Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 44(12)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38182417

RESUMEN

The quest to decode the complex supraspinal mechanisms that integrate cutaneous thermal information in the central system is still ongoing. The dorsal horn of the spinal cord is the first hub that encodes thermal input which is then transmitted to brain regions via the spinothalamic and thalamocortical pathways. So far, our knowledge about the strength of the interplay between the brain regions during thermal processing is limited. To address this question, we imaged the brains of adult awake male mice in resting state using functional ultrasound imaging during plantar exposure to constant and varying temperatures. Our study reveals for the first time the following: (1) a dichotomy in the response of the somatomotor-cingulate cortices and the hypothalamus, which was never described before, due to the lack of appropriate tools to study such regions with both good spatial and temporal resolutions. (2) We infer that cingulate areas may be involved in the affective responses to temperature changes. (3) Colder temperatures (ramped down) reinforce the disconnection between the somatomotor-cingulate and hypothalamus networks. (4) Finally, we also confirm the existence in the mouse brain of a brain mode characterized by low cognitive strength present more frequently at resting neutral temperature. The present study points toward the existence of a common hub between somatomotor and cingulate regions, whereas hypothalamus functions are related to a secondary network.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Masculino , Animales , Ratones , Imagen por Resonancia Magnética/métodos , Vías Nerviosas/fisiología , Encéfalo/fisiología , Mapeo Encefálico/métodos , Percepción
2.
Exp Brain Res ; 241(5): 1339-1351, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37012374

RESUMEN

The present study examined whether the perceptual sensitivity and excitability of the primary sensory cortex are modulated by the afferent volley from the digital nerve of a conditioned finger within a short period of time. The perceptual threshold of an electrical stimulus to the index finger (test stimulus) was decreased by a conditioning stimulus to the index finger 4 or 6 ms before the test stimulus, or by a stimulus to the middle or ring finger 2 ms before that. This is explained by the view that the afferent volleys from the digital nerves of the fingers converge in the somatosensory areas, causing spatial summation of the afferent inputs through a small number of synaptic relays, leading to the facilitation of perceptual sensitivity. The N20 component of the somatosensory-evoked potential was facilitated by a conditioning stimulus to the middle finger 4 ms before a test stimulus or to the thumb 2 ms before the test stimulus. This is explained by the view that the afferent volley from the digital nerve of the finger adjacent to the tested finger induces lateral facilitation of the representation of the tested finger in the primary sensory cortex through a small number of synaptic relays.


Asunto(s)
Potenciales Evocados Somatosensoriales , Nervios Periféricos , Humanos , Potenciales Evocados Somatosensoriales/fisiología , Dedos , Estimulación Eléctrica , Vías Aferentes/fisiología
3.
Neuroimage ; 217: 116899, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32380138

RESUMEN

Prior studies have shown that patients suffering from chronic Low Back Pain (cLBP) have impaired somatosensory processing including reduced tactile acuity, i.e. reduced ability to resolve fine spatial details with the perception of touch. The central mechanism(s) underlying reduced tactile acuity are unknown but may include changes in specific brain circuitries (e.g. neuroplasticity in the primary somatosensory cortex, S1). Furthermore, little is known about the linkage between changes in tactile acuity and the amelioration of cLBP by somatically-directed therapeutic interventions, such as acupuncture. In this longitudinal neuroimaging study, we evaluated healthy control adults (HC, N â€‹= â€‹50) and a large sample of cLBP patients (N â€‹= â€‹102) with structural brain imaging (T1-weighted MRI for Voxel-Based Morphometry, VBM; Diffusion Tensor Imaging, DTI) and tactile acuity testing using two-point discrimination threshold (2PDT) over the lower back (site of pain) and finger (control) locations. Patients were evaluated at baseline and following a 4-week course of acupuncture, with patients randomized to either verum acupuncture, two different forms of sham acupuncture (designed with or without somatosensory afference), or no-intervention usual care control. At baseline, cLBP patients demonstrated reduced acuity (greater 2PDT, P â€‹= â€‹0.01) over the low back, but not finger (P â€‹= â€‹0.29) locations compared to HC, suggesting that chronic pain affects tactile acuity specifically at body regions encoding the experience of clinical pain. At baseline, Gray Matter Volume (GMV) was elevated and Fractional Anisotropy (FA) was reduced, respectively, in the S1-back region of cLBP patients compared to controls (P â€‹< â€‹0.05). GMV in cLBP correlated with greater 2PDT-back scores (ρ â€‹= â€‹0.27, P â€‹= â€‹0.02). Following verum acupuncture, tactile acuity over the back was improved (reduced 2PDT) and greater improvements were associated with reduced S1-back GMV (ρ â€‹= â€‹0.52, P â€‹= â€‹0.03) and increased S1-back adjacent white matter FA (ρ â€‹= â€‹-0.56, P â€‹= â€‹0.01). These associations were not seen for non-verum control interventions. Thus, S1 neuroplasticity in cLBP is linked with deficits in tactile acuity and, following acupuncture therapy, may represent early mechanistic changes in somatosensory processing that track with improved tactile acuity.


Asunto(s)
Terapia por Acupuntura/métodos , Agnosia/fisiopatología , Agnosia/terapia , Dolor de la Región Lumbar/fisiopatología , Dolor de la Región Lumbar/terapia , Plasticidad Neuronal , Desempeño Psicomotor , Corteza Somatosensorial/fisiopatología , Percepción del Tacto , Adolescente , Adulto , Agnosia/etiología , Anisotropía , Imagen de Difusión Tensora , Discriminación en Psicología , Femenino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/fisiopatología , Humanos , Estudios Longitudinales , Dolor de la Región Lumbar/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Umbral Sensorial , Método Simple Ciego , Resultado del Tratamiento , Adulto Joven
4.
Neuroimage ; 124(Pt A): 752-761, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26416649

RESUMEN

Functional ultrasound (fUS) is a novel neuroimaging technique, based on high-sensitivity ultrafast Doppler imaging of cerebral blood volume, capable of measuring brain activation and connectivity in rodents with high spatiotemporal resolution (100µm, 1ms). However, the skull attenuates acoustic waves, so fUS in rats currently requires craniotomy or a thinned-skull window. Here we propose a non-invasive approach by enhancing the fUS signal with a contrast agent, inert gas microbubbles. Plane-wave illumination of the brain at high frame rate (500Hz compounded sequence with three tilted plane waves, PRF=1500Hz with a 128 element 15MHz linear transducer), yields highly-resolved neurovascular maps. We compared fUS imaging performance through the intact skull bone (transcranial fUS) versus a thinned-skull window in the same animal. First, we show that the vascular network of the adult rat brain can be imaged transcranially only after a bolus intravenous injection of microbubbles, which leads to a 9dB gain in the contrast-to-tissue ratio. Next, we demonstrate that functional increase in the blood volume of the primary sensory cortex after targeted electrical-evoked stimulations of the sciatic nerve is observable transcranially in presence of contrast agents, with high reproducibility (Pearson's coefficient ρ=0.7±0.1, p=0.85). Our work demonstrates that the combination of ultrafast Doppler imaging and injection of contrast agent allows non-invasive functional brain imaging through the intact skull bone in rats. These results should ease non-invasive longitudinal studies in rodents and open a promising perspective for the adoption of highly resolved fUS approaches for the adult human brain.


Asunto(s)
Encéfalo/fisiología , Medios de Contraste , Microburbujas , Ultrasonografía Doppler Transcraneal/métodos , Animales , Vasos Sanguíneos/diagnóstico por imagen , Volumen Sanguíneo , Estimulación Eléctrica , Potenciales Evocados , Procesamiento de Imagen Asistido por Computador , Masculino , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Cráneo/diagnóstico por imagen , Corteza Somatosensorial/diagnóstico por imagen
5.
Brain ; 138(Pt 7): 2034-45, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25935724

RESUMEN

Previous studies have found alterations in the columnar organization of the cortex in autism spectrum disorders. Such changes have been suggested to be limited to higher order association areas and to spare primary sensory areas. In addition, evidence from gene-expression studies have suggested that there may be an attenuation of cortical differentiation in autism spectrum disorders. The present study specifically assessed the minicolumns of cells that span the depth of the cortex in a larger sample of autism spectrum disorder cases than have been studied previously, and across a broad age range. The cortical regions to be investigated were carefully chosen to enable hypotheses about cortical differentiation and the vulnerability of association cortex to be tested. Measures of the minicolumnar arrangement of the cortex (minicolumn width, spacing and width of the associated axon bundles) were made in four regions of cortex (primary auditory cortex, auditory association cortex, orbital frontal cortex and inferior parietal lobe) for 28 subjects with autism spectrum disorder and 25 typically developing control subjects. The present study found wider minicolumns in autism spectrum disorder [F(1,28) = 8.098, P = 0.008], which was particularly pronounced at younger ages, providing evidence for an altered developmental trajectory at the microstructural level. In addition, altered minicolumn width was not restricted to higher order association areas, but was also seen in the primary sensory region investigated. Finally, this study found evidence that cortical regional differentiation was still present in autism spectrum disorder [F(3,39) = 5.486, P = 0.003], although attenuated compared to typically developing subjects [F(3,45) = 18.615, P < 0.001]. It is suggested that wider spacing of the minicolumns may relate to the enhanced discrimination seen in some individuals with autism spectrum disorders.


Asunto(s)
Corteza Cerebral/patología , Trastornos Generalizados del Desarrollo Infantil/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
6.
J Neurophysiol ; 112(6): 1470-6, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-24944212

RESUMEN

The neurophysiological mechanism of interhemispheric inhibition (IHI) between the human primary sensory cortices (S1s) is poorly understood. Here we used a paired median nerve somatosensory evoked potential protocol to observe S1-S1 IHI from the dominant to the nondominant hemisphere with electroencephalography. In 10 healthy, right-handed individuals, we compared mean peak-to-peak amplitudes of five somatosensory evoked potential components (P14/N20, N20/P25, P25/N30, N30/P40, and P40/N60) recorded over the right S1 after synchronous versus asynchronous stimulation of the right and left median nerves. Asynchronous conditioning + test stimuli (CS+TS) were delivered at interstimulus intervals of 15, 20, 25, 30, and 35 ms. We found that, in relation to synchronous stimulation, when a CS to the left S1 preceded a TS to the right S1 at the short intervals (15 and 20 ms) the amplitude of the cortical N20/P25 complex was significantly depressed, whereas at the longer intervals (25, 30, and 35 ms) significant inhibition was observed for the thalamocortical P14/N20 as well as the cortical N20/P25 components. We conclude that the magnitude of S1 IHI appears to depend on the temporal asynchrony of bilateral inputs and the specific timing is likely reflective of a direct transcallosal mechanism. Employing a method that enables direct S1 IHI to be reliably quantified may provide a novel tool to assess potential IHI imbalances in individuals with neurological damage, such as stroke.


Asunto(s)
Potenciales Evocados Somatosensoriales , Lateralidad Funcional , Inhibición Neural , Tiempo de Reacción , Corteza Somatosensorial/fisiología , Adulto , Femenino , Humanos , Masculino , Nervio Mediano/fisiología
7.
Brain Res ; : 149257, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362477

RESUMEN

Neonatal hypoxic ischemia (HI) occurs owing to reduced cerebral oxygen levels and perfusion during the perinatal period. Brain injury after HI triggers neurological manifestations such as motor impairment, and the improvement of impaired brain function remains challenging. Recent studies suggest that cortical myelination plays a role in motor learning, but its involvement in motor improvement after HI injury is not well understood. This study aimed to investigate the impact of myelination on motor improvement following neonatal HI injury. We employed a modified Rice-Vannucci model; the right common carotid artery of postnatal day 7 (P7) Wistar rats was isolated and divided, and the rats were then exposed to hypoxic condition (90 min, 8 % O2). A total of 101 rats (66 males) were divided into four groups: trained-HI (n = 38), trained-Sham (n = 16), untrained-HI (n = 31), and untrained-Sham (n = 16). The trained groups underwent rotarod-based exercise training from P22 to P41 (3 days per week). Structural analysis using magnetic resonance imaging and immunohistochemistry (n = 6 per group) revealed increased fractional anisotropy and myelin density in the primary somatosensory cortex of the trained-HI group. We further evaluated the effect of myelination promotion on rotarod performance by administering clemastine, a myelination-promoting drug, via daily intraperitoneal injections. Clemastine did not enhance motor improvement in untrained-HI rats. However, clemastine-administered trained-HI rats (n = 7) exhibited significantly improved motor performance compared to both saline-administered trained-HI rats (n = 11) and clemastine-administered untrained-HI rats (n = 7). These findings suggest that myelination may be a key mechanism in motor improvement after HI injury and that combining exercise training with clemastine administration could be an effective therapeutic strategy for motor improvement following HI injury.

8.
Neuroscience ; 551: 143-152, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38735429

RESUMEN

Homeostatic plasticity is a mechanism that stabilizes cortical excitability within a physiological range. Most homeostatic plasticity protocols have primed and tested the homeostatic response of the primary motor cortex (M1). This study investigated if a homeostatic response could be recorded from the primary sensory cortex (S1) after inducing homeostatic plasticity in M1. In 31 healthy participants, homeostatic plasticity was induced over M1 with a priming and testing block of transcranial direct current stimulation (tDCS) in two different sessions (anodal and cathodal). S1 excitability was assessed by early (N20, P25) and middle-latency (N33-P45) somatosensory evoked potentials (SEP) extracted from 4 electrodes (CP5, CP3, P5, P3). Baseline and post-measures (post-priming, 0-min, 10-min, and 20-min after homeostatic induction) were taken. Anodal M1 homeostatic plasticity induction significantly facilitated the N20-P25, P45 peak, and N33-P45 early SEP components up to 20-min post-induction, without any indication of a homeostatic response (i.e., reduced SEP). Cathodal homeostatic induction did not induce any significant effect on early or middle latency SEPs. M1 homeostatic plasticity induction by anodal stimulation protocol to the primary motor cortex did not induce a homeostatic response in SEPs.


Asunto(s)
Potenciales Evocados Somatosensoriales , Homeostasis , Corteza Motora , Plasticidad Neuronal , Corteza Somatosensorial , Estimulación Transcraneal de Corriente Directa , Humanos , Plasticidad Neuronal/fisiología , Potenciales Evocados Somatosensoriales/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Masculino , Femenino , Corteza Motora/fisiología , Homeostasis/fisiología , Adulto , Adulto Joven , Corteza Somatosensorial/fisiología , Electroencefalografía/métodos
9.
Prog Neurobiol ; 240: 102637, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38879074

RESUMEN

While it is well established that sensory cortical regions traditionally thought to be unimodal can be activated by stimuli from modalities other than the dominant one, functions of such foreign-modal activations are still not clear. Here we show that visual activations in early auditory cortex can be related to whether or not the monkeys engaged in audio-visual tasks, to the time when the monkeys reacted to the visual component of such tasks, and to the correctness of the monkeys' response to the auditory component of such tasks. These relationships between visual activations and behavior suggest that auditory cortex can be recruited for visually-guided behavior and that visual activations can prime auditory cortex such that it is prepared for processing future sounds. Our study thus provides evidence that foreign-modal activations in sensory cortex can contribute to a subject's ability to perform tasks on stimuli from foreign and dominant modalities.


Asunto(s)
Estimulación Acústica , Corteza Auditiva , Estimulación Luminosa , Animales , Corteza Auditiva/fisiología , Estimulación Luminosa/métodos , Percepción Visual/fisiología , Masculino , Percepción Auditiva/fisiología , Conducta Animal/fisiología , Macaca mulatta
10.
Cell Rep ; 43(2): 113762, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38341856

RESUMEN

In the mammalian cortex, even simple sensory inputs or movements activate many neurons, with each neuron responding variably to repeated stimuli-a phenomenon known as trial-by-trial variability. Understanding the spatial patterns and dynamics of this variability is challenging. Using cellular 2-photon imaging, we study visual and auditory responses in the primary cortices of awake mice. We focus on how individual neurons' responses differed from the overall population. We find consistent spatial correlations in these differences that are unique to each trial and linearly scale with the cortical area observed, a characteristic of critical dynamics as confirmed in our neuronal simulations. Using chronic multi-electrode recordings, we observe similar scaling in the prefrontal and premotor cortex of non-human primates during self-initiated and visually cued motor tasks. These results suggest that trial-by-trial variability, rather than being random noise, reflects a critical, fluctuation-dominated state in the cortex, supporting the brain's efficiency in processing information.


Asunto(s)
Movimiento , Neuronas , Ratones , Animales , Neuronas/fisiología , Vigilia , Mamíferos
11.
Neuroscience ; 494: 82-93, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35588919

RESUMEN

The present study examined whether tactile perception of the fingertip modulates excitability of the motor cortex supplying the intrinsic hand muscle and whether this modulation is specific to the fingertip stimulated and the muscle and hand tested. Tactile stimulation was given to one of the five fingertips in the left or right hand, and transcranial magnetic stimulation eliciting motor evoked potential in the first dorsal interosseous muscle (FDI) or abductor digiti minimi was given 200 ms after the onset of tactile stimulation. The corticospinal excitability of the FDI at rest was suppressed by the tactile stimulation of the right middle fingertip, but such suppression was absent for the other fingers stimulated and for the other muscle or hand tested. The persistence and amplitude of the F-wave was not significantly influenced by tactile stimulation of the fingertip in the right hand. These findings indicate that tactile perception of the right middle fingertip suppresses excitability of the motor cortex supplying the right FDI at rest. The suppression of corticospinal excitability was absent during tonic contraction of the right FDI, indicating that the motor execution process interrupts the tactile perception-induced suppression of motor cortical excitability supplying the right FDI. These findings are in line with a view that the tactile perception of the right middle finger induces surround inhibition of the motor cortex supplying the prime mover of the finger neighboring the stimulated finger.


Asunto(s)
Músculos de la Espalda , Corteza Motora , Percepción del Tacto , Electromiografía , Potenciales Evocados Motores/fisiología , Mano/fisiología , Corteza Motora/fisiología , Músculo Esquelético/fisiología , Tractos Piramidales/fisiología , Estimulación Magnética Transcraneal
12.
Front Aging Neurosci ; 14: 862107, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35462694

RESUMEN

Background: Interhemispheric and intrahemispheric long-range synchronization and information communication are crucial features of functional integration between the bilateral hemispheres. Previous studies have demonstrated that disrupted functional connectivity (FC) exists in the bilateral hemispheres of patients with carpal tunnel syndrome (CTS), but they did not clearly clarify the phenomenon of central dysfunctional connectivity. This study aimed to further investigate the potential mechanism of the weakened connectivity of primary somatosensory cortex (S1) based on a precise template. Methods: Patients with CTS (n = 53) and healthy control subjects (HCs) (n = 23) participated and underwent resting-state functional magnetic resonance imaging (rs-fMRI) scanning. We used FC to investigate the statistical dependency of the whole brain, effective connectivity (EC) to analyze time-dependent effects, and voxel-mirrored homotopic connectivity (VMHC) to examine the coordination of FC, all of which were adopted to explore the change in interhemispheric and intrahemispheric S1. Results: Compared to the healthy controls, we significantly found a decreased strength of the two connectivities in the interhemispheric S1 hand , and the results of EC and VMHC were basically consistent with FC in the CTS. The EC revealed that the information output from the dominant hemisphere to the contralateral hemisphere was weakened. Conclusion: This study found that maladjusted connections between and within the bilateral S1 revealed by these methods are present in patients with CTS. The dominant hemisphere with deafferentation weakens its effect on the contralateral hemisphere. The disturbance in the bilateral S1 provides reliable evidence to understand the neuropathophysiological mechanisms of decreased functional integration in the brains of patients with CTS.

13.
Neuron ; 110(3): 486-501.e7, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34863367

RESUMEN

The claustrum, a subcortical nucleus forming extensive connections with the neocortex, has been implicated in sensory selection. Sensory-evoked claustrum activity is thought to modulate the neocortex's context-dependent response to sensory input. Recording from claustrum neurons while mice performed a tactile-visual sensory-selection task, we found that neurons in the anterior claustrum, including putative optotagged claustrocortical neurons projecting to the primary somatosensory cortex (S1), were rarely modulated by sensory input. Rather, they exhibited different types of direction-tuned motor responses. Furthermore, we found that claustrum neurons encoded upcoming movement during intertrial intervals and that pairs of claustrum neurons exhibiting synchronous firing were enriched for pairs preferring contralateral lick directions, suggesting that the activity of specific ensembles of similarly tuned claustrum neurons may modulate cortical activity. Chemogenetic inhibition of claustrocortical neurons decreased lick responses to inappropriate sensory stimuli. Altogether, our data indicate that the claustrum is integrated into higher-order premotor circuits recently implicated in decision-making.


Asunto(s)
Claustro , Neocórtex , Animales , Ganglios Basales/fisiología , Ratones , Vías Nerviosas/fisiología , Neuronas/fisiología
14.
J Pain ; 23(7): 1177-1186, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35131448

RESUMEN

Bilateral deficits in sensorimotor function have been observed in unilateral musculoskeletal pain conditions. Altered interhemispheric inhibition (IHI) between primary sensory cortices (S1s) is one mechanism that could explain this phenomenon. However, IHI between S1s in response to acute muscle pain, and the relationship between IHI and pressure pain sensitivity in the unaffected limb have not been examined. In 21 healthy individuals, IHI was assessed using somatosensory evoked potentials in response to paired median nerve electrical stimulation at: 1) baseline; 2) immediately following pain resolution; and 3) at 30-minutes follow-up. Acute muscle pain was induced by injection of hypertonic saline into the right abductor pollicis brevis (APB) muscle. Pressure pain thresholds were assessed at the right and left APB muscles before and 30-minutes after pain resolution. Compared to baseline, IHI from the affected to unaffected S1 was unaltered in response to acute muscle pain immediately following pain resolution, or at 30-minutes follow-up. Pressure pain thresholds were reduced over the right (P = .001) and left (P = .001) APB muscles at 30-minutes follow-up. These findings suggest IHI between S1s is unaffected by acute, short-lasting muscle pain, despite the development of increased sensitivity to pressure in the unaffected APB muscle. PERSPECTIVE: IHI from the affected S1 (contralateral to the side of pain) to unaffected S1 is unaltered following the resolution of acute muscle pain. This finding suggests that IHI between S1s may not be relevant in the development of bilateral sensorimotor symptoms in unilateral pain conditions.


Asunto(s)
Dolor Agudo , Corteza Motora , Electromiografía , Potenciales Evocados Motores/fisiología , Lateralidad Funcional/fisiología , Humanos , Músculo Esquelético , Mialgia/inducido químicamente , Inhibición Neural/fisiología , Estimulación Magnética Transcraneal
15.
Neural Regen Res ; 17(6): 1310-1317, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34782576

RESUMEN

Acupuncture at acupoints Baihui (GV20) and Dazhui (GV14) has been shown to promote functional recovery after stroke. However, the contribution of the contralateral primary sensory cortex (S1) to recovery remains unclear. In this study, unilateral local ischemic infarction of the primary motor cortex (M1) was induced by photothrombosis in a mouse model. Electroacupuncture (EA) was subsequently performed at acupoints GV20 and GV14 and neuronal activity and functional connectivity of contralateral S1 and M1 were detected using in vivo and in vitro electrophysiological recording techniques. Our results showed that blood perfusion and neuronal interaction between contralateral M1 and S1 is impaired after unilateral M1 infarction. Intrinsic neuronal excitability and activity were also disturbed, which was rescued by EA. Furthermore, the effectiveness of EA treatment was inhibited after virus-mediated neuronal ablation of the contralateral S1. We conclude that neuronal activity of the contralateral S1 is important for EA-mediated recovery after focal M1 infarction. Our study provides insight into how the S1-M1 circuit might be involved in the mechanism of EA treatment of unilateral cerebral infarction. The animal experiments were approved by the Committee for Care and Use of Research Animals of Guangzhou University of Chinese Medicine (approval No. 20200407009) April 7, 2020.

16.
Front Neuroanat ; 16: 763245, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370567

RESUMEN

The plasticity of the central nervous system (CNS) allows the change of neuronal organization and function after environmental stimuli or adaptation after sensory deprivation. The so-called critical period (CP) for neuroplasticity is the time window when each sensory brain region is more sensitive to changes and adaptations. This time window is usually different for each primary sensory area: somatosensory (S1), visual (V1), and auditory (A1). Several intrinsic mechanisms are also involved in the start and end of the CP for neuroplasticity; however, which is its duration in S1, VI, and A1? This systematic review evaluated studies on the determination of these time windows in small rodents. The careful study selection and methodological quality assessment indicated that the CP for neuroplasticity is different among the sensory areas, and the brain maps are influenced by environmental stimuli. Moreover, there is an overlap between the time windows of some sensory areas. Finally, the time window duration of the CP for neuroplasticity is predominant in S1.

17.
Scand J Pain ; 22(3): 622-630, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35130374

RESUMEN

OBJECTIVES: Anodal transcranial direct current stimulation (tDCS) of primary motor cortex (M1) and cathodal of the primary sensory cortex (S1) have previously shown to modulate the sensory thresholds when administered with the reference electrode located over the contralateral supraorbital area (SO). Combining the two stimulation paradigms into one with simultaneous stimulation of the two brain areas (M1 + S1 - tDCS) may result in a synergistic effect inducing a prominent neuromodulation, noticeable in the pain thresholds. The aim of this study is to assess the efficacy of the novel M1 + S1 - tDCS montage compared to sham-stimulation in modulating the pain thresholds in healthy adults. METHODS: Thirty-nine (20 males) subjects were randomly assigned to either receiving 20 min. active M1 + S1 - tDCS or sham tDCS in a double-blinded single session study. Thermal and mechanical pain thresholds were assessed before and after the intervention. RESULTS: There were no significant differences in the pain thresholds within either group, or between the M1 + S1 - tDCS group and the Sham-tDCS group (p>0.05), indicating that the intervention was ineffective in inducing a neuromodulation of the somatosensory system. CONCLUSIONS: Experimental investigations of novel tDCS electrode montages, that are scientifically based on existing studies or computational modelling, are essential to establish better tDCS protocols. Here simultaneous transcranial direct current stimulation of the primary motor cortex and primary sensory cortex showed no effect on the pain thresholds of the neck musculature in healthy subjects. This tDCS montage may have been ineffective due to how the electrical field reaches the targeted neurons, or may have been limited by the design of a single tDCS administration. The study adds to the existing literature of the studies investigating effects of new tDCS montages with the aim of establishing novel non-invasive brain stimulation interventions for chronic neck pain rehabilitation. North Denmark Region Committee on Health Research Ethics (VN-20180085) ClinicalTrials.gov (NCT04658485).


Asunto(s)
Corteza Motora , Estimulación Transcraneal de Corriente Directa , Adulto , Método Doble Ciego , Humanos , Masculino , Corteza Motora/fisiología , Umbral del Dolor/fisiología , Umbral Sensorial , Estimulación Transcraneal de Corriente Directa/métodos
18.
Neuroimage Clin ; 32: 102839, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34624634

RESUMEN

BACKGROUND: Hypersensitivity, stereotyped behaviors and attentional problems in autism spectrum disorder (ASD) are compatible with inefficient filtering of undesired or irrelevant sensory information at early stages of neural processing. This could stem from the persistent overconnectivity between primary sensory regions and deep brain nuclei in both children and adults with ASD - as reported by several previous studies - which could reflect a decreased or arrested maturation of brain connectivity. However, it has not yet been investigated whether this overconnectivity can be modelled as an excessive directional influence of subcortical brain activity on primary sensory cortical regions in ASD, with respect to age-matched typically developing (TD) individuals. METHODS: To this aim, we used dynamic causal modelling to estimate (1) the directional influence of subcortical activity on cortical processing and (2) the functional segregation of primary sensory cortical regions from subcortical activity in 166 participants with ASD and 193 TD participants from the Autism Brain Imaging Data Exchange (ABIDE). We then specifically tested the hypothesis that the age-related changes of these indicators of brain connectivity would differ between the two groups. RESULTS: We found that in TD participants age was significantly associated with decreased influence of subcortical activity on cortical processing, paralleled by an increased functional segregation of cortical sensory processing from subcortical activity. Instead these effects were highly reduced and mostly absent in ASD participants, suggesting a delayed or arrested development of the segregation between subcortical and cortical sensory processing in ASD. CONCLUSION: This atypical configuration of subcortico-cortical connectivity in ASD can result in an excessive amount of unprocessed sensory input relayed to the cortex, which is likely to impact cognitive functioning in everyday situations where it is beneficial to limit the influence of basic sensory information on cognitive processing, such as activities requiring focused attention or social interactions.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Atención , Trastorno del Espectro Autista/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Humanos , Imagen por Resonancia Magnética
19.
Womens Health Rep (New Rochelle) ; 1(1): 167-178, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33786480

RESUMEN

Introduction: Ankle sprain (AS) is one of the most common injuries among women engaged in competitive sports and recreational activities. Many studies have shown that several factors contributing to AS are influenced by the menstrual cycle. Despite the finding that abnormal joint position sense (JPS) is one of the major risk factors of AS, the alteration of the JPS throughout the menstrual cycle and its associated neural mechanisms remain unclear. Objective: This study aimed to examine whether the menstrual cycle phases affect neural excitability in the primary somatosensory cortex (S1) and JPS. Methods: Fourteen right-footed women participated in this study. Somatosensory-evoked potential and paired-pulse inhibition (PPI) were measured to assess S1 excitatory and inhibitory functions. Ankle JPS was measured using an active joint position matching method. Menstrual syndrome was evaluated using the menstrual distress questionnaire. All assessments were conducted in the follicular, ovulatory, and luteal phases. Results: The two main findings of this study were as follows: First, PPI decreased in the ovulatory phase than in the follicular phase. This may have been the reason for estrogen altering the neural inhibition and facilitation balance throughout the menstrual cycle. Second, JPS was not changed during the menstrual cycle. Conclusion: In conclusion, phases of the menstrual cycle affect the neural excitability in S1 as shown by the decreased PPI in the ovulatory phase, and the ankle JPS was unchanged throughout the menstrual cycle.

20.
Brain Stimul ; 13(3): 675-682, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32289696

RESUMEN

OBJECTIVES: Transcranial Direct Current Stimulation (tDCS) is a new technology that is extensively used for migraine treatment. The present study aims to examine the effectiveness of cathodal-tDCS (c-tDCS) in decreasing migraine pain frequency, duration, and intensity at the right primary motor cortex (M1) or sensory cortex (S1) in individuals with episodic or chronic migraine. METHODS: The present study has a randomized, single-blind, and sham-controlled design. It tests the effectiveness of 22 sessions of c-tDCS (20min/1000 µA) in 45 migraine patients (episodic = 35; chronic = 10/with aura = 28; without aura = 17). Spread over 10 consecutive weeks, the sessions started with three sessions per week and ended with one session per week. Participants were tested at the baseline, at the end of intervention, and at 12-month follow-up. The migraine diagnosis was based on criteria set by International Headache Society (IHS) and patients were allocated to two experimental (nm1 = 15; ns1 = 15) and a sham intervention group (nc = 15). RESULTS: The results of a series of MANCOVAs showed a significant reduction (p < 0.05) in all hypothesized symptoms of migraine pain in both experimental groups compared to the sham intervention group at the posttest and follow-up. CONCLUSION: The application of c-tDCS to M1 or S1 can be used as a technological intervention for the prophylactic and therapeutic treatment of episodic or chronic migraine. ETHICAL COMMITTEE REGISTRATION NUMBER: Ir.mums.fm.rec.1396.362.


Asunto(s)
Trastornos Migrañosos/diagnóstico , Trastornos Migrañosos/terapia , Corteza Motora/fisiología , Corteza Somatosensorial/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Adolescente , Adulto , Electrodos , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Dolor/diagnóstico , Manejo del Dolor/métodos , Método Simple Ciego , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA