Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Glob Ecol Biogeogr ; 32(7): 1046-1058, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38504871

RESUMEN

Aim: Our knowledge of Pleistocene refugia and post-glacial recolonization routes of forest understorey plants is still very limited. The geographical ranges of these species are often rather narrow and show highly idiosyncratic, often fragmented patterns indicating either narrow and species-specific ecological tolerances or strong dispersal limitations. However, the relative roles of these factors are inherently difficult to disentangle. Location: Central and south-eastern Europe. Time period: 17,100 BP - present. Major taxa studied: Five understorey herbs of European beech forests: Aposeris foetida, Cardamine trifolia, Euphorbia carniolica, Hacquetia epipactis and Helleborus niger. Methods: We used spatio-temporally explicit modelling to reconstruct the post-glacial range dynamics of the five forest understorey herbs. We varied niche requirements, demographic rates and dispersal abilities across plausible ranges and simulated the spread of species from potential Pleistocene refugia identified by phylogeographical analyses. Then we identified the parameter settings allowing for the most accurate reconstruction of their current geographical ranges. Results: We found a largely homogenous pattern of optimal parameter settings among species. Broad ecological niches had to be combined with very low but non-zero rates of long-distance dispersal via chance events and low rates of seed dispersal over moderate distances by standard dispersal vectors. However, long-distance dispersal events, although rare, led to high variation among replicated simulation runs. Main conclusions: Small and fragmented ranges of many forest understorey species are best explained by a combination of broad ecological niches and rare medium- and long-distance dispersal events. Stochasticity is thus an important determinant of current species ranges, explaining the idiosyncratic distribution patterns of the study species despite strong similarities in refugia, ecological tolerances and dispersal abilities.

2.
Genome ; 61(8): 575-585, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29913080

RESUMEN

Post-glacial origins of woodland caribou (Rangifer tarandus subsp.) on the island of Newfoundland and their relationship to mainland populations have been uncertain. Sequence analysis of 2223 bp of the mitochondrial DNA control region and cytochrome b gene from 233 Newfoundland caribou identified 32 haplotypes in four major clades. Comparison with other Nearctic caribou confirms a closer affinity of the basal Clade A with animals from the mainland, and as an outgroup to Clades B, C, and D that are endemic to the island. This indicates re-entry of caribou to post-glacial Newfoundland across the Strait of Belle Isle from Labrador, rather than from southern coastal refugia. Newfoundland caribou are a distinct subspecies, Rangifer tarandus terranovae (Bangs, 1896). Hierarchical AMOVA shows significant clinal differentiation of the major clades from northwest to southeast across the island. The isolated Avalon Peninsula population in the extreme southeast is genetically depauperate. Founder effects are evident in herds introduced to previously unoccupied areas by wildlife managers over the past 40-50 years. Reindeer introduced in the early 20th century have not contributed to mtDNA diversity in Newfoundland caribou.


Asunto(s)
ADN Mitocondrial/genética , Especiación Genética , Repeticiones de Microsatélite/genética , Reno/genética , Animales , Bosques , Haplotipos/genética , Mitocondrias/genética , Terranova y Labrador
3.
Mol Ecol ; 25(15): 3696-705, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27272944

RESUMEN

Past glaciation events have played a major role in shaping the genetic diversity and distribution of wild sheep in North America. The advancement of glaciers can isolate populations in ice-free refugia, where they can survive until the recession of ice sheets. The major Beringian refugium is thought to have held thinhorn sheep (Ovis dalli) populations during times of glacial advance. While isolation in the major refugium can account for much of the genetic and morphological diversity seen in extant thinhorn sheep populations, mounting evidence suggests the persistence of populations in smaller minor refugia. We investigated the refugial origins of thinhorn sheep using ~10 000 SNPs obtained via a cross-species application of the domestic sheep ovine HD BeadChip to genotype 52 thinhorn sheep and five bighorn sheep (O. canadensis) samples. Phylogenetic inference revealed a distinct lineage of thinhorn sheep inhabiting British Columbia, which is consistent with the survival of a group of thinhorn sheep in a minor refugium separate from the Beringian refugium. Isolation in separate glacial refugia probably mediated the evolution of the two thinhorn sheep subspecies, the white Dall's sheep (O. d. dalli), which persisted in Beringia, and the dark Stone's sheep (O. d. stonei), which utilized the minor refugium. We also found the first genetic evidence for admixture between sheep from different glacial refugia in south-central Yukon as a consequence of post glacial expansion and recolonization. These results show that glaciation events can have a major role in the evolution of species inhabiting previously glaciated habitats and the need to look beyond established refugia when examining the evolutionary history of such species.


Asunto(s)
Genética de Población , Polimorfismo de Nucleótido Simple , Refugio de Fauna , Ovinos/genética , Animales , Colombia Británica , Filogenia
4.
Glob Chang Biol ; 20(7): 2286-300, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24375923

RESUMEN

Ongoing rapid climate change is predicted to cause local extinction of plant species in mountain regions. However, some plant species could have persisted during Quaternary climate oscillations without shifting their range, despite the limited evidence from fossils. Here, we tested two candidate mechanisms of persistence by comparing the macrorefugia and microrefugia (MR) hypotheses. We used the rare and endemic Saxifraga florulenta as a model taxon and combined ensembles of species distribution models (SDMs) with a high-resolution paleoclimatic and topographic dataset to reconstruct its potential current and past distribution since the last glacial maximum. To test the macrorefugia hypothesis, we verified whether the species could have persisted in or shifted to geographic areas defined by its realized niche. We then identified potential MR based on climatic and topographic properties of the landscape and applied refined scenarios of MR dynamics and functions over time. Last, we quantified the number of known occurrences that could be explained by either the macrorefugia or MR model. A consensus of two or three SDM techniques predicted absence between 14-10, 3-4 and 1 ka bp, which did not support the macrorefugia model. In contrast, we showed that S. florulenta could have contracted into MR during periods of absence predicted by the SDMs and later re-colonized suitable areas according to the macrorefugia model. Assuming a limited and realistic seed dispersal distance for our species, we explained a large number of the current occurrences (61-96%). Additionally, we showed that MR could have facilitated range expansions or shifts of S. florulenta. Finally, we found that the most recent and the most stable MR were the ones closest to current occurrences. Hence, we propose a novel paradigm to explain plant persistence by highlighting the importance of supporting functions of MR when forecasting the fate of plant species under climate change.


Asunto(s)
Ecosistema , Dispersión de las Plantas , Saxifragaceae/fisiología , Altitud , Cambio Climático , Francia , Italia , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA