple functions of TCTP have been inferred from its involvement in several cell pathways, but the specific function of TCTP is still not known in detail. On the other hand, TCTP seems to respond to a plethora of external signals, and appears to be regulated at the transcriptional and/or translational levels by mechanisms yet to be determined. In the present work, we analyzed the capacity of AtTCTP2 gene products (mRNA and protein) to translocate long distance through tobacco heterografts (transgenic/WT and WT/transgenic). The results indicate that both AtTCTP2 mRNA and protein are capable of moving long distance in both directions (stock-scion and scion-stock) with a tendency for movement from source to sink tissue (stock to scion). Interestingly, aerial roots emerged only in heterografts where the protein was detected in both stock and scion, suggesting a correlation between the presence of AtTCTP2 and aerial root appearance. More detailed analysis showed that these aerial roots harbored the transgene and expressed both transcript and protein. In addition, the protein localization pattern in transgenic aerial and primary roots was basically the same, indicating specific nuclear destination in roots, but also in leaves. These findings provide an approach to understand the role of long-distance movement in the function of plant TCTPs, supporting the notion that some of these act in a non-cell autonomous manner, as the human counterpart, the Histamine Releasing Factor (HRF).