RESUMEN
Most mammalian genes have multiple polyA sites, representing a substantial source of transcript diversity regulated by the cleavage and polyadenylation (CPA) machinery. To better understand how these proteins govern polyA site choice, we introduce CPA-Perturb-seq, a multiplexed perturbation screen dataset of 42 CPA regulators with a 3' scRNA-seq readout that enables transcriptome-wide inference of polyA site usage. We develop a framework to detect perturbation-dependent changes in polyadenylation and characterize modules of co-regulated polyA sites. We find groups of intronic polyA sites regulated by distinct components of the nuclear RNA life cycle, including elongation, splicing, termination, and surveillance. We train and validate a deep neural network (APARENT-Perturb) for tandem polyA site usage, delineating a cis-regulatory code that predicts perturbation response and reveals interactions between regulatory complexes. Our work highlights the potential for multiplexed single-cell perturbation screens to further our understanding of post-transcriptional regulation.
Asunto(s)
Poli A , Poliadenilación , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Humanos , Poli A/metabolismo , Animales , Ratones , Intrones/genética , Transcriptoma/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Regulación de la Expresión GénicaRESUMEN
The number of sequenced viral genomes has surged recently, presenting an opportunity to understand viral diversity and uncover unknown regulatory mechanisms. Here, we conducted a screening of 30,367 viral segments from 143 species representing 96 genera and 37 families. Using a library of viral segments in 3' UTR, we identified hundreds of elements impacting RNA abundance, translation, and nucleocytoplasmic distribution. To illustrate the power of this approach, we investigated K5, an element conserved in kobuviruses, and found its potent ability to enhance mRNA stability and translation in various contexts, including adeno-associated viral vectors and synthetic mRNAs. Moreover, we identified a previously uncharacterized protein, ZCCHC2, as a critical host factor for K5. ZCCHC2 recruits the terminal nucleotidyl transferase TENT4 to elongate poly(A) tails with mixed sequences, delaying deadenylation. This study provides a unique resource for virus and RNA research and highlights the potential of the virosphere for biological discoveries.
Asunto(s)
ARN , Secuencias Reguladoras de Ácidos Nucleicos , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Secuencia de Bases , Proteínas/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Estabilidad del ARN , ARN Viral/genética , ARN Viral/metabolismoRESUMEN
Subcellular localization of messenger RNA (mRNA) is a widespread phenomenon that can impact the regulation and function of the encoded protein. In nonneuronal cells, specific mRNAs localize to cell protrusions, and proper mRNA localization is required for cell migration. However, the mechanisms by which mRNA localization regulates protein function in this setting remain unclear. Here, we examined the functional consequences of localization of the mRNA encoding KIF1C. KIF1C is a kinesin motor protein required for cell migration and mRNA trafficking, including trafficking of its own mRNA. We show that Kif1c mRNA localization does not regulate KIF1C's protein abundance, distribution, or ability to traffic other mRNAs. Conversely, Kif1c mRNA localization to protrusions is required for directed cell migration. We used mass spectrometry to identify binding partners of endogenous KIF1C, which revealed dramatic dysregulation of the number and identity of KIF1C interactors in response to Kif1c mRNA mislocalization. These results therefore uncovered a mechanistic connection between mRNA localization to cell protrusions and the specificity of protein-protein interactions. We anticipate that this mechanism is not limited to Kif1c and is likely to be a general principle that impacts the functions of proteins encoded by protrusion-enriched mRNAs in nonneuronal cells.
Asunto(s)
Cinesinas , Proteínas , ARN Mensajero/metabolismo , Proteínas/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Dineínas/metabolismo , Movimiento Celular/genéticaRESUMEN
Distinct subcellular localizations of mRNAs have been described across a wide variety of cell types. While common themes emerge for neuronal cells, functional roles of mRNA localization in space and time are much less understood in nonneuronal cells. Emerging areas of interest are cell models with protrusions, often linked with cell mobility in cancer systems. In this issue of Genes & Development, Norris and Mendell (pp. 191-203) systematically investigate a link between mRNA localization to cell protrusions in a mouse melanoma cell system and a mechanistic link to downstream consequences for cell mobility. The study first identifies a model mRNA of interest in an unbiased way that exhibits a set of phenotypes associated with cell mobility. The candidate mRNA that fulfills all requirements is Kif1c mRNA. Further systematic investigation links Kif1c mRNA localization to assembly of a protein-protein network on the KIF1C protein itself. What's clear is that this work will inspire a further mechanistic dissection of the Kif1c mRNA/KIF1C protein interplay in this important nonneuronal model cell system. More broadly, this work suggests that a broad set of model mRNAs should be investigated to understand mRNA dynamics and downstream functional consequences across a variety of cell models.
Asunto(s)
Cinesinas , Proteínas , Ratones , Animales , Cinesinas/genética , Cinesinas/metabolismo , Unión Proteica , ARN Mensajero/metabolismo , Proteínas/metabolismo , Movimiento Celular/genéticaRESUMEN
The core components of the nuclear RNA export pathway are thought to be required for export of virtually all polyadenylated RNAs. Here, we depleted different proteins that act in nuclear export in human cells and quantified the transcriptome-wide consequences on RNA localization. Different genes exhibited substantially variable sensitivities, with depletion of NXF1 and TREX components causing some transcripts to become strongly retained in the nucleus while others were not affected. Specifically, NXF1 is preferentially required for export of single- or few-exon transcripts with long exons or high A/U content, whereas depletion of TREX complex components preferentially affects spliced and G/C-rich transcripts. Using massively parallel reporter assays, we identified short sequence elements that render transcripts dependent on NXF1 for their export and identified synergistic effects of splicing and NXF1. These results revise the current model of how nuclear export shapes the distribution of RNA within human cells.
Asunto(s)
Transporte Activo de Núcleo Celular , Complejos Multiproteicos/metabolismo , Proteínas de Transporte Nucleocitoplasmático/fisiología , Transporte de ARN , Proteínas de Unión al ARN/fisiología , ARN/metabolismo , Animales , Secuencia de Bases , Línea Celular , Núcleo Celular/metabolismo , Humanos , Ratones , ARN/química , Estabilidad del ARN , RNA-SeqRESUMEN
Many bacterial pathogens regulate their virulence genes via phase variation, whereby length-variable simple sequence repeats control the transcription or coding potential of those genes. Here, we have exploited this relationship between DNA structure and physiological function to discover a globally acting small RNA (sRNA) regulator of virulence in the gastric pathogen Helicobacter pylori. Our study reports the first sRNA whose expression is affected by a variable thymine (T) stretch in its promoter. We show the sRNA post-transcriptionally represses multiple major pathogenicity factors of H. pylori, including CagA and VacA, by base pairing to their mRNAs. We further demonstrate transcription of the sRNA is regulated by the nickel-responsive transcriptional regulator NikR (thus named NikS for nickel-regulated sRNA), thereby linking virulence factor regulation to nickel concentrations. Using in-vitro infection experiments, we demonstrate NikS affects host cell internalization and epithelial barrier disruption. Together, our results show NikS is a phase-variable, post-transcriptional global regulator of virulence properties in H. pylori.
Asunto(s)
Helicobacter pylori/genética , Helicobacter pylori/patogenicidad , ARN Bacteriano/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Factores de Virulencia/metabolismo , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Recuento de Colonia Microbiana , Endocitosis/efectos de los fármacos , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Helicobacter pylori/efectos de los fármacos , Interacciones Huésped-Patógeno/efectos de los fármacos , Níquel/farmacología , Fenotipo , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética/efectos de los fármacosRESUMEN
Meiosis is essential for gamete production in all sexually reproducing organisms. It entails two successive cell divisions without DNA replication, producing haploid cells from diploid ones. This process involves complex morphological and molecular differentiation that varies across species and between sexes. Specialized genomic events like meiotic recombination and chromosome segregation are tightly regulated, including preparation for post-meiotic development. Research in model organisms, notably yeast, has shed light on the genetic and molecular aspects of meiosis and its regulation. Although mammalian meiosis research faces challenges, particularly in replicating gametogenesis in vitro, advances in genetic and genomic technologies are providing mechanistic insights. Here we review the genetics and molecular biology of meiotic gene expression control, focusing on mammals.
Asunto(s)
Meiosis , Saccharomyces cerevisiae , Animales , Meiosis/genética , Saccharomyces cerevisiae/genética , Gametogénesis/genética , Segregación Cromosómica/genética , Replicación del ADN , MamíferosRESUMEN
High-throughput methodologies have enabled routine generation of RNA target sets and sequence motifs for RNA-binding proteins (RBPs). Nevertheless, quantitative approaches are needed to capture the landscape of RNA-RBP interactions responsible for cellular regulation. We have used the RNA-MaP platform to directly measure equilibrium binding for thousands of designed RNAs and to construct a predictive model for RNA recognition by the human Pumilio proteins PUM1 and PUM2. Despite prior findings of linear sequence motifs, our measurements revealed widespread residue flipping and instances of positional coupling. Application of our thermodynamic model to published in vivo crosslinking data reveals quantitative agreement between predicted affinities and in vivo occupancies. Our analyses suggest a thermodynamically driven, continuous Pumilio-binding landscape that is negligibly affected by RNA structure or kinetic factors, such as displacement by ribosomes. This work provides a quantitative foundation for dissecting the cellular behavior of RBPs and cellular features that impact their occupancies.
Asunto(s)
Conformación de Ácido Nucleico , Proteínas de Unión al ARN/genética , Secuencia de Aminoácidos/genética , Humanos , Cinética , Unión Proteica/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/química , Ribosomas/química , Ribosomas/genéticaRESUMEN
Argonaute proteins loaded with microRNAs (miRNAs) or small interfering RNAs (siRNAs) form the RNA-induced silencing complex (RISC), which represses target RNA expression. Predicting the biological targets, specificity, and efficiency of both miRNAs and siRNAs has been hamstrung by an incomplete understanding of the sequence determinants of RISC binding and cleavage. We applied high-throughput methods to measure the association kinetics, equilibrium binding energies, and single-turnover cleavage rates of mouse AGO2 RISC. We find that RISC readily tolerates insertions of up to 7 nt in its target opposite the central region of the guide. Our data uncover specific guide:target mismatches that enhance the rate of target cleavage, suggesting novel siRNA design strategies. Using these data, we derive quantitative models for RISC binding and target cleavage and show that our in vitro measurements and models predict knockdown in an engineered cellular system.
Asunto(s)
Proteínas Argonautas/química , Modelos Químicos , ARN Interferente Pequeño/química , Complejo Silenciador Inducido por ARN/química , Animales , RatonesRESUMEN
Post-transcriptional regulation of RNA stability is a key step in gene expression control. We describe a regulatory program, mediated by the RNA binding protein TARBP2, that controls RNA stability in the nucleus. TARBP2 binding to pre-mRNAs results in increased intron retention, subsequently leading to targeted degradation of TARBP2-bound transcripts. This is mediated by TARBP2 recruitment of the m6A RNA methylation machinery to its target transcripts, where deposition of m6A marks influences the recruitment of splicing regulators, inhibiting efficient splicing. Interactions between TARBP2 and the nucleoprotein TPR then promote degradation of these TARBP2-bound transcripts by the nuclear exosome. Additionally, analysis of clinical gene expression datasets revealed a functional role for TARBP2 in lung cancer. Using xenograft mouse models, we find that TARBP2 affects tumor growth in the lung and that this is dependent on TARBP2-mediated destabilization of ABCA3 and FOXN3. Finally, we establish ZNF143 as an upstream regulator of TARBP2 expression.
Asunto(s)
Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Empalme del ARN , Estabilidad del ARN , ARN Neoplásico/metabolismo , Proteínas de Unión al ARN/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas de Neoplasias/genética , ARN Neoplásico/genética , Proteínas de Unión al ARN/genética , Transactivadores/genética , Transactivadores/metabolismoRESUMEN
LIN28 RNA binding proteins are dynamically expressed throughout mammalian development and during disease. However, it remains unclear how changes in LIN28 expression define patterns of post-transcriptional gene regulation. Here we show that LIN28 expression level is a key variable that sets the magnitude of protein translation. By systematically varying LIN28B protein levels in human cells, we discovered a dose-dependent divergence in transcriptome-wide ribosome occupancy that enabled the formation of two discrete translational subpopulations composed of nearly all expressed genes. This bifurcation in gene expression was mediated by a redistribution in Argonaute association, from let-7 to non-let-7 microRNA families, resulting in a global shift in cellular miRNA activity. Post-transcriptional effects were scaled across the physiological LIN28 expression range. Together, these data highlight the central importance of RBP expression level and its ability to encode regulation.
Asunto(s)
Biosíntesis de Proteínas , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Transcriptoma , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Sitios de Unión , Unión Competitiva , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Células 3T3 NIH , Unión Proteica , Proteínas de Unión al ARN/genética , Ribosomas/genéticaRESUMEN
Proper expression of odor receptor genes is critical for the function of olfactory systems. In this study, we identified exitrons (exonic introns) in four of the 39 Odorant receptor (Or) genes expressed in the Drosophila antenna. Exitrons are sequences that can be spliced out from within a protein-coding exon, thereby altering the encoded protein. We focused on Or88a, which encodes a pheromone receptor, and found that exitron splicing of Or88a is conserved across five Drosophila species over 20 My of evolution. The exitron was spliced out in 15% of Or88a transcripts. Removal of this exitron creates a non-coding RNA rather than an RNA that encodes a stable protein. Our results suggest the hypothesis that in the case of Or88a, exitron splicing could act in neuronal modulation by decreasing the level of functional Or transcripts. Activation of Or88a-expressing olfactory receptor neurons via either optogenetics or pheromone stimulation increased the level of exitron-spliced transcripts, with optogenetic activation leading to a 14-fold increase. A fifth Or can also undergo an alternative splicing event that eliminates most of the canonical open reading frame. Besides these cases of alternative splicing, we found alternative polyadenylation of four Ors, and exposure of Or67c to its ligand ethyl lactate in the antenna downregulated all of its 3' isoforms. Our study reveals mechanisms by which neuronal activity could be modulated via regulation of the levels of Or isoforms.
Asunto(s)
Drosophila , Receptores Odorantes , Animales , Drosophila/genética , Odorantes , Empalme del ARN/genética , Empalme Alternativo/genética , Isoformas de Proteínas/genética , Receptores Odorantes/genéticaRESUMEN
Understanding a remarkable event at the start of life, the oocyte-to-embryo transition (OET), has remained elusive, especially in humans. Using newly developed techniques, Liu et al. showed that human maternal mRNAs undergo global poly(A) tail-mediated remodeling during OET, identified the enzymes involved, and demonstrated the essentiality of remodeling for embryo cleavage.
Asunto(s)
Oocitos , ARN Mensajero Almacenado , Humanos , ARN MensajeroRESUMEN
Many developmental processes are regulated post-transcriptionally. Such post-transcriptional regulatory mechanisms can now be analyzed by robust single-cell mass spectrometry methods that allow accurate quantification of proteins and their modification in single cells. These methods can enable quantitative exploration of protein synthesis and degradation mechanisms that contribute to developmental cell fate specification. Furthermore, they may support functional analysis of protein conformations and activities in single cells, and thus link protein functions to developmental processes. This Spotlight provides an accessible introduction to single-cell mass spectrometry methods and suggests initial biological questions that are ripe for investigation.
Asunto(s)
Regulación de la Expresión Génica , Proteómica , Diferenciación Celular , Espectrometría de Masas , Biosíntesis de ProteínasRESUMEN
Drosophila sperm development is characterized by extensive post-transcriptional regulation whereby thousands of transcripts are preserved for translation during later stages. A key step in translation initiation is the binding of eukaryotic initiation factor 4E (eIF4E) to the 5' mRNA cap. In addition to canonical eIF4E-1, Drosophila has multiple eIF4E paralogs, including four (eIF4E-3, -4, -5, and -7) that are highly expressed in the testis. Among these, only eIF4E-3 has been characterized genetically. Here, using CRISPR/Cas9 mutagenesis, we determined that eIF4E-5 is essential for male fertility. eIF4E-5 protein localizes to the distal ends of elongated spermatid cysts, and eIF4E-5 mutants exhibit defects during post-meiotic stages, including a mild defect in spermatid cyst polarization. eIF4E-5 mutants also have a fully penetrant defect in individualization, resulting in failure to produce mature sperm. Indeed, our data indicate that eIF4E-5 regulates non-apoptotic caspase activity during individualization by promoting local accumulation of the E3 ubiquitin ligase inhibitor Soti. Our results further extend the diversity of non-canonical eIF4Es that carry out distinct spatiotemporal roles during spermatogenesis.
Asunto(s)
Drosophila melanogaster , Semen , Animales , Masculino , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Semen/metabolismo , Drosophila/metabolismo , Espermatogénesis/genética , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismoRESUMEN
In vertebrates, the earliest hematopoietic stem and progenitor cells (HSPCs) are derived from a subset of specialized endothelial cells, hemogenic endothelial cells, in the aorta-gonad-mesonephros region through endothelial-to-hematopoietic transition. HSPC generation is efficiently and accurately regulated by a variety of factors and signals; however, the precise control of these signals remains incompletely understood. Post-transcriptional regulation is crucial for gene expression, as the transcripts are usually bound by RNA-binding proteins (RBPs) to regulate RNA metabolism. Here, we report that the RBP protein Csde1-mediated translational control is essential for HSPC generation during zebrafish early development. Genetic mutants and morphants demonstrated that depletion of csde1 impaired HSPC production in zebrafish embryos. Mechanistically, Csde1 regulates HSPC generation through modulating Wnt/ß-catenin signaling activity. We demonstrate that Csde1 binds to ctnnb1 mRNAs (encoding ß-catenin, an effector of Wnt signaling) and regulates translation but not stability of ctnnb1 mRNA, which further enhances ß-catenin protein level and Wnt signal transduction activities. Together, we identify Csde1 as an important post-transcriptional regulator and provide new insights into how Wnt/ß-catenin signaling is precisely regulated at the post-transcriptional level.
Asunto(s)
Hemangioblastos , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , beta Catenina/metabolismo , Vía de Señalización Wnt/genética , Células Madre Hematopoyéticas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Hemangioblastos/metabolismoRESUMEN
Dinoflagellates, a class of unicellular eukaryotic phytoplankton, exhibit minimal transcriptional regulation, representing a unique model for exploring gene expression. The biosynthesis, distribution, regulation, and function of mRNA N1-methyladenosine (m1A) remain controversial due to its limited presence in typical eukaryotic mRNA. This study provides a comprehensive map of m1A in dinoflagellate mRNA and shows that m1A, rather than N6-methyladenosine (m6A), is the most prevalent internal mRNA modification in various dinoflagellate species, with an asymmetric distribution along mature transcripts. In Amphidinium carterae, we identify 6549 m1A sites characterized by a non-tRNA T-loop-like sequence motif within the transcripts of 3196 genes, many of which are involved in regulating carbon and nitrogen metabolism. Enriched within 3'UTRs, dinoflagellate mRNA m1A levels negatively correlate with translation efficiency. Nitrogen depletion further decreases mRNA m1A levels. Our data suggest that distinctive patterns of m1A modification might influence the expression of metabolism-related genes through translational control.
RESUMEN
Cas9 nucleases naturally utilize CRISPR RNAs (crRNAs) to silence foreign double-stranded DNA. While recent work has shown that some Cas9 nucleases can also target RNA, RNA recognition has required nuclease modifications or accessory factors. Here, we show that the Campylobacter jejuni Cas9 (CjCas9) can bind and cleave complementary endogenous mRNAs in a crRNA-dependent manner. Approximately 100 transcripts co-immunoprecipitated with CjCas9 and generally can be subdivided through their base-pairing potential to the four crRNAs. A subset of these RNAs was cleaved around or within the predicted binding site. Mutational analyses revealed that RNA binding was crRNA and tracrRNA dependent and that target RNA cleavage required the CjCas9 HNH domain. We further observed that RNA cleavage was PAM independent, improved with greater complementarity between the crRNA and the RNA target, and was programmable in vitro. These findings suggest that C. jejuni Cas9 is a promiscuous nuclease that can coordinately target both DNA and RNA.
Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/fisiología , Campylobacter jejuni/enzimología , Estabilidad del ARN/fisiología , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Proteína 9 Asociada a CRISPR/genética , Campylobacter jejuni/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Dominios Proteicos , ARN Bacteriano/genética , ARN Mensajero/genéticaRESUMEN
The MYC proto-oncogene contributes to the pathogenesis of more than half of human cancers. Malignant transformation by MYC transcriptionally up-regulates the core pre-mRNA splicing machinery and causes misregulation of alternative splicing. However, our understanding of how splicing changes are directed by MYC is limited. We performed a signaling pathway-guided splicing analysis to identify MYC-dependent splicing events. These included an HRAS cassette exon repressed by MYC across multiple tumor types. To molecularly dissect the regulation of this HRAS exon, we used antisense oligonucleotide tiling to identify splicing enhancers and silencers in its flanking introns. RNA-binding motif prediction indicated multiple binding sites for hnRNP H and hnRNP F within these cis-regulatory elements. Using siRNA knockdown and cDNA expression, we found that both hnRNP H and F activate the HRAS cassette exon. Mutagenesis and targeted RNA immunoprecipitation implicate two downstream G-rich elements in this splicing activation. Analyses of ENCODE RNA-seq datasets confirmed hnRNP H regulation of HRAS splicing. Analyses of RNA-seq datasets across multiple cancers showed a negative correlation of HNRNPH gene expression with MYC hallmark enrichment, consistent with the effect of hnRNP H on HRAS splicing. Interestingly, HNRNPF expression showed a positive correlation with MYC hallmarks and thus was not consistent with the observed effects of hnRNP F. Loss of hnRNP H/F altered cell cycle progression and induced apoptosis in the PC3 prostate cancer cell line. Collectively, our results reveal mechanisms for MYC-dependent regulation of splicing and point to possible therapeutic targets in prostate cancers.
Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo F-H , Neoplasias de la Próstata , Masculino , Humanos , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN/genética , Proteínas de Unión al ARN/metabolismo , Exones/genética , Empalme Alternativo/genética , Neoplasias de la Próstata/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismoRESUMEN
RNA-binding proteins (RBPs) are expressed broadly during both development and malignant transformation, yet their mechanistic roles in epithelial homeostasis or as drivers of tumor initiation and progression are incompletely understood. Here we describe a novel interplay between RBPs LIN28B and IMP1 in intestinal epithelial cells. Ribosome profiling and RNA sequencing identified IMP1 as a principle node for gene expression regulation downstream from LIN28B In vitro and in vivo data demonstrate that epithelial IMP1 loss increases expression of WNT target genes and enhances LIN28B-mediated intestinal tumorigenesis, which was reversed when we overexpressed IMP1 independently in vivo. Furthermore, IMP1 loss in wild-type or LIN28B-overexpressing mice enhances the regenerative response to irradiation. Together, our data provide new evidence for the opposing effects of the LIN28B-IMP1 axis on post-transcriptional regulation of canonical WNT signaling, with implications in intestinal homeostasis, regeneration and tumorigenesis.