Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 583
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(13): e2308165, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37968247

RESUMEN

During the layer-by-layer (LBL) processing of polymer solar cells (PSCs), the swelling and molecule interdiffusion are essential for achieving precise, controllable vertical morphology, and thus efficient PSCs. However, the influencing mechanism of material properties on morphology and correlated device performance has not been paid much attention. Herein, a series of fluorinated/non-fluorinated polymer donors (PBDB-T and PBDB-TF) and non-fullerene acceptors (ITIC, IT-2F, and IT-4F) are employed to investigate the performance of LBL devices. The impacts of fluorine substitution on the repulsion and miscibility between the donor and acceptor, as well as the molecular arrangement of the donor/acceptor and the vertical distribution of the LBL devices are systematically explored by the measurement of donor/acceptor Flory-Huggins interaction parameters, spectroscopic ellipsometry, and neutron reflectivity, respectively. With efficient charge transfer due to the ideal vertical and horizon morphology properties, devices based on PBDB-TF/IT-4F exhibit the highest fill factors (FFs) as well as champion power conversion efficiencies (PCEs). With this guidance, high-performance LBL devices with PCE of 17.2%, 18.5%, and 19.1% are obtained by the fluorinated blend of PBDB-TF/Y6, PBDB-TF/L8-BO, and D18/L8-BO respectively.

2.
Small ; 20(12): e2307993, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37946405

RESUMEN

Benefiting from the photovoltaic material innovation and delicate device optimization, high-efficiency solar cells employing polymeric materials are thriving. Reducing the gap of cost, efficiency, and stability is the critical challenge faced by the emerging solar cells such as organics, quantum dots and perovskites. Poly(3-alkylthiophene) demonstrates great potential in organic solar cells and quantum dot solar cells as the active layer or the hole transport layer due to its large scalability, excellent photoelectric performance, and favorable hydrophobicity. The present low efficiency and insufficient stability, restrict its commercial application. In this work, a facile strategy of blending two simple polythiophenes is put forward to manipulate the film microstructure and enhance the device efficiency and thermal stability of solar cells. The introduction of P3PT can improve the power conversion efficiency (PCE) of a benchmark cost-effective blend P3HT:O-IDTBR to 7.41%, and the developed ternary solar cells also exhibit increased thermal stability. More strikingly, the quantum dot solar cells with the dual-polythiophene hole transport layer achieve the highest PCE of 10.51%, which is among the topmost efficiencies for quantum dots/polythiophene solar cells. Together, this work provides an effective route to simultaneously optimize the device efficiency and thermal stability of solar cells.

3.
Small ; 20(30): e2311648, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38402429

RESUMEN

Ternary strategy with integration characteristics and adaptability is a simple and effective method for blooming of the performance of photovoltaic devices. Herein, a novel wideband gap polymer donor PBB2-Hs is synthesized as the guest component to optimize all-polymer solar cells (all-PSCs). High-energy photon absorption and long exciton lifetime of PBB2-Hs constitute efficient energy transfer. Good miscibility and cascade energy levels promote the formation of alloy-like structure between PBB2-Hs and host system. The dual working mechanisms greatly improve photon capture and charge transfer in active layers. Additionally, the introduction of PBB2-Hs also optimizes the ordered molecular stacking of acceptors and suppresses molecular peristalsis. Upon adding 15 wt% PBB2-Hs, the ternary all-PSC achieved a champion efficiency of 17.66%, and can still maintain 82% photostability (24 h) and 91% storage stability (1000 h) of the original PCE. Moreover, the strong molecular stacking and entanglement between PBB2-Hs and the host material increased the elongation at break of ternary blend film by 1.6 times (16.2%), allowing the flexible device to maintain 83% of the original efficiency after 800 bends (R = 5 mm). This work highlights the effectiveness of guest polymer on simultaneously improving photovoltaic performance, photostability and mechanical stability in all-PSCs.

4.
Macromol Rapid Commun ; : e2400603, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39108066

RESUMEN

The polymer solar cells (PSCs) have garnered substantial interest owing to their lightweight, cost-effectiveness, and flexibility, making them ideal for large-scale roll-to-roll manufacturing. In this study, two wide-bandgap (WBG) donor polymers, PFBiTPD and PClBiTPD, utilizing bithieno[3,4-c]pyrrole-4,6-dione (BiTPD) as the electron-accepting unit and fluorinated/chlorinated benzo[1,2-b:4,5-b']dithiophene (BDT) as the electron-donating moiety are designed and synthesized. The polymers demonstrated large optical bandgaps (exceeding 1.80 eV) and are blended with ITIC-4F to form the active layers in PSCs. The PFBiTPD-based devices showed a well-dispersed fibrillar network, facilitating efficient charge generation and transport. Thus, these devices attained a power conversion efficiency (PCE) of 8.60%, featuring a fill factor (FF) of 62.89%, an open-circuit voltage (Voc) of 0.88 V and a short-circuit current density (Jsc) of 15.54 mA cm-2. In contrast, PClBiTPD-based devices displayed lower performance due to less favorable morphology. The study underscores the importance of polymer design and morphology control in optimizing the photovoltaic performance of PSCs.

5.
Molecules ; 29(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38930944

RESUMEN

The layer-by-layer (LBL) fabrication method allows for controlled microstructure morphology and vertical component distribution, and also offers a reproducible and efficient technique for fabricating large-scale organic solar cells (OSCs). In this study, the polymers D18 and PYIT-OD are employed to fabricate all-polymer solar cells (all-PSCs) using the LBL method. Morphological studies reveal that the use of additives optimizes the microstructure of the active layer, enhancing the cells' crystallinity and charge transport capability. The optimized device with 2% CN additive significantly reduces bimolecular recombination and trap-assisted recombination. All-PSCs fabricated by the LBL method based on D18/PYIT-OD deliver a power conversion efficiency (PCE) of 15.07%. Our study demonstrates the great potential of additive engineering via the LBL fabrication method in regulating the microstructure of active layers, suppressing charge recombination, and enhancing the photovoltaic performance of devices.

6.
Angew Chem Int Ed Engl ; 63(20): e202403005, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38382043

RESUMEN

Giant molecular acceptors (GMAs) are typically designed through the conjugated linking of individual small molecule acceptors (SMAs). This design imparts an extended molecular size, elevating the glass transition temperature (Tg) relative to their SMA counterparts. Consequently, it effectively suppresses the thermodynamic relaxation of the acceptor component when blended with polymer donors to construct stable polymer solar cells (PSCs). Despite their merits, the optimization of their chemical structure for further enhancing of device performance remains challenge. Different from previous reports utilizing p-type linkers, here, we explore an n-type linker, specifically the benzothiadiazole unit, to dimerize the SMA units via a click-like Knoevenagel condensation, affording BT-DL. In comparison with B-DL with a benzene linkage, BT-DL exhibits significantly stronger intramolecular super-exchange coupling, a desirable property for the acceptor component. Furthermore, BT-DL demonstrates a higher film absorption coefficient, redshifted absorption, larger crystalline coherence, and higher electron mobility. These inherent advantages of BT-DL translate into a higher power conversion efficiency of 18.49 % in PSCs, a substantial improvement over the 9.17 % efficiency observed in corresponding devices with B-DL as the acceptor. Notably, the BT-DL based device exhibits exceptional stability, retaining over 90 % of its initial efficiency even after enduring 1000 hours of thermal stress at 90 °C. This work provides a cost-effective approach to the synthesis of n-type linker-dimerized GMAs, and highlight their potential advantage in enhancing intramolecular coupling for more efficient and durable photovoltaic technologies.

7.
Angew Chem Int Ed Engl ; 63(35): e202405243, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-38861524

RESUMEN

All-polymer solar cells have experienced rapid development in recent years by the emergence of polymerized small molecular acceptors (PSMAs). However, the strong chain entanglements of polymer donors (PDs) and polymer acceptors (PAs) decrease the miscibility of the resulting polymer mixtures, making it challenging to optimize the blend morphology. Herein, we designed three PAs, namely PBTPICm-BDD, PBTPICγ-BDD and PBTPICF-BDD, by smartly using a BDD unit as the polymerized unit to copolymerize with different Y-typed non-fullerene small molecular acceptors (NF-SMAs), thus achieving a certain degree of distortion and giving the polymer system enough internal space to reduce the entanglements of the polymer chains. Such effects increase the chances of the PD being interspersed into the acceptor material, which improve the solubility between the PD and PA. The PBTPICγ-BDD and PBTPICF-BDD displayed better miscibility with PBQx-TCl, leading to a well optimized morphology. As a result, high power conversion efficiencies (PCEs) of 17.50 % and 17.17 % were achieved for PBQx-TCl : PBTPICγ-BDD and PBQx-TCl : PBTPICF-BDD devices, respectively. With the addition of PYFT-o as the third component into PBQx-TCl : PBTPICγ-BDD blend to further extend the absorption spectral coverage and finely tune microstructures of the blend morphology, a remarkable PCE of 18.64 % was realized finally.

8.
Angew Chem Int Ed Engl ; : e202415583, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39385038

RESUMEN

Concurrently achieving high efficiency, mechanical robustness and thermal stability is critical for the commercialization of all-polymer solar cells (APSCs). However, APSCs usually demonstrate complicated morphology, primarily attributed to the polymer chain entanglement which has a detrimental effect on their fill factors (FF) and morphology stability. To address these concerns, an end-group extended polymer acceptor, PY-NFT, was synthesized and studied. The morphology analysis showed a tightly ordered molecular packing mode and a favorable phase separation was formed. The PM6:PY-NFT-based device achieved an exceptional PCE of 19.12% (certified as 18.45%), outperforming the control PM6:PY-FT devices (17.14%). This significant improvement highlights the record-high PCE for binary APSCs. The thermal aging study revealed that the PM6:PY-NFT blend exhibited excellent morphological stability, thereby achieving superior device stability, retaining 90% of initial efficiency after enduring thermal stress (65 °C) for 1500 hours. More importantly, the PM6:PY-NFT blend film exhibited outstanding mechanical ductility with a crack onset strain of 24.1%. Overall, rational chemical structure innovation, especially the conjugation extension strategy to trigger appropriate phase separation and stable morphology, is the key to achieving high efficiency, improved thermal stability and robust mechanical stability of APSCs.

9.
Angew Chem Int Ed Engl ; : e202411155, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160143

RESUMEN

As the simplest oligomeric acceptors, dimerized acceptors (DAs) are easier to synthesize, and more importantly, they can retain good intermolecular interaction and photovoltaic properties of their parent small-molecule acceptors (SMAs). Nevertheless, currently most efficient DAs are derived from banana-shaped acceptors and they might suffer from inferior device stability with high diffusion coefficients. Herein, we design and synthesize two planar DAs (DMT-FH and DMT-HF) by bridging two linear-shaped M-series SMAs with a thiophene unit. The effects of fluorination position on the diffusion coefficients, power conversion efficiencies (PCEs) and stability of the DAs are systematically studied. Our results suggest that DMT-HF with fluorination on the ending indanone groups shows enhanced intermolecular interactions, improved PCE and stability compared with the counterpart (DMT-FH) with fluorination on the central indanone groups. Further optimization on the DMT-HF-based devices yields an outstanding PCE of 17.17%, which is the highest among all linear-shaped SMA-based DAs. Notably, with the low diffusion coefficient (3.36×10-24 cm2 s-1) of DMT-HF, the resulting device retains over 93% of the initial PCE after 5000 h of continuous heating at 85 oC, suggesting its excellent thermal stability. The results highlight the importance of intermolecular interaction and fluorination for achieving efficient and stable polymer solar cells.

10.
Angew Chem Int Ed Engl ; 63(15): e202400590, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38318728

RESUMEN

Polymer solar cells (PSCs) rely on a blend of small molecular acceptors (SMAs) with polymer donors, where thermodynamic relaxation of SMAs poses critical concerns on operational stability. To tackle this issue, tethered SMAs, wherein multiple SMA-subunits are connected to the aromatic-core via flexible chains, are proposed. This design aims to an elevated glass transition temperature (Tg) for a dynamical control. However, attaining an elevated Tg value with additional SMA subunits introduces complexity to the molecular packing, posing a significant challenge in realizing both high stability and power conversion efficiency (PCE). In this study, we initiate isomer engineering on the benzene-carboxylate core and find that meta-positioned dimeric BDY-ß exhibits more favorable molecular packing compared to its para-positioned counterpart, BDY-α. With this encouraging result, we expand our approach by introducing an additional SMA unit onto the aromatic core of BDY-ß, maintaining a meta-position relative to each SMA unit location in the tethered acceptor. This systematic aromatic-core engineering results in a star-shaped C3h-positioned molecular geometry. The supramolecular interactions of SMA units in the trimer contribute to enhancements in Tg value, crystallinity, and a red-shifted absorption compared to dimers. These characteristics result in a noteworthy increase in PCE to 18.24 %, coupled with a remarkable short-circuit current density of 27.06 mA cm-2. More significantly, the trimer-based devices delivered an excellent thermal stability with over 95 % of their initial efficiency after 1200 h thermal degradation. Our findings underscore the promise and feasibility of tethered trimeric structures in achieving highly ordered aggregation behavior and increased Tg value in PSCs, simultaneously improving in device efficiency and thermal stability.

11.
Angew Chem Int Ed Engl ; 63(21): e202319755, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38386897

RESUMEN

All-polymer solar cells (all-PSCs) have been regarded as one of the most promising candidates for commercial applications owing to their outstanding advantages such as mechanical flexibility, light weight and stable film morphology. However, compared to large amount of new-emerging excellent polymer acceptors, the development of high-performance polymer donor lags behind. Herein, a new D-π-A type polymer donor, namely QQ1, was developed based on dithienoquinoxalineimide (DTQI) as the A unit, benzodithiophene with thiophene-conjugated side chains (BDTT) as the D unit, and alkyl-thiophene as the π-bridge, respectively. QQ1 not only possesses a strong dipole moment, but also shows a wide band gap of 1.80 eV and a deep HOMO energy level of -5.47 eV, even without halogen substituents that are commonly indispensable for high-performance polymer donors. When blended with a classic polymer acceptor PY-IT, the QQ1-based all-PSC delivers an outstanding PCE of 18.81 %. After the introduction of F-BTA3 as the third component, a record PCE of 19.20 % was obtained, the highest value reported so far for all-PSCs. The impressive photovoltaic performance originates from broad absorption range, reduced energy loss, and compact π-π stacking. These results provide new insight in the rational design of novel nonhalogenated polymer donors for further development of all-PSCs.

12.
Angew Chem Int Ed Engl ; 63(9): e202316698, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38169129

RESUMEN

Morphological control of all-polymer blends is quintessential yet challenging in fabricating high-performance organic solar cells. Recently, solid additives (SAs) have been approved to be capable in tuning the morphology of polymer: small-molecule blends improving the performance and stability of devices. Herein, three perhalogenated thiophenes, which are 3,4-dibromo-2,5-diiodothiophene (SA-T1), 2,5-dibromo-3,4-diiodothiophene (SA-T2), and 2,3-dibromo-4,5-diiodothiophene (SA-T3), were adopted as SAs to optimize the performance of all-polymer organic solar cells (APSCs). For the blend of PM6 and PY-IT, benefitting from the intermolecular interactions between perhalogenated thiophenes and polymers, the molecular packing properties could be finely regulated after introducing these SAs. In situ UV/Vis measurement revealed that these SAs could assist morphological character evolution in the all-polymer blend, leading to their optimal morphologies. Compared to the as-cast device of PM6 : PY-IT, all SA-treated binary devices displayed enhanced power conversion efficiencies of 17.4-18.3 % with obviously elevated short-circuit current densities and fill factors. To our knowledge, the PCE of 18.3 % for SA-T1-treated binary ranks the highest among all binary APSCs to date. Meanwhile, the universality of SA-T1 in other all-polymer blends is demonstrated with unanimously improved device performance. This work provide a new pathway in realizing high-performance APSCs.

13.
Small ; 19(36): e2302127, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37116119

RESUMEN

Processing additive plays an important role in the standard operation procedures for fabricating top performing polymer solar cells (PSCs) through efficient interactions with key photovoltaic materials. However, improving interaction study of acceptor materials to high performance halogenated aromatic additives such as diiodobenzene (DIB) is a widely neglected route for molecular engineering toward more efficient device performances. In this work, two novel Y-type acceptor molecules of BTP-TT and BTP-TTS with different aromatic side chains on the outer positions are designed and synthesized. The resulting aromatic side chains significantly enhanced the interactions between the acceptor molecules and DIB through an arene/halogenated arene interaction, which improved the crystallinity of the acceptor molecules and induced a polymorph with better photovoltaic performances. Thus, high power conversion efficiencies (PCEs) of 18.04% and 19.22% are achieved in binary and ternary blend devices using BTP-TTS as acceptor and DIB as additive. Aromatic side chain engineering for improving additive interactions is proved to be an effective strategy for achieving much higher performance photovoltaic materials and devices.

14.
Small ; 19(52): e2304368, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37649173

RESUMEN

Ternary polymer solar cells(PSCs) have been identified as an effective approach to improving power conversion efficiency (PCE) of binary PSCs. However, most of the third component, especially Y-series non-fullerene acceptors, is a fused ring acceptor which often requires a rather tedious synthesis and the use of hazardous organostannane reagents. In this work, two nonfused ring acceptors IOEH-4F and IOEH-N2F are synthesized by a green synthetic route and incorporated into PM6:Y6 blend. Encouragingly, the IOEH-4F and IOEH-N2F-based ternary PSCs exhibited more efficient charge transfer, exciton separation, and lower energy loss than PM6:Y6-based PSCs. And the IOEH-4F and IOEH-N2F-based ternary PSCs achieved an impressive PCE of 17.80% and 18.13%, respectively, which are higher than that of PM6:Y6 based PSCs (16.18%). Notably, these PCE values are also the highest PCEs for ternary PSCs including non-fused ring acceptors. Importantly, even when the IOEH-N2F:Y6 ratios increased from 0.05:1.2 to 0.50:1.2, the PCE of IOEH-N2F-based ternary PSCs (16.70%) are still higher than that of PM6:Y6 based PSCs, indicating the great potential for cost saving. It is believed that the findings will help the design of better nonfused ring acceptors and the optimization of corresponding ternary PSCs with cost-saving advantage.

15.
Small ; 19(52): e2304996, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37635097

RESUMEN

Both ternary copolymerization and ternary blending are effective methods to fine-tune polymer structure and manipulate thin-film morphology to improve device performance. In this work, three D-A-A-A (D: donor, A: acceptor) terpolymer donors (FY1, FY2, and FY3) are synthesized by introducing BDD (1,3-bis(2-ethylhexyl)-5,7-di(thiophen-2-yl)benzo[1,2-c:4,5-c']dithiophene-4,8-dione) units into the D-A alternating copolymer PM6 backbone. Owing to the promoted conjugated planarity and excellent absorption of BDD, the obtained terpolymers display an extended absorption range and enhanced π-π stacking orientation, which is a promising third component in ternary device. As a result, the optimal FY1:PM6:BTP-eC9-based ternary device afforded an impressive power conversion efficiency (PCE) as high as 18.52%, owing to the efficient charge transport, negligible energy loss, and suitable domain size. The result provides an efficient method to obtain high-performance polymer solar cells by using analogous polymer donors in ternary device.

16.
Small ; 19(41): e2303226, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37312403

RESUMEN

A cross-linking strategy can result in a three-dimensional network of interconnected chains for the copolymers, thereby improving their mechanical performance. In this work, a series of cross-linked conjugated copolymers, named PC2, PC5, and PC8, constructed with different ratios of monomers are designed and synthesized. For comparison, a random linear copolymer, PR2 is also synthesized based on the similar monomers. When blended with Y6 acceptor, the cross-linked polymers PC2, PC5, and PC8-based polymer solar cells (PSCs) achieve superior power conversion efficiencies (PCEs) of 17.58%, 17.02%, and 16.12%, respectively, which are higher than that (15.84%) of the random copolymer PR2-based devices. Moreover, the PCE of PC2:Y6-based flexible PSC retains ≈88% of the initial efficiency value after 2000 bending cycles, overwhelming the PR2:Y6-based device with the remaining 12.8% of the initial PCE. These results demonstrate that the cross-linking strategy is a feasible and facile approach to developing high-performance polymer donors for the fabrication of flexible PSCs.

17.
Macromol Rapid Commun ; 44(23): e2300407, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37704567

RESUMEN

A polymer acceptor, named PX-1, is  designed and synthesized using a polymerization strategy with grafted small molecule acceptors. This design approach allows for the freedom of end groups while maintaining efficient terminal packing, enhancing π-π interactions, and facilitating charge transport. All-polymer organic solar cells based on PM6: PX-1 demonstrate a promising efficiency of 13.55%. The result presents an alternative pathway for the design of high-efficiency polymer acceptors through the careful regulation of small molecule acceptor monomers and linker units.


Asunto(s)
Vendajes , Polímeros , Polimerizacion
18.
Macromol Rapid Commun ; 44(21): e2300375, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37579197

RESUMEN

Currently, most of the disclosed ternary strategies to improve photovoltaic performance of all-polymer solar cells (all-PSCs) commonly focus on the guest polymers having similar structures with the host polymer donors or acceptors. Herein, this work develops a distinctive ternary method that adding an amorphous B←N embedded polymer named BN-Cl-2fT to a crystallized host polymer blend of PM6 (a commercialized polymer donor) and PY-TT (a copolymer of Y6 and thieno[3,2-b]thiophene). Although the structures between BN-Cl-2fT and PM6 and PY-TT are completely different, excellent miscibility is found between BN-Cl-2fT and both of the host PM6 and PY-TT, which can be interpreted by the crowded phenyl groups anchoring along the backbone of BN-Cl-2fT, leading to weak self-aggregation. Glazing incidence wide-angle X-ray diffraction (GIWAXS) measurements explicitly confirm the crystallization of PM6 and PY-TT and amorphous feature of BN-Cl-2fT. Furthermore, adding 10 wt% BN-Cl-2fT to PM6:PY-TT can significantly enhance the crystallization of the host polymers. Thus the ternary devices based on PM6:PY-TT:BN-Cl-2fT afford promote short-circuit current density (JSC , 23.29 vs. 21.80 mA cm-2 ), fill factor (FF, 62.4% vs. 60.0%), and power conversion efficiency (PCE, 13.70% vs. 12.23%) in contrast to these parameters of binary devices based on PM6:PY-TT. This work provides a unique and enlightening avenue to design high performance all-PSCs by adding amorphous B←N embedded polymers as guest component to enhance host-crystallization.


Asunto(s)
Polímeros , Tiofenos , Cristalización , Difracción de Rayos X
19.
Macromol Rapid Commun ; 44(5): e2200753, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36377477

RESUMEN

The power conversion efficiency (PCE) of all-polymer solar cells (all-PSCs) has ascended rapidly arising from the development of polymerized small-molecule acceptor materials. However, numerous insulating long alkyl chains, which ensure the solubility of the polymer, result in inferior aggregation and charge mobility. Herein, this study proposes a facile random copolymerization strategy of two small molecule acceptor units with different lengths of alkyl side chains and synthesizes a series of polymer acceptors PYT-EHx, where x is the percentage of the short alkyl chain units. The aggregation strength and charge mobility of the acceptors rise linearly with increasing the proportion of short alkyl chain units. Thus, the PYT-EH20 reaches balanced aggregation with the star polymer donor PBDB-T, resulting in optimal morphology, fastest carrier transport, and reduced recombination and energy loss. Consequently, the PYT-EH20-based device yields a 14.8% PCE, a 16% improvement over the control PYT-EH0-based device, accompanied by an increase in open-circuit voltage (Voc ), short-circuit current density (Jsc ), and fill factor (FF). This work demonstrates that the random copolymerization strategy with short alkyl chain insertion is an effective avenue for developing high-performance polymer acceptors, which facilitates further advances in the efficiency of all-PSCs.


Asunto(s)
Polímeros , Polimerizacion , Solubilidad
20.
Macromol Rapid Commun ; 44(1): e2100933, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35150178

RESUMEN

Polymer solar cells (PSCs) with a bulk heterojunction (BHJ) device structure have incredible advantages, such as low-cost fabrication and flexibility. However, the power conversion efficiency (PCE) of BHJ PSCs needs to be further improved to realize their practical applications. In this study, boosted PCEs from PSCs based on BHJ composites incorporated with Fe3 O4 magnetic nanoparticles (MNPs), aligned by an external magnetic field (EMF), are reported. It is found that the coercive electric field within the Fe3 O4 MNPs generated by the EMF has a strong and positive influence on the charge generation, which results in a more than 10% increase in free charge carriers. Moreover, the coercive electric field speeds up the charge carrier transport and suppresses charge carrier recombination within PSCs. In addition, a shortened extraction time makes charge carriers more likely to make it to the electrodes. As a result, more than 15% enhancement in PCE is observed from the PSCs based on the BHJ composite incorporated with the Fe3 O4 MNPs and the EMF as compared with that based on the BHJ composite thin film. This work indicates that the incorporation of MNPs and the EMF is a facile way to enhance the PCEs of PSCs.


Asunto(s)
Electricidad , Eritromicina , Electrodos , Campos Magnéticos , Polímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA