Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 440
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 38(11): e23709, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38809700

RESUMEN

Brown adipose tissue (BAT) is correlated to cardiovascular health in rodents and humans, but the physiological role of BAT in the initial cardiac remodeling at the onset of stress is unknown. Activation of BAT via 48 h cold (16°C) in mice following transverse aortic constriction (TAC) reduced cardiac gene expression for LCFA uptake and oxidation in male mice and accelerated the onset of cardiac metabolic remodeling, with an early isoform shift of carnitine palmitoyltransferase 1 (CPT1) toward increased CPT1a, reduced entry of long chain fatty acid (LCFA) into oxidative metabolism (0.59 ± 0.02 vs. 0.72 ± 0.02 in RT TAC hearts, p < .05) and increased carbohydrate oxidation with altered glucose transporter content. BAT activation with TAC reduced early hypertrophic expression of ß-MHC by 61% versus RT-TAC and reduced pro-fibrotic TGF-ß1 and COL3α1 expression. While cardiac natriuretic peptide expression was yet to increase at only 3 days TAC, Nppa and Nppb expression were elevated in Cold TAC versus RT TAC hearts 2.7- and 2.4-fold, respectively. Eliminating BAT thermogenic activation with UCP1 KO mice eliminated differences between Cold TAC and RT TAC hearts, confirming effects of BAT activation rather than autonomous cardiac responses to cold. Female responses to BAT activation were blunted, with limited UCP1 changes with cold, partly due to already activated BAT in females at RT compared to thermoneutrality. These data reveal a previously unknown physiological mechanism of UCP1-dependent BAT activation in attenuating early cardiac hypertrophic and profibrotic signaling and accelerating remodeled metabolic activity in the heart at the onset of cardiac stress.


Asunto(s)
Tejido Adiposo Pardo , Fibrosis , Proteína Desacopladora 1 , Animales , Tejido Adiposo Pardo/metabolismo , Ratones , Masculino , Proteína Desacopladora 1/metabolismo , Fibrosis/metabolismo , Carnitina O-Palmitoiltransferasa/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Ratones Endogámicos C57BL , Cardiomegalia/metabolismo , Cardiomegalia/patología , Miocardio/metabolismo , Miocardio/patología , Estrés Fisiológico , Remodelación Ventricular/fisiología , Ratones Noqueados , Frío
2.
J Proteome Res ; 23(10): 4229-4241, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39178178

RESUMEN

Cardiac hypertrophy is a classical forerunner of heart failure and myocardial structural and metabolic remodeling are closely associated with cardiac hypertrophy. We aim to investigate the characteristics of myocardial structure and central carbon metabolism of cardiac hypertrophy at different stages. Using echocardiography and pathological staining, early and compensatory cardiac hypertrophy were respectively defined as within 7 days and from 7 to 14 days after transverse aortic constriction (TAC) in mice. Among mass-spectrometry-based metabolomics, we identified 45 central carbon metabolites. Differential metabolite analysis showed that six metabolites, including citrate, cis-aconitate and so on, decreased significantly on day 1 after TAC. Ten metabolites, including l-lactate, (S)-2-hydroxyglutarate and so on, were obviously changed on days 10 and 14. Pathway analysis showed that these metabolites were involved in seven metabolic pathways, including carbohydrates, amino acids and so on. Western blot showed the expression of ATP-citrate lyase, malate dehydrogenase 1 and lactate dehydrogenase A in myocardium changed markedly on day 3, while the phosphorylation level of AMP-activated protein kinase did not show significantly difference. We hope our research will promote deeper understanding and early diagnosis of cardiac hypertrophy in clinical practice. All raw data were deposited in MetaboLights (MTBLS10555).


Asunto(s)
Carbono , Cardiomegalia , Miocardio , Animales , Cardiomegalia/metabolismo , Cardiomegalia/diagnóstico por imagen , Cardiomegalia/patología , Miocardio/metabolismo , Miocardio/patología , Carbono/metabolismo , Ratones , Masculino , L-Lactato Deshidrogenasa/metabolismo , Ecocardiografía , Malato Deshidrogenasa/metabolismo , Metabolómica/métodos , ATP Citrato (pro-S)-Liasa/metabolismo , ATP Citrato (pro-S)-Liasa/genética , Isoenzimas/metabolismo , Redes y Vías Metabólicas , Ratones Endogámicos C57BL
3.
Am J Physiol Lung Cell Mol Physiol ; 327(3): L371-L381, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39010823

RESUMEN

Pulmonary hypertension is a group of diseases characterized by elevated pulmonary artery pressure and pulmonary vascular resistance with significant morbidity and mortality. The most prevalent type is pulmonary hypertension secondary to left heart disease (PH-LHD). The available experimental models of PH-LHD use partial pulmonary clamping by technically nontrivial open-chest surgery with lengthy recovery. We present a simple model in which the reduction of the cross-sectional area of the ascending aorta is achieved not by external clamping but by partial intravascular obstruction without opening the chest. In anesthetized rats, a blind polyethylene tubing was advanced from the right carotid artery to just above the aortic valve. The procedure is quick and easy to learn. Three weeks after the procedure, left heart pressure overload was confirmed by measuring left ventricular end-diastolic pressure by puncture (1.3 ± 0.2 vs. 0.4 ± 0.3 mmHg in controls, mean ± SD, P < 0.0001). The presence of pulmonary hypertension was documented by measuring pulmonary artery pressure by catheterization (22.3 ± 2.3 vs. 16.9 ± 2.7 mmHg, P = 0.0282) and by detecting right ventricular hypertrophy and increased muscularization of peripheral pulmonary vessels. Contributions of a precapillary vascular segment and vasoconstriction to the increased pulmonary vascular resistance were demonstrated, respectively, by arterial occlusion technique and by normalization of resistance by a vasodilator, sodium nitroprusside, in isolated lungs. These changes were comparable, but not additive, to those induced by an established pulmonary hypertension model, chronic hypoxic exposure. Intravascular partial aortic obstruction offers an easy model of pulmonary hypertension induced by left heart disease that has a vasoconstrictor and precapillary component.NEW & NOTEWORTHY We present a new, simple model of a clinically important type of pulmonary hypertension, that induced by left heart failure. Left ventricular pressure overload is induced in rats by inserting a blinded cannula into the ascending aorta via carotid artery access. This partial intravascular aortic obstruction, which does not require opening of the chest and prolonged recovery, causes pulmonary hypertension, which has a precapillary and vasoconstrictor as well as a vascular remodeling component.


Asunto(s)
Aorta , Modelos Animales de Enfermedad , Hipertensión Pulmonar , Animales , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/etiología , Masculino , Ratas , Aorta/fisiopatología , Aorta/patología , Arteria Pulmonar/fisiopatología , Arteria Pulmonar/patología , Resistencia Vascular , Ratas Sprague-Dawley , Ratas Wistar , Hipertrofia Ventricular Derecha/fisiopatología , Hipertrofia Ventricular Derecha/etiología
4.
Am J Physiol Heart Circ Physiol ; 327(3): H681-H686, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39093000

RESUMEN

Cardiac fibroblasts play a pivotal role in maintaining heart homeostasis by depositing extracellular matrix (ECM) to provide structural support for the myocardium, vasculature, and neuronal network and by contributing to essential physiological processes. In response to injury such as myocardial infarction or pressure overload, fibroblasts become activated, leading to increased ECM production that can ultimately drive left ventricular remodeling and progress to heart failure. Recently, the American Journal of Physiology-Heart and Circulatory Physiology issued a call for papers on cardiac fibroblasts that yielded articles with topics spanning fibroblast physiology, technical considerations, signaling pathways, and interactions with other cell types. This mini-review summarizes those articles and places the new findings in the context of what is currently known for cardiac fibroblasts and what future directions remain.


Asunto(s)
Matriz Extracelular , Fibroblastos , Miocardio , Humanos , Animales , Fibroblastos/metabolismo , Miocardio/metabolismo , Miocardio/citología , Miocardio/patología , Matriz Extracelular/metabolismo , Transducción de Señal , Remodelación Ventricular
5.
Am J Physiol Heart Circ Physiol ; 327(2): H409-H416, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-38607341

RESUMEN

Cardiac hypertrophy is a common feature in several cardiomyopathies. We previously reported that loss of ADAM15 (disintegrin and metalloproteinase 15) worsened cardiac hypertrophy and dilated cardiomyopathy following cardiac pressure overload. Here, we investigated the impact of ADAM15 loss in female mice following cardiac pressure overload induced by transverse aortic constriction (TAC). Female Adam15-/- mice developed the same degree of cardiac hypertrophy, dilation, and dysfunction as the parallel female wild-type (WT) mice at 6 wk post-TAC. To determine if this is due to the protective effects of estrogen, which could mask the negative impact of Adam15 loss, WT and Adam15-/- mice underwent ovariectomy (OVx) 2 wk before TAC. Cardiac structure and function analyses were performed at 6 wk post-TAC. OVx similarly impacted females of both genotypes post-TAC. Calcineurin (Cn) activity was increased post-OVx-TAC, and more in Adam15-/- mice; however, this increase was not reflected in the total-to-phospho-NFAT levels. Integrin-α7 expression, which was upstream of Cn activation in male Adam15-/- -TAC mice, remained unchanged in female mice. However, activation of the mitogen-activated protein kinases (ERK, JNK, P38) was greater in Adam15-/--OVx-TAC than in WT-OVx-TAC mice. In addition, ADAM15 protein levels were significantly increased post-TAC in male but not in female WT mice. Myocardial fibrosis was comparable in non-OVx WT-TAC and Adam15-/- -TAC mice. OVx increased the perivascular fibrosis more in Adam15-/- compared with WT mice post-TAC. Our data demonstrate that loss of ovarian hormones did not fully replicate the male phenotype in the female Adam15-/- mice post-TAC. As ADAM15 levels were increased in males but not in females post-TAC, it is plausible that ADAM15 does not play a prominent role in post-TAC events in female mice. Our findings highlight the significance of factors other than sex hormones in mediating cardiomyopathies in females, which require a more thorough understanding.NEW & NOTEWORTHY Loss of ADAM15 in female mice, unlike the male mice, does not worsen the cardiomyopathy following cardiac pressure overload. Ovariectomy does not worsen the post-TAC cardiomyopathy in female Adam15-/- mice compared with female WT mice. Lack of deleterious impact of Adam15 deficiency in female mice is not because of the protective effects of ovarian hormones but could be due to a less prominent role of ADAM15 in cardiac response to post-TAC remodeling in female mice.


Asunto(s)
Proteínas ADAM , Proteínas de la Membrana , Ratones Noqueados , Ovariectomía , Animales , Femenino , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteínas ADAM/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Masculino , Ratones Endogámicos C57BL , Calcineurina/metabolismo , Calcineurina/genética , Modelos Animales de Enfermedad , Ratones , Remodelación Ventricular , Factores de Transcripción NFATC/metabolismo , Factores de Transcripción NFATC/genética , Miocardio/metabolismo , Miocardio/patología , Fibrosis , Cardiomiopatías/fisiopatología , Cardiomiopatías/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/etiología , Cardiomiopatías/patología , Factores Sexuales , Transducción de Señal , Función Ventricular Izquierda , Hipertrofia Ventricular Izquierda/fisiopatología , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/etiología
6.
Am J Physiol Heart Circ Physiol ; 326(1): H223-H237, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37999643

RESUMEN

Approximately 50% of Americans have hypertension, which significantly increases the risk of heart failure. In response to increased peripheral resistance in hypertension, intensified mechanical stretch in the myocardium induces cardiomyocyte hypertrophy and fibroblast activation to withstand increased pressure overload. This changes the structure and function of the heart, leading to pathological cardiac remodeling and eventual progression to heart failure. In the presence of hypertensive stimuli, cardiac fibroblasts activate and differentiate to myofibroblast phenotype capable of enhanced extracellular matrix secretion in coordination with other cell types, mainly cardiomyocytes. Both systemic and local renin-angiotensin-aldosterone system activation lead to increased angiotensin II stimulation of fibroblasts. Angiotensin II directly activates fibrotic signaling such as transforming growth factor ß/SMAD and mitogen-activated protein kinase (MAPK) signaling to produce extracellular matrix comprised of collagens and matricellular proteins. With the advent of single-cell RNA sequencing techniques, heterogeneity in fibroblast populations has been identified in the left ventricle in models of hypertension and pressure overload. The various clusters of fibroblasts reveal a range of phenotypes and activation states. Select antihypertensive therapies have been shown to be effective in limiting fibrosis, with some having direct actions on cardiac fibroblasts. The present review focuses on the fibroblast-specific changes that occur in response to hypertension and pressure overload, the knowledge gained from single-cell analyses, and the effect of antihypertensive therapies. Understanding the dynamics of hypertensive fibroblast populations and their similarities and differences by sex is crucial for the advent of new targets and personalized medicine.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión , Humanos , Antihipertensivos/farmacología , Angiotensina II/farmacología , Miocardio/metabolismo , Hipertensión/metabolismo , Fibroblastos/metabolismo , Fibrosis
7.
Biochem Biophys Res Commun ; 735: 150456, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39094230

RESUMEN

Piezo1 channels are activated by mechanical stress and play a significant role in cardiac hypertrophy and fibrosis. However, the molecular mechanisms underlying Piezo1 activation on the cell membrane following pressure overload remain unclear. Caveolae are known to mitigate mechanical forces and regulate Piezo1 function. Therefore, this study aimed to investigate the interaction between caveolae and Piezo1 in the development of pressure overload-induced cardiac remodeling. We observed reduced colocalization between Piezo1 and Caveolin-3 in hypertrophic cardiomyocytes following abdominal aortic constriction and Angiotensin-II treatment, accompanied by increased Piezo1 function and expression. Furthermore, enhanced Piezo1 function was also noted upon caveolae disruption using methyl-beta-cyclodextrin (mßCD). Thus, our findings suggested that pressure overload led to Piezo1 translocation from caveolae, thereby augmenting its function and expression, which may contribute to cardiac remodeling.

8.
Histochem Cell Biol ; 161(5): 367-379, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38347221

RESUMEN

Valvular heart disease leads to ventricular pressure and/or volume overload. Pressure overload leads to fibrosis, which might regress with its resolution, but the limits and details of this reverse remodeling are not known. To gain more insight into the extent and nature of cardiac fibrosis in valve disease, we analyzed needle biopsies taken from the interventricular septum of patients undergoing surgery for valve replacement focusing on the expression and distribution of major extracellular matrix protein involved in this process. Proteomic analysis performed using mass spectrometry revealed an excellent correlation between the expression of collagen type I and III, but there was little correlation with the immunohistochemical staining performed on sister sections, which included antibodies against collagen I, III, fibronectin, sarcomeric actin, and histochemistry for wheat germ agglutinin. Surprisingly, the immunofluorescence intensity did not correlate significantly with the gold standard for fibrosis quantification, which was performed using Picrosirius Red (PSR) staining, unless multiplexed on the same tissue section. There was also little correlation between the immunohistochemical markers and pressure gradient severity. It appears that at least in humans, the immunohistochemical pattern of fibrosis is not clearly correlated with standard Picrosirius Red staining on sister sections or quantitative proteomic data, possibly due to tissue heterogeneity at microscale, comorbidities, or other patient-specific factors. For precise correlation of different types of staining, multiplexing on the same section is the best approach.


Asunto(s)
Estenosis de la Válvula Aórtica , Proteínas de la Matriz Extracelular , Fibrosis , Humanos , Estenosis de la Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/cirugía , Fibrosis/metabolismo , Fibrosis/patología , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/análisis , Insuficiencia de la Válvula Aórtica/metabolismo , Insuficiencia de la Válvula Aórtica/patología , Insuficiencia de la Válvula Aórtica/cirugía , Masculino , Tabique Interventricular/patología , Tabique Interventricular/metabolismo , Femenino , Anciano , Persona de Mediana Edad
9.
Heart Fail Rev ; 29(1): 257-276, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37999821

RESUMEN

Our understanding of the complex pathophysiology of Heart failure with preserved ejection fraction (HFpEF) is limited by the lack of a robust in vivo model. Existing in-vivo models attempt to reproduce the four main phenotypes of HFpEF; ageing, obesity, diabetes mellitus and hypertension. To date, there is no in vivo model that represents all the haemodynamic characteristics of HFpEF, and only a few have proven to be reliable for the preclinical evaluation of potentially new therapeutic targets. HFpEF accounts for 50% of all the heart failure cases and its incidence is on the rise, posing a huge economic burden on the health system. Patients with HFpEF have limited therapeutic options available. The inadequate effectiveness of current pharmaceutical therapeutics for HFpEF has prompted the development of device-based treatments that target the hemodynamic changes to reduce the symptoms of HFpEF. However, despite the potential of device-based solutions to treat HFpEF, most of these therapies are still in the developmental stage and a relevant HFpEF in vivo model will surely expedite their development process. This review article outlines the major limitations of the current large in-vivo models in use while discussing how these designs have helped in the development of therapy devices for the treatment of HFpEF.


Asunto(s)
Diabetes Mellitus , Insuficiencia Cardíaca , Hipertensión , Animales , Humanos , Volumen Sistólico/fisiología , Modelos Animales
10.
Cardiovasc Diabetol ; 23(1): 239, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978010

RESUMEN

BACKGROUND: Type 2 diabetes (T2D) is a frequent comorbidity encountered in patients with severe aortic stenosis (AS), leading to an adverse left ventricular (LV) remodeling and dysfunction. Metabolic alterations have been suggested as contributors of the deleterious effect of T2D on LV remodeling and function in patients with severe AS, but so far, the underlying mechanisms remain unclear. Mitochondria play a central role in the regulation of cardiac energy metabolism. OBJECTIVES: We aimed to explore the mitochondrial alterations associated with the deleterious effect of T2D on LV remodeling and function in patients with AS, preserved ejection fraction, and no additional heart disease. METHODS: We combined an in-depth clinical, biological and echocardiography phenotype of patients with severe AS, with (n = 34) or without (n = 50) T2D, referred for a valve replacement, with transcriptomic and histological analyses of an intra-operative myocardial LV biopsy. RESULTS: T2D patients had similar AS severity but displayed worse cardiac remodeling, systolic and diastolic function than non-diabetics. RNAseq analysis identified 1029 significantly differentially expressed genes. Functional enrichment analysis revealed several T2D-specific upregulated pathways despite comorbidity adjustment, gathering regulation of inflammation, extracellular matrix organization, endothelial function/angiogenesis, and adaptation to cardiac hypertrophy. Downregulated gene sets independently associated with T2D were related to mitochondrial respiratory chain organization/function and mitochondrial organization. Generation of causal networks suggested a reduced Ca2+ signaling up to the mitochondria, with the measured gene remodeling of the mitochondrial Ca2+ uniporter in favor of enhanced uptake. Histological analyses supported a greater cardiomyocyte hypertrophy and a decreased proximity between the mitochondrial VDAC porin and the reticular IP3-receptor in T2D. CONCLUSIONS: Our data support a crucial role for mitochondrial Ca2+ signaling in T2D-induced cardiac dysfunction in severe AS patients, from a structural reticulum-mitochondria Ca2+ uncoupling to a mitochondrial gene remodeling. Thus, our findings open a new therapeutic avenue to be tested in animal models and further human cardiac biopsies in order to propose new treatments for T2D patients suffering from AS. TRIAL REGISTRATION: URL: https://www. CLINICALTRIALS: gov ; Unique Identifier: NCT01862237.


Asunto(s)
Estenosis de la Válvula Aórtica , Señalización del Calcio , Diabetes Mellitus Tipo 2 , Perfilación de la Expresión Génica , Mitocondrias Cardíacas , Índice de Severidad de la Enfermedad , Transcriptoma , Función Ventricular Izquierda , Remodelación Ventricular , Humanos , Estenosis de la Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/genética , Estenosis de la Válvula Aórtica/fisiopatología , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Estenosis de la Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/patología , Masculino , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Femenino , Anciano , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Persona de Mediana Edad , Anciano de 80 o más Años , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/diagnóstico por imagen
11.
FASEB J ; 37(5): e22911, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37022639

RESUMEN

Heart failure (HF) is the end stage of the progression of many cardiovascular diseases. Cardiac remodeling is the main pathophysiological process of cardiac function deterioration in HF patients. Inflammation is a key factor that stimulates cardiomyocyte hypertrophy, fibroblast proliferation, and transformation leading to myocardial remodeling, which severity is significantly related to the prognosis of patients. SAA1 (Serum amyloid A1) is a lipid-binding protein that was an important regulator involved in inflammation, whose biological functions in the heart remain rarely known. In this research, we intended to test the role of SAA1 in SAA1-deficient (SAA1-/- ), and wild-type mice were exposed to transverse aortic banding surgery to establish the model of cardiac remodeling. Besides, we assessed the functional effects of SAA1 on cardiac hypertrophy and fibrosis. The expression of SAA1 was increased in the mice transverse aortic banding model induced by pressure overload. After 8 weeks of transverse aortic banding, SAA1-/- mice displayed a lower level of cardiac fibrosis than wild-type mice, but did not significantly influence the cardiomyocyte hypertrophy. In addition, there was also no significant difference in cardiac fibrosis severity between wild-type-sham and knockout-sham mice. These findings are the first to reveal SAA1 absence hinders cardiac fibrosis after 8 weeks of transverse aortic banding. Furthermore, SAA1 deficiency had no significant effect on cardiac fibrosis and hypertrophy in the sham group in this study.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Ratones , Animales , FN-kappa B/metabolismo , Miocitos Cardíacos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Remodelación Ventricular/fisiología , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , Cardiomiopatías/metabolismo , Inflamación/metabolismo , Ratones Noqueados , Fibrosis , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
12.
Mol Cell Biochem ; 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39367915

RESUMEN

Hypertensive and ischemic heart diseases have high morbidity all over the world, and they primarily contribute to heart failure associated with high mortality. Cardiac remodeling, as a basic pathological process in heart diseases, is mainly comprised of cardiac hypertrophy and fibrosis, as well as cell death which occurs especially in the ischemic cardiomyopathy. Myocardial remodeling has been widely investigated by a variety of animal models, including pressure overload, angiotensin II stimulation, and myocardial infarction. Pressure overload can cause compensatory cardiac hypertrophy at the early stage, followed by decompensatory hypertrophy and heart failure at the end. Recently, RNA sequencing and differentially expressed gene (DEG) analyses have been extensively employed to elucidate the molecular mechanisms of cardiac remodeling and related heart failure, which also provide potential targets for high-throughput drug screenings. In this review, we summarize recent advancements in gene expression profiling, related gene functions, and signaling pathways pertinent to myocardial remodeling induced by pressure overload at distinct stages, ischemia-reperfusion, myocardial infarction, and diabetes. We also discuss the effects of sex differences and inflammation on DEGs and their transcriptional regulatory mechanisms in cardiac remodeling. Additionally, we summarize emerging therapeutic agents and strategies aimed at modulating gene expression profiles during myocardial remodeling.

13.
Acta Pharmacol Sin ; 45(2): 312-326, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37833535

RESUMEN

Apoptosis plays a critical role in the development of heart failure, and sphingosylphosphorylcholine (SPC) is a bioactive sphingolipid naturally occurring in blood plasma. Some studies have shown that SPC inhibits hypoxia-induced apoptosis in myofibroblasts, the crucial non-muscle cells in the heart. Calmodulin (CaM) is a known SPC receptor. In this study we investigated the role of CaM in cardiomyocyte apoptosis in heart failure and the associated signaling pathways. Pressure overload was induced in mice by trans-aortic constriction (TAC) surgery. TAC mice were administered SPC (10 µM·kg-1·d-1) for 4 weeks post-surgery. We showed that SPC administration significantly improved survival rate and cardiac hypertrophy, and inhibited cardiac fibrosis in TAC mice. In neonatal mouse cardiomyocytes, treatment with SPC (10 µM) significantly inhibited Ang II-induced cardiomyocyte hypertrophy, fibroblast-to-myofibroblast transition and cell apoptosis accompanied by reduced Bax and phosphorylation levels of CaM, JNK and p38, as well as upregulated Bcl-2, a cardiomyocyte-protective protein. Thapsigargin (TG) could enhance CaM functions by increasing Ca2+ levels in cytoplasm. TG (3 µM) annulled the protective effect of SPC against Ang II-induced cardiomyocyte apoptosis. Furthermore, we demonstrated that SPC-mediated inhibition of cardiomyocyte apoptosis involved the regulation of p38 and JNK phosphorylation, which was downstream of CaM. These results offer new evidence for SPC regulation of cardiomyocyte apoptosis, potentially providing a new therapeutic target for cardiac remodeling following stress overload.


Asunto(s)
Calmodulina , Insuficiencia Cardíaca , Fosforilcolina/análogos & derivados , Esfingosina/análogos & derivados , Ratones , Animales , Calmodulina/metabolismo , Calmodulina/farmacología , Calmodulina/uso terapéutico , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos , Transducción de Señal , Remodelación Ventricular , Ratones Endogámicos C57BL
14.
Acta Pharmacol Sin ; 45(4): 738-750, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38097716

RESUMEN

Myocardial hypertrophy is a pathological thickening of the myocardium which ultimately results in heart failure. We previously reported that zonisamide, an antiepileptic drug, attenuated pressure overload-caused myocardial hypertrophy and diabetic cardiomyopathy in murine models. In addition, we have found that the inhibition of proteasome activates glycogen synthesis kinase 3 (GSK-3) thus alleviates myocardial hypertrophy, which is an important anti-hypertrophic strategy. In this study, we investigated whether zonisamide prevented pressure overload-caused myocardial hypertrophy through suppressing proteasome. Pressure overload-caused myocardial hypertrophy was induced in mice by trans-aortic constriction (TAC) surgery. Two days after the surgery, the mice were administered zonisamide (10, 20, 40 mg·kg-1·d-1, i.g.) for four weeks. We showed that zonisamide administration significantly mitigated impaired cardiac function. Furthermore, zonisamide administration significantly inhibited proteasome activity as well as the expression levels of proteasome subunit beta types (PSMB) of the 20 S proteasome (PSMB1, PSMB2 and PSMB5) and proteasome-regulated particles (RPT) of the 19 S proteasome (RPT1, RPT4) in heart tissues of TAC mice. In primary neonatal rat cardiomyocytes (NRCMs), zonisamide (0.3 µM) prevented myocardial hypertrophy triggered by angiotensin II (Ang II), and significantly inhibited proteasome activity, proteasome subunits and proteasome-regulated particles. In Ang II-treated NRCMs, we found that 18α-glycyrrhetinic acid (18α-GA, 2 mg/ml), a proteasome inducer, eliminated the protective effects of zonisamide against myocardial hypertrophy and proteasome. Moreover, zonisamide treatment activated GSK-3 through inhibiting the phosphorylated AKT (protein kinase B, PKB) and phosphorylated liver kinase B1/AMP-activated protein kinase (LKB1/AMPKα), the upstream of GSK-3. Zonisamide treatment also inhibited GSK-3's downstream signaling proteins, including extracellular signal-regulated kinase (ERK) and GATA binding protein 4 (GATA4), both being the hypertrophic factors. Collectively, this study highlights the potential of zonisamide as a new therapeutic agent for myocardial hypertrophy, as it shows potent anti-hypertrophic potential through the suppression of proteasome.


Asunto(s)
Anticonvulsivantes , Bloqueadores de los Canales de Calcio , Cardiomegalia , Glucógeno Sintasa Quinasa 3 , Complejo de la Endopetidasa Proteasomal , Zonisamida , Animales , Ratones , Ratas , Proteínas Quinasas Activadas por AMP/metabolismo , Cardiomegalia/tratamiento farmacológico , Glucógeno Sintasa Quinasa 3/farmacología , Ratones Endogámicos C57BL , Miocitos Cardíacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Zonisamida/farmacología , Zonisamida/uso terapéutico , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/uso terapéutico
15.
Adv Exp Med Biol ; 1441: 201-226, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884713

RESUMEN

A well-developed heart is essential for embryonic survival. There are constant interactions between cardiac tissue motion and blood flow, which determine the heart shape itself. Hemodynamic forces are a powerful stimulus for cardiac growth and differentiation. Therefore, it is particularly interesting to investigate how the blood flows through the heart and how hemodynamics is linked to a particular species and its development, including human. The appropriate patterns and magnitude of hemodynamic stresses are necessary for the proper formation of cardiac structures, and hemodynamic perturbations have been found to cause malformations via identifiable mechanobiological molecular pathways. There are significant differences in cardiac hemodynamics among vertebrate species, which go hand in hand with the presence of specific anatomical structures. However, strong similarities during development suggest a common pattern for cardiac hemodynamics in human adults. In the human fetal heart, hemodynamic abnormalities during gestation are known to progress to congenital heart malformations by birth. In this chapter, we discuss the current state of the knowledge of the prenatal cardiac hemodynamics, as discovered through small and large animal models, as well as from clinical investigations, with parallels gathered from the poikilotherm vertebrates that emulate some hemodynamically significant human congenital heart diseases.


Asunto(s)
Corazón , Hemodinámica , Humanos , Animales , Hemodinámica/fisiología , Corazón/crecimiento & desarrollo , Corazón/fisiología , Cardiopatías Congénitas/fisiopatología
16.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38397020

RESUMEN

Anserine, an imidazole dipeptide, is present in the muscles of birds and fish and has various bioactivities, such as anti-inflammatory and anti-fatigue effects. However, the effect of anserine on the development of heart failure remains unknown. We cultured primary cardiomyocytes with 0.03 mM to 10 mM anserine and stimulated them with phenylephrine for 48 h. Anserine significantly suppressed the phenylephrine-induced increases in cardiomyocyte hypertrophy, ANF and BNP mRNA levels, and histone H3K9 acetylation. An in vitro histone acetyltransferase (HAT) assay showed that anserine directly suppressed p300-HAT activity with an IC50 of 1.87 mM. Subsequently, 8-week-old male C57BL/6J mice were subjected to transverse aortic constriction (TAC) and were randomly assigned to receive daily oral treatment with anserine-containing material, Marine Active® (60 or 200 mg/kg anserine) or vehicle for 8 weeks. Echocardiography revealed that anserine 200 mg/kg significantly prevented the TAC-induced increase in left ventricular posterior wall thickness and the decrease in left ventricular fractional shortening. Moreover, anserine significantly suppressed the TAC-induced acetylation of histone H3K9. These results indicate that anserine suppresses TAC-induced systolic dysfunction, at least in part, by inhibiting p300-HAT activity. Anserine may be used as a pharmacological agent for human heart failure therapy.


Asunto(s)
Anserina , Cardiomiopatías , Insuficiencia Cardíaca , Miocitos Cardíacos , Factores de Transcripción p300-CBP , Animales , Humanos , Masculino , Ratones , Acetilación , Anserina/farmacología , Cardiomegalia/genética , Cardiomiopatías/metabolismo , Inhibidores Enzimáticos/farmacología , Insuficiencia Cardíaca/metabolismo , Histonas/metabolismo , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Fenilefrina/farmacología , Factores de Transcripción p300-CBP/antagonistas & inhibidores
17.
J Mol Cell Cardiol ; 181: 1-14, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37235928

RESUMEN

Inflammation is an integral component of cardiovascular disease and is thought to contribute to cardiac dysfunction and heart failure. While ischemia-induced inflammation has been extensively studied in the heart, relatively less is known regarding cardiac inflammation during non-ischemic stress. Recent work has implicated a role for Yes-associated protein (YAP) in modulating inflammation in response to ischemic injury; however, whether YAP influences inflammation in the heart during non-ischemic stress is not described. We hypothesized that YAP mediates a pro-inflammatory response during pressure overload (PO)-induced non-ischemic injury, and that targeted YAP inhibition in the myeloid compartment is cardioprotective. In mice, PO elicited myeloid YAP activation, and myeloid-specific YAP knockout mice (YAPF/F;LysMCre) subjected to PO stress had better systolic function, and attenuated pathological remodeling compared to control mice. Inflammatory indicators were also significantly attenuated, while pro-resolving genes including Vegfa were enhanced, in the myocardium, and in isolated macrophages, of myeloid YAP KO mice after PO. Experiments using bone marrow-derived macrophages (BMDMs) from YAP KO and control mice demonstrated that YAP suppression shifted polarization toward a resolving phenotype. We also observed attenuated NLRP3 inflammasome priming and function in YAP deficient BMDMs, as well as in myeloid YAP KO hearts following PO, indicating disruption of inflammasome induction. Finally, we leveraged nanoparticle-mediated delivery of the YAP inhibitor verteporfin and observed attenuated PO-induced pathological remodeling compared to DMSO nanoparticle control treatment. These data implicate myeloid YAP as an important molecular nodal point that facilitates cardiac inflammation and fibrosis during PO stress and suggest that selective inhibition of YAP may prove a novel therapeutic target in non-ischemic heart disease.


Asunto(s)
Inflamasomas , Remodelación Ventricular , Ratones , Animales , Inflamasomas/metabolismo , Corazón , Miocardio/metabolismo , Inflamación/patología , Ratones Noqueados , Ratones Endogámicos C57BL
18.
J Cell Mol Med ; 27(19): 2956-2969, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37654004

RESUMEN

We employed an early training exercise program, immediately after recovery from surgery, and before severe cardiac hypertrophy, to study the underlying mechanism involved with the amelioration of cardiac dysfunction in aortic stenosis (AS) rats. As ET induces angiogenesis and oxygen support, we aimed to verify the effect of exercise on myocardial lipid metabolism disturbance. Wistar rats were divided into Sham, trained Sham (ShamT), AS and trained AS (AST). The exercise consisted of 5-week sessions of treadmill running for 16 weeks. Statistical analysis was conducted by anova or Kruskal-Wallis test and Goodman test. A global correlation between variables was also performed using a two-tailed Pearson's correlation test. AST rats displayed a higher functional capacity and a lower cardiac remodelling and dysfunction when compared to AS, as well as the myocardial capillary rarefaction was prevented. Regarding metabolic properties, immunoblotting and enzymatic assay raised beneficial effects of exercise on fatty acid transport and oxidation pathways. The correlation assessment indicated a positive correlation between variables of angiogenesis and FA utilisation, as well as between metabolism and echocardiographic parameters. In conclusion, early exercise improves exercise tolerance and attenuates cardiac structural and functional remodelling. In parallel, exercise attenuated myocardial capillary and lipid metabolism derangement in rats with aortic stenosis-induced heart failure.


Asunto(s)
Estenosis de la Válvula Aórtica , Insuficiencia Cardíaca , Condicionamiento Físico Animal , Ratas , Animales , Ratas Wistar , Metabolismo de los Lípidos , Insuficiencia Cardíaca/metabolismo
19.
Eur J Nucl Med Mol Imaging ; 50(2): 465-474, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36171409

RESUMEN

PURPOSE: We aimed to evaluate whether [68 Ga]Ga-FAPI-04 PET/CT could characterize the early stages of cardiac fibrosis in pressure overload heart failure. METHODS: Sprague-Dawley rats underwent abdominal aortic constriction (AAC) (n = 12) and sham surgery (n = 10). All rats were scanned with [68 Ga]Ga-FAPI-04 PET/CT at 2, 4, and 8 weeks after surgery. The expression of fibroblast activation protein (FAP) in the myocardium was detected by immunohistochemistry. [68 Ga]Ga-FAPI-04 PET signal and FAP expression were compared between two groups. RESULTS: Compared with the sham group, the AAC group presented with decreased ejection fraction (EF) and fractional shortening (FS) and increased left ventricular internal dimensions in diastole (LVIDd) and systole (LVIDs) at 4 and 8 weeks (all p < 0.01). The AAC group showed higher [68 Ga]Ga-FAPI-04 accumulation in the heart than the sham group at 2, 4, and 8 weeks, and FAPI increased significantly from 2 to 8 weeks (all p < 0.001). Immunohistochemistry confirmed the higher density of the FAP+ area in the AAC group. The intensity of the [68 Ga]Ga-FAPI-04 correlated with the density of the FAP+ area (p < 0.001). The expression of the [68 Ga]Ga-FAPI-04 at 4 weeks correlated with the deterioration of cardiac function at 8 weeks (EF: R = - 0.87; FS: R = - 0.72; LVIDd: R = 0.77; LVIDs: R = 0.79; all p < 0.001). The AAC group also showed an increased [68 Ga]Ga-FAPI-04 signal in the liver, peaking at 4 weeks and then declining. Cardiac and liver PET signals correlated at 4 weeks in the AAC group (R = 0.69, p = 0.0010), suggesting an early fibrotic link between organs. A combination of the [68 Ga]Ga-FAPI-04 intensity in the heart and liver at 4 weeks better predicted the deterioration of cardiac function at 8 weeks. CONCLUSIONS: The activated fibroblasts in the heart and liver after pressure overload can be monitored by [68 Ga]Ga-FAPI-04 PET/CT, which reveals an early fibrotic link in cardio-liver interactions and could better predict nonischemic heart failure prognosis.


Asunto(s)
Insuficiencia Cardíaca , Tomografía Computarizada por Tomografía de Emisión de Positrones , Animales , Ratas , Fibroblastos , Radioisótopos de Galio , Insuficiencia Cardíaca/diagnóstico por imagen , Imagen Molecular , Ratas Sprague-Dawley
20.
FASEB J ; 36(10): e22544, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36098469

RESUMEN

Wnt11 regulates early cardiac development and left ventricular compaction in the heart, but it is not known how Wnt11 regulates postnatal cardiac maturation and response to cardiac stress in the adult heart. We studied cell proliferation/maturation in postnatal and adolescent Wnt11 deficient (Wnt11-/-) heart and subjected adult mice with partial (Wnt11+/-) and complete Wnt11 (Wnt11-/-) deficiency to cardiac pressure overload. In addition, we subjected primary cardiomyocytes to recombinant Wnt proteins to study their effect on cardiomyocyte growth. Wnt11 deficiency did not affect cardiomyocyte proliferation or maturation in the postnatal or adolescent heart. However, Wnt11 deficiency led to enlarged heart phenotype that was not accompanied by significant hypertrophy of individual cardiomyocytes. Analysis of stressed adult hearts from wild-type mice showed a progressive decrease in Wnt11 expression in response to pressure overload. When studied in experimental cardiac pressure overload, Wnt11 deficiency did not exacerbate cardiac hypertrophy or remodeling and cardiac function remained identical between the genotypes. When subjecting cardiomyocytes to hypertrophic stimulus, the presence of recombinant Wnt11 together with Wnt5a reduced protein synthesis. In conclusion, Wnt11 deficiency does not affect postnatal cardiomyocyte proliferation but leads to cardiac growth. Interestingly, Wnt11 deficiency alone does not substantially modulate hypertrophic response to pressure overload in vivo. Wnt11 may require cooperation with other noncanonical Wnt proteins to regulate hypertrophic response under stress.


Asunto(s)
Corazón/crecimiento & desarrollo , Miocitos Cardíacos/metabolismo , Proteínas Wnt/metabolismo , Animales , Cardiomegalia/metabolismo , Proliferación Celular , Ratones , Miocardio , Proteínas Wnt/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA