Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell ; 174(5): 1127-1142.e19, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30078706

RESUMEN

Replication origins, fragile sites, and rDNA have been implicated as sources of chromosomal instability. However, the defining genomic features of replication origins and fragile sites are among the least understood elements of eukaryote genomes. Here, we map sites of replication initiation and breakage in primary cells at high resolution. We find that replication initiates between transcribed genes within nucleosome-depleted structures established by long asymmetrical poly(dA:dT) tracts flanking the initiation site. Paradoxically, long (>20 bp) (dA:dT) tracts are also preferential sites of polar replication fork stalling and collapse within early-replicating fragile sites (ERFSs) and late-replicating common fragile sites (CFSs) and at the rDNA replication fork barrier. Poly(dA:dT) sequences are fragile because long single-strand poly(dA) stretches at the replication fork are unprotected by the replication protein A (RPA). We propose that the evolutionary expansion of poly(dA:dT) tracts in eukaryotic genomes promotes replication initiation, but at the cost of chromosome fragility.


Asunto(s)
Replicación del ADN , ADN Ribosómico/química , Nucleosomas/metabolismo , Poli dA-dT/química , Origen de Réplica , Secuencias de Aminoácidos , Animales , Línea Celular , Inmunoprecipitación de Cromatina , Inestabilidad Cromosómica , Sitios Frágiles del Cromosoma , Fragilidad Cromosómica , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Saccharomyces cerevisiae , Schizosaccharomyces , Sitio de Iniciación de la Transcripción , Transcripción Genética
2.
Immunity ; 49(3): 413-426.e5, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30170814

RESUMEN

Inflammasome-activated caspase-1 cleaves gasdermin D to unmask its pore-forming activity, the predominant consequence of which is pyroptosis. Here, we report an additional biological role for gasdermin D in limiting cytosolic DNA surveillance. Cytosolic DNA is sensed by Aim2 and cyclic GMP-AMP synthase (cGAS) leading to inflammasome and type I interferon responses, respectively. We found that gasdermin D activated by the Aim2 inflammasome suppressed cGAS-driven type I interferon response to cytosolic DNA and Francisella novicida in macrophages. Similarly, interferon-ß (IFN-ß) response to F. novicida infection was elevated in gasdermin D-deficient mice. Gasdermin D-mediated negative regulation of IFN-ß occurred in a pyroptosis-, interleukin-1 (IL-1)-, and IL-18-independent manner. Mechanistically, gasdermin D depleted intracellular potassium (K+) via membrane pores, and this K+ efflux was necessary and sufficient to inhibit cGAS-dependent IFN-ß response. Thus, our findings have uncovered an additional interferon regulatory module involving gasdermin D and K+ efflux.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Francisella/fisiología , Infecciones por Bacterias Gramnegativas/inmunología , Inflamasomas/metabolismo , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/genética , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Humanos , Interferón Tipo I/metabolismo , Interleucina-1/metabolismo , Interleucina-18/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Noqueados , Proteínas de Unión a Fosfato , Potasio/metabolismo , ARN Interferente Pequeño/genética
3.
Proc Natl Acad Sci U S A ; 120(5): e2213777120, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36693106

RESUMEN

The accrual of cytosolic DNA leads to transcription of type I IFNs, proteolytic maturation of the IL-1 family of cytokines, and pyroptotic cell death. Caspase-1 cleaves pro-IL1ß to generate mature bioactive cytokine and gasdermin D which facilitates IL-1 release and pyroptotic cell death. Absent in melanoma-2 (AIM2) is a sensor of dsDNA leading to caspase-1 activation, although in human monocytes, cGAS-STING acting upstream of NLRP3 mediates the dsDNA-activated inflammasome response. In healthy human keratinocytes, AIM2 is not expressed yet caspase-1 is activated by the synthetic dsDNA mimetic poly(dA:dT). Here, we show that this response is not mediated by either AIM2 or the cGAS-STING-NLRP3 pathway and is instead dependent on NLRP1. Poly(dA:dT) is unique in its ability to activate NLRP1, as conventional linear dsDNAs fail to elicit NLRP1 activation. DsRNA was recently shown to activate NLRP1 and prior work has shown that poly(dA:dT) is transcribed into an RNA intermediate that stimulates the RNA sensor RIG-I. However, poly(dA:dT)-dependent RNA intermediates are insufficient to activate NLRP1. Instead, poly(dA:dT) results in oxidative nucleic acid damage and cellular stress, events which activate MAP3 kinases including ZAKα that converge on p38 to activate NLRP1. Collectively, this work defines a new activator of NLRP1, broadening our understanding of sensors that recognize poly(dA:dT) and advances the understanding of the immunostimulatory potential of this potent adjuvant.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Citocinas/metabolismo , ADN/metabolismo , Caspasa 1/metabolismo , ARN/metabolismo , Queratinocitos/metabolismo , Interleucina-1/metabolismo , Proteínas NLR/metabolismo
4.
J Med Virol ; 95(1): e28253, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36286245

RESUMEN

Cytosolic recognition of microbial DNA in macrophages results in the activation of the interferon (IFN)-dependent antiviral innate immunity. Here, we examined whether activating DNA sensors in peripheral blood monocyte-derived macrophages (MDMs) can inhibit human immunodeficiency virus (HIV). We observed that the stimulation of MDMs with poly(dA:dT) or poly(dG:dC) (synthetic ligands for the DNA sensors) inhibited HIV infection and replication. MDMs treated with poly(dA:dT) or poly(dG:dC) expressed higher levels of both type I and type III IFNs than untreated cells. Activation of the DNA sensors in MDMs also induced the expression of the multiple intracellular anti-HIV factors, including IFN-stimulated genes (ISGs: ISG15, ISG56, Viperin, OAS2, GBP5, MxB, and Tetherin) and the HIV restriction microRNAs (miR-29c, miR-138, miR-146a, miR-155, miR-198, and miR-223). In addition, the DNA sensor activation of MDM upregulated the expression of the CC chemokines (RANTES, MIP-1α, MIP-1ß), the ligands for HIV entry coreceptor CCR5. These observations indicate that the cytosolic DNA sensors have a protective role in the macrophage intracellular immunity against HIV and that targeting the DNA sensors has therapeutic potential for immune activation-based anti-HIV treatment.


Asunto(s)
Infecciones por VIH , VIH-1 , MicroARNs , Humanos , Infecciones por VIH/metabolismo , VIH-1/fisiología , Células Cultivadas , Macrófagos , MicroARNs/genética , MicroARNs/metabolismo , ADN/metabolismo , Replicación Viral
5.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37894925

RESUMEN

The establishment and maintenance of nucleosome-free regions (NFRs) are prominent processes within chromatin dynamics. Transcription factors, ATP-dependent chromatin remodeling complexes (CRCs) and DNA sequences are the main factors involved. In Saccharomyces cerevisiae, CRCs such as RSC contribute to chromatin opening at NFRs, while other complexes, including ISW1a, contribute to NFR shrinking. Regarding DNA sequences, growing evidence points to poly(dA:dT) tracts as playing a direct role in active processes involved in nucleosome positioning dynamics. Intriguingly, poly(dA:dT)-tract-containing NFRs span asymmetrically relative to the location of the tract by a currently unknown mechanism. In order to obtain insight into the role of poly(dA:dT) tracts in nucleosome remodeling, we performed a systematic analysis of their influence on the activity of ISW1a and RSC complexes. Our results show that poly(dA:dT) tracts differentially affect the activity of these CRCs. Moreover, we found differences between the effects exerted by the two alternative tract orientations. Remarkably, tract-containing linker DNA is taken as exit DNA for nucleosome sliding catalyzed by RSC. Our findings show that defined DNA sequences, when present in linker DNA, can dictate in which direction a remodeling complex has to slide nucleosomes and shed light into the mechanisms underlying asymmetrical chromatin opening around poly(dA:dT) tracts.


Asunto(s)
Nucleosomas , Proteínas de Saccharomyces cerevisiae , Poli dA-dT , Cromatina/genética , ADN/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Genes Dev ; 28(22): 2492-7, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25403179

RESUMEN

AT-rich DNA is concentrated in the nucleosome-free regions (NFRs) associated with transcription start sites of most genes. We tested the hypothesis that AT-rich DNA engenders NFR formation by virtue of its rigidity and consequent exclusion of nucleosomes. We found that the AT-rich sequences present in many NFRs have little effect on the stability of nucleosomes. Rather, these sequences facilitate the removal of nucleosomes by the RSC chromatin remodeling complex. RSC activity is stimulated by AT-rich sequences in nucleosomes and inhibited by competition with AT-rich DNA. RSC may remove NFR nucleosomes without effect on adjacent ORF nucleosomes. Our findings suggest that many NFRs are formed and maintained by an active mechanism involving the ATP-dependent removal of nucleosomes rather than a passive mechanism due to the intrinsic instability of nucleosomes on AT-rich DNA sequences.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Nucleosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Bases , Ensamble y Desensamble de Cromatina/genética , Poli dA-dT/metabolismo
7.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34360997

RESUMEN

Poly(dA:dT) tracts cause nucleosome depletion in many species, e.g., at promoters and replication origins. Their intrinsic biophysical sequence properties make them stiff and unfavorable for nucleosome assembly, as probed by in vitro nucleosome reconstitution. The mere correlation between nucleosome depletion over poly(dA:dT) tracts in in vitro reconstituted and in in vivo chromatin inspired an intrinsic nucleosome exclusion mechanism in vivo that is based only on DNA and histone properties. However, we compile here published and new evidence that this correlation does not reflect mechanistic causation. (1) Nucleosome depletion over poly(dA:dT) in vivo is not universal, e.g., very weak in S. pombe. (2) The energy penalty for incorporating poly(dA:dT) tracts into nucleosomes is modest (<10%) relative to ATP hydrolysis energy abundantly invested by chromatin remodelers. (3) Nucleosome depletion over poly(dA:dT) is much stronger in vivo than in vitro if monitored without MNase and (4) actively maintained in vivo. (5) S. cerevisiae promoters evolved a strand-biased poly(dA) versus poly(dT) distribution. (6) Nucleosome depletion over poly(dA) is directional in vivo. (7) The ATP dependent chromatin remodeler RSC preferentially and directionally displaces nucleosomes towards 5' of poly(dA). Especially distribution strand bias and displacement directionality would not be expected for an intrinsic mechanism. Together, this argues for an in vivo mechanism where active and species-specific read out of intrinsic sequence properties, e.g., by remodelers, shapes nucleosome organization.


Asunto(s)
Secuencia Rica en At , Ensamble y Desensamble de Cromatina , Nucleosomas/genética , Regulación Fúngica de la Expresión Génica , Nucleosomas/química , Nucleosomas/metabolismo , Saccharomyces cerevisiae , Schizosaccharomyces
8.
Proc Natl Acad Sci U S A ; 114(7): E1062-E1071, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28137853

RESUMEN

The ring-shaped cohesin complex orchestrates long-range DNA interactions to mediate sister chromatid cohesion and other aspects of chromosome structure and function. In the yeast Saccharomyces cerevisiae, the complex binds discrete sites along chromosomes, including positions within and around genes. Transcriptional activity redistributes the complex to the 3' ends of convergently oriented gene pairs. Despite the wealth of information about where cohesin binds, little is known about cohesion at individual chromosomal binding sites and how transcription affects cohesion when cohesin complexes redistribute. In this study, we generated extrachromosomal DNA circles to study cohesion in response to transcriptional induction of a model gene, URA3. Functional cohesin complexes loaded onto the locus via a poly(dA:dT) tract in the gene promoter and mediated cohesion before induction. Upon transcription, the fate of these complexes depended on whether the DNA was circular or not. When gene activation occurred before DNA circularization, cohesion was lost. When activation occurred after DNA circularization, cohesion persisted. The presence of a convergently oriented gene also prevented transcription-driven loss of functional cohesin complexes, at least in M phase-arrested cells. The results are consistent with cohesin binding chromatin in a topological embrace and with transcription mobilizing functional complexes by sliding them along DNA.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Activación Transcripcional/fisiología , Adenosina Trifosfatasas/metabolismo , Sitios de Unión , Cromosomas Fúngicos/ultraestructura , ADN Circular/metabolismo , ADN de Hongos/genética , Proteínas de Unión al ADN/metabolismo , Herencia Extracromosómica , Genes Fúngicos , Genes Reporteros , Genes Sintéticos , Metafase , Complejos Multiproteicos/metabolismo , Poli dA-dT/farmacología , Regiones Promotoras Genéticas/genética , Unión Proteica , Secuencias Reguladoras de Ácidos Nucleicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Cohesinas
9.
Int J Mol Sci ; 19(3)2018 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-29518010

RESUMEN

Keratinocytes are non-professional immune cells contributing actively to innate immune responses partially by reacting to a wide range of molecular patterns by activating pattern recognition receptors. Cytosolic nucleotide fragments as pathogen- or self-derived trigger factors are activating inflammasomes and inducing anti-viral signal transduction pathways as well as inducing expression of inflammatory cytokines. We aimed to compare the induced inflammatory reactions in three keratinocyte cell types-normal human epidermal keratinocytes, the HaCaT cell line and the HPV-KER cell line-upon exposure to the synthetic RNA and DNA analogues poly(I:C) and poly(dA:dT) to reveal the underlying signaling events. Both agents induced the expression of interleukin-6 and tumor necrosis factor α in all cell types; however, notable kinetic and expression level differences were found. Western blot analysis revealed rapid activation of the nuclear factor κB (NF-κB), mitogen activated protein kinase and signal transducers of activator of transcription (STAT) signal transduction pathways in keratinocytes upon poly(I:C) treatment, while poly(dA:dT) induced slower activation. Inhibition of NF-κB, p38, STAT-1 and STAT-3 signaling resulted in decreased cytokine expression, whereas inhibition of mitogen-activated protein kinase kinase 1/2 (MEK1/2) signaling showed a negative feedback role in both poly(I:C)- and poly(dA:dT)-induced cytokine expression. Based on our in vitro results nucleotide fragments are able to induce inflammatory reactions in keratinocytes, but with different rate and kinetics of cytokine expression, explained by faster activation of signaling routes by poly(I:C) than poly(dA:dT).


Asunto(s)
Queratinocitos/metabolismo , Poli dA-dT/farmacología , Línea Celular , Células Cultivadas , Citocinas/metabolismo , Humanos , Inflamasomas/metabolismo , Queratinocitos/efectos de los fármacos , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/metabolismo , FN-kappa B/metabolismo , Factores de Transcripción STAT/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
10.
Exp Dermatol ; 24(4): 298-300, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25515776

RESUMEN

Considerable evidence implicates that viral infection might be a participant factor in the pathogenesis of vitiligo. However, it is still unclear how viral infection leads to the melanocyte destruction. To elucidate the effects of viral dsDNA on the viability and cytokine synthesis of normal human melanocytes and to explore the underlying mechanisms, primary cultured normal human melanocytes were transfected with poly(dA:dT). The results demonstrated that poly(dA:dT) triggered apoptosis instead of pyroptosis in melanocytes. Knocking down AIM2 or RIG-I by RNA interference partially reduced the poly(dA:dT)-induced LDH release, suggesting the involvement of both nucleic acid sensors in the process of melanocyte death. Poly(dA:dT) induced the expression of pro-inflammatory cytokine genes including IFN-ß, TNF-α, IL-6 and IL-8 as well, whereas the pro-inflammatory cytokine production was suppressed by RIG-I siRNA, but not by AIM2 siRNA. Poly(dA:dT) treatment increased the phosphorylation of p38 and JNK and NFκB. Accordingly, NFκB inhibitor Bay 11-7082 and JNK inhibitor SP600125 blocked the induction of the cytokine genes except IFN-ß. The production of IL6 and IL8 was also suppressed by p38 inhibitor SB203580. On the contrary, the Poly(dA:dT)-induced melanocyte death was only decreased by SP600125. This study provides the possible mechanism of melanocyte destruction and immuno-stimulation in vitiligo by innate immune response following viral infection.


Asunto(s)
ADN Viral/inmunología , Melanocitos/citología , Melanocitos/inmunología , Apoptosis , Células Cultivadas , Citocinas/biosíntesis , Citosol/inmunología , Citosol/virología , Humanos , Inmunidad Innata , Mediadores de Inflamación/metabolismo , Sistema de Señalización de MAP Quinasas/inmunología , Melanocitos/virología , FN-kappa B/inmunología , Poli dA-dT/inmunología , Virosis/complicaciones , Virosis/inmunología , Vitíligo/etiología , Vitíligo/inmunología , Vitíligo/patología
11.
Mol Immunol ; 152: 78-85, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36306644

RESUMEN

Human brain microvascular epithelial cells (HBMECs) play a pivotal role in maintaining the stability of the blood-brain barrier (BBB), a potent physiological barrier to prevent the invasion of exotic pathogens. Our previous study indicated that polyI:C, an analog of double-stranded RNA (dsRNA), could initiate the TLR3/IFNs antiviral signaling pathway in HBMECs. However, the response of HBMECs to dsDNA remains unclear. In this study, we demonstrated that a dsDNA mimic, poly(dA:dT), could induce the production of a series of antiviral factors, including IFN-ß, IFN-λ1, and ISGs. Furthermore, the poly(dA:dT)-activated HBMECs could effectively restrain HSV-1 replication. In addition, we found that RIG-I rather than cGAS and IFI16 had a more crucial role in sensing poly(dA:dT). These observations indicate that HBMECs possess a dsDNA sensing system, and RIG-I may partly contribute to the dsDNA-induced antiviral innate immunity.


Asunto(s)
Células Endoteliales , Interferón beta , Humanos , Interferón beta/metabolismo , Inmunidad Innata , Encéfalo/metabolismo , ARN Bicatenario , ADN/farmacología , Antivirales/farmacología
12.
Animals (Basel) ; 12(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36496837

RESUMEN

Insulin-like growth factor 1 (IGF1) is an important regulator of body growth, development, and metabolism. The poly(dA:dT) tract affects the accessibility of transcription factor binding sites to regulate transcription. Therefore, this study assessed the effects of two poly(dA:dT) tracts on the transcriptional activity of porcine IGF1. The luciferase assay results demonstrated that the poly(dA:dT) tract 2 (−264/−255) was a positive regulatory element for IGF1 gene expression, and the activities between the different lengths of the poly(dA:dT) tract 2 were significant (p<0.01). The transcription factor C/EBPα inhibited the transcription of IGF1 by binding to tract 2, and the expression levels between the lengths of tract 2 after C/EBPα binding were also statistically different (p<0.01). Only the alleles 10T and 11T were found in the tract 2 in commercial pig breeds, while the 9T, 10T, and 11T alleles were found in Chinese native pig breeds. The allele frequencies were in Hardy−Weinberg equilibrium in all pig breeds. The genotypes of tract 2 were significantly associated with the growth traits (days to 115 kg and average daily gain) (p<0.05) in commercial pig breeds. Based on these findings, it can be concluded that the tract 2 mutation could be applied as a candidate genetic marker for growth trait selection in pig breeding programs.

13.
Front Immunol ; 11: 598884, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33664729

RESUMEN

Epithelial cells of the female reproductive tract (FRT) participate in the initial innate immunity against viral infections. Poly(dA:dT) is a synthetic analog of B form double-stranded (ds) DNA which can activate the interferon (IFN) signaling pathway-mediated antiviral immunity through DNA-dependent RNA Polymerase III. Here we investigated whether poly(dA:dT) could inhibit herpes simplex virus type 2 (HSV-2) infection of human cervical epithelial cells (End1/E6E7). We demonstrated that poly(dA:dT) treatment of End1/E6E7 cells could significantly inhibit HSV-2 infection. Mechanistically, poly(dA:dT) treatment of the cells induced the expression of the intracellular IFNs and the multiple antiviral IFN-stimulated genes (ISGs), including IFN-stimulated gene 15 (ISG15), IFN-stimulated gene 56 (ISG56), 2'-5'-oligoadenylate synthetase 1 (OAS1), 2'-5'-oligoadenylate synthetase 2 (OAS2), myxovirus resistance protein A (MxA), myxovirus resistance protein B (MxB), virus inhibitory protein, endoplasmic reticulum-associated, IFN-inducible (Viperin), and guanylate binding protein 5 (GBP5). Further investigation showed that the activation of RIG-I was largely responsible for poly(dA:dT)-mediated HSV-2 inhibition and IFN/ISGs induction in the cervical epithelial cells, as RIG-I knockout abolished the poly(dA:dT) actions. These observations demonstrate the importance for design and development of AT-rich dsDNA-based intervention strategies to control HSV-2 mucosal transmission in FRT.


Asunto(s)
Cuello del Útero/metabolismo , Cuello del Útero/virología , Proteína 58 DEAD Box/metabolismo , Herpes Genital/metabolismo , Herpes Genital/virología , Herpesvirus Humano 2/efectos de los fármacos , Herpesvirus Humano 2/fisiología , Poli dA-dT/farmacología , Receptores Inmunológicos/metabolismo , Biomarcadores , Línea Celular , Supervivencia Celular , Proteína 58 DEAD Box/genética , Células Epiteliales/metabolismo , Células Epiteliales/virología , Femenino , Técnicas de Silenciamiento del Gen , Herpes Genital/tratamiento farmacológico , Humanos , Inmunofenotipificación , Quinasas Janus/metabolismo , Membrana Mucosa/metabolismo , Membrana Mucosa/virología , Receptores Inmunológicos/genética , Factores de Transcripción STAT/metabolismo , Transducción de Señal/efectos de los fármacos , Replicación Viral/efectos de los fármacos
14.
J Mol Biol ; 429(6): 808-822, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28189426

RESUMEN

Chromatin remodelers are ATP-dependent enzymes that are critical for reorganizing and repositioning nucleosomes in concert with many basic cellular processes. For the chromodomain helicase DNA-binding protein 1 (Chd1) remodeler, nucleosome sliding has been shown to depend on the DNA flanking the nucleosome, transcription factor binding at the nucleosome edge, and the presence of the histone H2A/H2B dimer on the entry side. Here, we report that Chd1 is also sensitive to the sequence of DNA within the nucleosome and slides nucleosomes made with the 601 Widom positioning sequence asymmetrically. Kinetic and equilibrium experiments show that poly(dA:dT) tracts perturb remodeling reactions if within one and a half helical turns of superhelix location 2 (SHL2), where the Chd1 ATPase engages nucleosomal DNA. These sequence-dependent effects do not rely on the Chd1 DNA-binding domain and are not due to differences in nucleosome affinity. Using site-specific cross-linking, we show that internal poly(dA:dT) tracts do not block the engagement of the ATPase motor with SHL2, yet they promote multiple translational positions of DNA with respect to both Chd1 and the histone core. We speculate that Chd1 senses the sequence-dependent response of DNA as the remodeler ATPase perturbs the duplex at SHL2. These results suggest that the sequence sensitivity of histones and remodelers occur at unique segments of DNA on the nucleosome, allowing them to work together or in opposition to determine nucleosome positions throughout the genome.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/química , ADN/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Front Immunol ; 8: 1053, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28900430

RESUMEN

Cytosolic DNA fragments are recognized as pathogen- and danger-associated molecular patterns that induce a cascade of innate immune responses. Moreover, excessive cytosolic DNA can enhance chronic inflammation, predominantly by activating inflammasomes, and thereby contributing to the pathogenesis of chronic diseases, such as psoriasis. Psoriasis associated non-protein coding RNA induced by stress (PRINS) is a long non-coding RNA, which has been shown to be associated with psoriasis susceptibility and cellular stress responses; however, the precise mechanism of its action has not been determined. Here, we provide evidence that, in addition to inflammasome activation, cytosolic DNA induces intracellular inflammatory reactions while decreasing PRINS gene expression. Furthermore, PRINS overexpression can ameliorate the inflammatory-mediator production of keratinocytes induced by cytosolic DNA. Overexpression of PRINS resulted in decreased interleukin-6 (IL-6) and chemokine (C-C motif) ligand 5 (CCL-5) expression and secretion. In silico analysis predicted direct binding sites between PRINS and the mRNAs, which was confirmed by an in vitro binding assay and on cellular level. Our results indicated that PRINS binds directly to the mRNAs of IL-6 and CCL-5 at specific binding sites and eventually destabilizes these mRNAs, leading to a decrease in their expression and secretion of the corresponding proteins. These results may indicate a restrictive role for PRINS in inflammatory processes.

16.
Artif Intell Med ; 67: 1-23, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26951630

RESUMEN

OBJECTIVE: We provide a survey of recent advances in biomedical image analysis and classification from emergent imaging modalities such as terahertz (THz) pulse imaging (TPI) and dynamic contrast-enhanced magnetic resonance images (DCE-MRIs) and identification of their underlining commonalities. METHODS: Both time and frequency domain signal pre-processing techniques are considered: noise removal, spectral analysis, principal component analysis (PCA) and wavelet transforms. Feature extraction and classification methods based on feature vectors using the above processing techniques are reviewed. A tensorial signal processing de-noising framework suitable for spatiotemporal association between features in MRI is also discussed. VALIDATION: Examples where the proposed methodologies have been successful in classifying TPIs and DCE-MRIs are discussed. RESULTS: Identifying commonalities in the structure of such heterogeneous datasets potentially leads to a unified multi-channel signal processing framework for biomedical image analysis. CONCLUSION: The proposed complex valued classification methodology enables fusion of entire datasets from a sequence of spatial images taken at different time stamps; this is of interest from the viewpoint of inferring disease proliferation. The approach is also of interest for other emergent multi-channel biomedical imaging modalities and of relevance across the biomedical signal processing community.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Diagnóstico por Computador , Humanos , Análisis de Componente Principal , Máquina de Vectores de Soporte
17.
J Photochem Photobiol B ; 127: 78-87, 2013 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-23968995

RESUMEN

The interaction of mitoxantrone with alternating Poly(dG-dC).Poly(dG-dC) and Poly(dA-dT).Poly(dA-dT) duplex has been studied by absorption, fluorescence and Circular Dichroism (CD) spectroscopy at Drug to Phosphate base pair ratios D/P=20.0-0.04. Binding to GC polymer occurs in two distinct modes: partial stacking characterized by red shifts of 18-23nm at D/P=0.2-0.8 and external binding at D/P=1.0-20.0 whereas that to AT polymer occurs externally in the entire range of D/P. The binding constant and number of binding sites is 3.7×10(5)M(-1), 0.3 and 1.3× 10(4)M(-1), 1.5 in GC and AT polymers, respectively at low D/P ratios. CD binding isotherms show breakpoints at D/P=0.1, 0.5 and 0.25, 0.5 in GC and AT polymers, respectively. The intrinsic CD bands indicate that the distortions in GC polymer are significantly higher than that in AT polymer. Docking studies show partial insertion of mitoxantrone rings between to GC base pairs in alternating GC polymer. Side chains of mitoxantrone interact specifically with base pairs and DNA backbone. The studies are relevant to the understanding of suppression or inhibition of DNA cleavage on formation of ternary complex with topoisomerase-II enzyme and hence the anti cancer action.


Asunto(s)
Antineoplásicos/metabolismo , Mitoxantrona/metabolismo , Poli dA-dT/metabolismo , Polidesoxirribonucleótidos/metabolismo , Análisis Espectral , Absorción , Simulación del Acoplamiento Molecular , Conformación de Ácido Nucleico , Poli dA-dT/química , Polidesoxirribonucleótidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA