Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Magn Reson Imaging ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874990

RESUMEN

BACKGROUND: Self-body satisfaction is considered a psychological factor for exercise dependence (EXD). However, the potential neuropsychological mechanisms underlying this association remain unclear. PURPOSE: To investigate the role of white matter microstructure in the association between body satisfaction and EXD. STUDY TYPE: Prospective. POPULATION: One hundred eight regular exercisers (age 22.11 ± 2.62 years; 58 female). FIELD STRENGTH/SEQUENCE: 3.0 Tesla; diffusion-weighted echo planar imaging with 30 directions. ASSESSMENT: The Body Shape Satisfaction (BSS) and Exercise Dependence Scale (EDS); whole-brain tract-based spatial statistics (TBSS) and correlational tractography analyses; average fractional anisotropy (FA) and quantitative anisotropy (QA) values of obtained tracts. STATISTICAL TESTS: The whole-brain regression model, mediation analysis, and simple slope analysis. P values <0.05 were defined as statistically significant. RESULTS: The BSS and EDS scores were 37.33 ± 6.32 and 68.22 ± 13.88, respectively. TBSS showed negative correlations between EDS and FA values in the bilateral corticospinal tract (CST, r = -0.41), right cingulum (r = -0.41), and left superior thalamic radiation (STR, r = -0.50). Correlational tractography showed negative associations between EDS and QA values of the left inferior frontal occipital fasciculus (r = -0.35), STR (r = -0.42), CST (r = -0.31), and right cingulum (r = -0.28). The FA values, rather than QA values, mediated the BSS-EDS association (indirect effects = 0.30). The BSS was significantly associated with the EDS score at both low (ß = 1.02) and high (ß = 0.43) levels of FA value, while the association was significant only at the high level of QA value (ß = 1.26). DATA CONCLUSION: EXD was correlated with white matter in frontal-subcortical and sensorimotor networks, and these tracts mediated the body satisfaction-EXD association. White matter microstructure could be a promising neural signature for understanding the underlying neuropsychological mechanisms of EXD. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.

2.
J Child Psychol Psychiatry ; 65(8): 1072-1086, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38220469

RESUMEN

BACKGROUND: Youth with a family history of bipolar disorder (BD) may be at increased risk for mood disorders and for developing side effects after antidepressant exposure. The neurobiological basis of these risks remains poorly understood. We aimed to identify biomarkers underlying risk by characterizing abnormalities in the brain connectome of symptomatic youth at familial risk for BD. METHODS: Depressed and/or anxious youth (n = 119, age = 14.9 ± 1.6 years) with a family history of BD but no prior antidepressant exposure and typically developing controls (n = 57, age = 14.8 ± 1.7 years) received functional magnetic resonance imaging (fMRI) during an emotional continuous performance task. A generalized psychophysiological interaction (gPPI) analysis was performed to compare their brain connectome patterns, followed by machine learning of topological metrics. RESULTS: High-risk youth showed weaker connectivity patterns that were mainly located in the default mode network (DMN) (network weight = 50.1%) relative to controls, and connectivity patterns derived from the visual network (VN) constituted the largest proportion of aberrant stronger pairs (network weight = 54.9%). Global local efficiency (Elocal, p = .022) and clustering coefficient (Cp, p = .029) and nodal metrics of the right superior frontal gyrus (SFG) (Elocal: p < .001; Cp: p = .001) in the high-risk group were significantly higher than those in healthy subjects, and similar patterns were also found in the left insula (degree: p = .004; betweenness: p = .005; age-by-group interaction, p = .038) and right hippocampus (degree: p = .003; betweenness: p = .003). The case-control classifier achieved a cross-validation accuracy of 78.4%. CONCLUSIONS: Our findings of abnormal connectome organization in the DMN and VN may advance mechanistic understanding of risk for BD. Neuroimaging biomarkers of increased network segregation in the SFG and altered topological centrality in the insula and hippocampus in broader limbic systems may be used to target interventions tailored to mitigate the underlying risk of brain abnormalities in these at-risk youth.


Asunto(s)
Trastorno Bipolar , Conectoma , Imagen por Resonancia Magnética , Red Nerviosa , Humanos , Trastorno Bipolar/fisiopatología , Trastorno Bipolar/diagnóstico por imagen , Adolescente , Masculino , Femenino , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Niño , Red en Modo Predeterminado/fisiopatología , Red en Modo Predeterminado/diagnóstico por imagen , Riesgo , Predisposición Genética a la Enfermedad
3.
Cereb Cortex ; 33(6): 3311-3317, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36562992

RESUMEN

Previous fMRI studies have reported more random brain functional graph configurations in social anxiety disorder (SAD). However, it is still unclear whether the same configurations would occur in gray matter (GM) graphs. Structural MRI was performed on 49 patients with SAD and on 51 age- and gender-matched healthy controls (HC). Single-subject GM networks were obtained based on the areal similarities of GM, and network topological properties were analyzed using graph theory. Group differences in each topological metric were compared, and the structure-function coupling was examined. These network measures were further correlated with the clinical characteristics in the SAD group. Compared with controls, the SAD patients demonstrated globally decreased clustering coefficient and characteristic path length. Altered topological properties were found in the fronto-limbic and sensory processing systems. Altered metrics were associated with the illness duration of SAD. Compared with the HC group, the SAD group exhibited significantly decreased structural-functional decoupling. Furthermore, structural-functional decoupling was negatively correlated with the symptom severity in SAD. These findings highlight less-optimized topological configuration of the brain structural networks in SAD, which may provide insights into the neural mechanisms underlying the excessive fear and avoidance of social interactions in SAD.


Asunto(s)
Sustancia Gris , Fobia Social , Humanos , Encéfalo/diagnóstico por imagen , Corteza Cerebral , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética , Fobia Social/diagnóstico por imagen , Estudios de Casos y Controles
4.
Cereb Cortex ; 33(23): 11373-11383, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37804248

RESUMEN

Post-traumatic stress symptoms and post-traumatic growth are common co-occurring psychological responses following exposure to traumatic events (such as COVID-19 pandemic), their mutual relationship remains unclear. To explore this relationship, structural magnetic resonance imaging data were acquired from 115 general college students before the COVID-19 pandemic, and follow-up post-traumatic stress symptoms and post-traumatic growth measurements were collected during the pandemic. Voxel-based morphometry was conducted and individual structural covariance networks based on gray matter volume were further analyzed using graph theory and partial least squares correlation. Behavioral correlation found no significant relationship between post-traumatic stress symptoms and post-traumatic growth. Voxel-based morphometry analyses showed that post-traumatic stress symptoms were positively correlated with gray matter volume in medial prefrontal cortex/dorsal anterior cingulate cortex, and post-traumatic growth was negatively correlated with gray matter volume in left dorsolateral prefrontal cortex. Structural covariance network analyses found that post-traumatic stress symptoms were negatively correlated with the local efficiency and clustering coefficient of the network. Moreover, partial least squares correlation showed that post-traumatic stress symptoms were correlated with pronounced nodal properties patterns in default mode, sensory and motor regions, and a marginal correlation of post-traumatic growth with a nodal property pattern in emotion regulation-related regions. This study advances our understanding of the neurobiological substrates of post-traumatic stress symptoms and post-traumatic growth, and suggests that they may have different neuroanatomical features.


Asunto(s)
COVID-19 , Crecimiento Psicológico Postraumático , Trastornos por Estrés Postraumático , Humanos , Trastornos por Estrés Postraumático/diagnóstico por imagen , Pandemias , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Imagen por Resonancia Magnética/métodos
5.
Cereb Cortex ; 33(15): 9387-9398, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37288497

RESUMEN

The COVID-19 pandemic has been increasingly documented to cause negative impacts on mental health outcomes, e.g. posttraumatic stress symptoms (PTSS). Dispositional optimism ("optimism" hereinafter), a crucial psychological characteristic defined by positive expectancies for future outcomes, is considered to provide remarkable protection against PTSS. Accordingly, this study was designed to identify neuroanatomical signatures of optimism and further examine the mechanism through which optimism protects against COVID-19-specific PTSS. Here, 115 volunteers from a general population of university students completed MRI scans and optimism tests before (October 2019-January 2020) and after (February-April 2020) the onset of the COVID-19 pandemic. Whole-brain voxel-based morphometry analysis showed that a region from the dorsal anterior cingulate cortex (dACC) to the dorsomedial prefrontal cortex (dmPFC) was associated with optimism. Further seed-based structural covariance network (SCN) analysis using partial least-squares correlation found an optimism-linked SCN covarying with the combined dACC and dmPFC (the dACC-dmPFC). Additionally, mediation analyses revealed that the dACC-dmPFC volume and its SCN impacted COVID-19-specific PTSS through optimism. Our findings deepen the understanding of optimism and have the potential to identify vulnerable individuals during the COVID-19 pandemic or similar future events, as well as to guide optimism-related neural interventions to prevent and alleviate PTSS.


Asunto(s)
COVID-19 , Trastornos por Estrés Postraumático , Humanos , Trastornos por Estrés Postraumático/diagnóstico por imagen , Pandemias , Personalidad , Optimismo
6.
Cereb Cortex ; 33(16): 9627-9638, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37381581

RESUMEN

Phenotyping approaches grounded in structural network science can offer insights into the neurobiological substrates of psychiatric diseases, but this remains to be clarified at the individual level in social anxiety disorder (SAD). Using a recently developed approach combining probability density estimation and Kullback-Leibler divergence, we constructed single-subject structural covariance networks (SCNs) based on multivariate morphometry (cortical thickness, surface area, curvature, and volume) and quantified their global/nodal network properties using graph-theoretical analysis. We compared network metrics between SAD patients and healthy controls (HC) and analyzed the relationship to clinical characteristics. We also used support vector machine analysis to explore the ability of graph-theoretical metrics to discriminate SAD patients from HC. Globally, SAD patients showed higher global efficiency, shorter characteristic path length, and stronger small-worldness. Locally, SAD patients showed abnormal nodal centrality mainly involving left superior frontal gyrus, right superior parietal lobe, left amygdala, right paracentral gyrus, right lingual, and right pericalcarine cortex. Altered topological metrics were associated with the symptom severity and duration. Graph-based metrics allowed single-subject classification of SAD versus HC with total accuracy of 78.7%. This finding, that the topological organization of SCNs in SAD patients is altered toward more randomized configurations, adds to our understanding of network-level neuropathology in SAD.


Asunto(s)
Conectoma , Fobia Social , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Corteza Cerebral , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Imagen por Resonancia Magnética , Fobia Social/diagnóstico por imagen , Estudios de Casos y Controles
7.
Psychol Med ; 53(11): 5155-5166, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36046918

RESUMEN

BACKGROUND: Persistent psychological distress associated with the coronavirus disease 2019 (COVID-19) pandemic has been well documented. This study aimed to identify pre-COVID brain functional connectome that predicts pandemic-related distress symptoms among young adults. METHODS: Baseline neuroimaging studies and assessment of general distress using the Depression, Anxiety and Stress Scale were performed with 100 healthy individuals prior to wide recognition of the health risks associated with the emergence of COVID-19. They were recontacted for the Impact of Event Scale-Revised and the Posttraumatic Stress Disorder Checklist in the period of community-level outbreaks, and for follow-up distress evaluation again 1 year later. We employed the network-based statistic approach to identify connectome that predicted the increase of distress based on 136-region-parcellation with assigned network membership. Predictive performance of connectome features and causal relations were examined by cross-validation and mediation analyses. RESULTS: The connectome features that predicted emergence of distress after COVID contained 70 neural connections. Most within-network connections were located in the default mode network (DMN), and affective network-DMN and dorsal attention network-DMN links largely constituted between-network pairs. The hippocampus emerged as the most critical hub region. Predictive models of the connectome remained robust in cross-validation. Mediation analyses demonstrated that COVID-related posttraumatic stress partially explained the correlation of connectome to the development of general distress. CONCLUSIONS: Brain functional connectome may fingerprint individuals with vulnerability to psychological distress associated with the COVID pandemic. Individuals with brain neuromarkers may benefit from the corresponding interventions to reduce the risk or severity of distress related to fear of COVID-related challenges.


Asunto(s)
COVID-19 , Conectoma , Adulto Joven , Humanos , Pandemias , Conectoma/métodos , Encéfalo/diagnóstico por imagen , Ansiedad/epidemiología , Ansiedad/psicología , Imagen por Resonancia Magnética
8.
Psychol Med ; 53(13): 6194-6204, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36330833

RESUMEN

BACKGROUND: Although aberrant brain regional responses are reported in social anxiety disorder (SAD), little is known about resting-state functional connectivity at the macroscale network level. This study aims to identify functional network abnormalities using a multivariate data-driven method in a relatively large and homogenous sample of SAD patients, and assess their potential diagnostic value. METHODS: Forty-six SAD patients and 52 demographically-matched healthy controls (HC) were recruited to undergo clinical evaluation and resting-state functional MRI scanning. We used group independent component analysis to characterize the functional architecture of brain resting-state networks (RSNs) and investigate between-group differences in intra-/inter-network functional network connectivity (FNC). Furtherly, we explored the associations of FNC abnormalities with clinical characteristics, and assessed their ability to discriminate SAD from HC using support vector machine analyses. RESULTS: SAD patients showed widespread intra-network FNC abnormalities in the default mode network, the subcortical network and the perceptual system (i.e. sensorimotor, auditory and visual networks), and large-scale inter-network FNC abnormalities among those high-order and primary RSNs. Some aberrant FNC signatures were correlated to disease severity and duration, suggesting pathophysiological relevance. Furthermore, intrinsic FNC anomalies allowed individual classification of SAD v. HC with significant accuracy, indicating potential diagnostic efficacy. CONCLUSIONS: SAD patients show distinct patterns of functional synchronization abnormalities both within and across large-scale RSNs, reflecting or causing a network imbalance of bottom-up response and top-down regulation in cognitive, emotional and sensory domains. Therefore, this could offer insights into the neurofunctional substrates of SAD.


Asunto(s)
Encefalopatías , Fobia Social , Humanos , Fobia Social/diagnóstico por imagen , Mapeo Encefálico , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Red Nerviosa/diagnóstico por imagen
9.
Cereb Cortex ; 32(21): 4857-4868, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-35078209

RESUMEN

Mild cognitive impairment in Parkinson's disease (PD-M) is related to a high risk of dementia. This study explored the whole-brain functional networks in early-stage PD-M. Forty-one patients with PD classified as cognitively normal (PD-N, n = 17) and PD-M (n = 24) and 24 demographically matched healthy controls (HC) underwent clinical and neuropsychological evaluations and resting-state functional magnetic resonance imaging. The global, regional, and modular topological characteristics were assessed in the brain functional networks, and their relationships to cognitive scores were tested. At the global level, PD-M and PD-N exhibited higher characteristic path length and lower clustering coefficient, local and global efficiency relative to HC. At the regional level, PD-M and PD-N showed lower nodal centrality in sensorimotor regions relative to HC. At the modular level, PD-M showed lower intramodular connectivity in default mode and cerebellum modules, and lower intermodular connectivity between default mode and frontoparietal modules than PD-N, correlated with Montreal Cognitive Assessment scores. Early-stage PD patients showed weaker small-worldization of brain networks. Modular connectivity alterations were mainly observed in patients with PD-M. These findings highlight the shared and distinct brain functional network dysfunctions in PD-M and PD-N, and yield insight into the neurobiology of cognitive decline in PD.


Asunto(s)
Disfunción Cognitiva , Enfermedad de Parkinson , Humanos , Disfunción Cognitiva/patología , Encéfalo , Imagen por Resonancia Magnética , Mapeo Encefálico
10.
Eur Child Adolesc Psychiatry ; 32(10): 1957-1967, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35737106

RESUMEN

As a stable personality construct, trait emotional intelligence (TEI) refers to a battery of perceived emotion-related skills that make individuals behave effectively to adapt to the environment and maintain well-being. Abundant evidence has consistently shown that TEI is important for the outcomes of many mental health issues, particularly depression and anxiety. However, the neural substrates involved in TEI and the underlying neurobehavioral mechanism of how TEI reduces depression and anxiety symptoms remain largely unknown. Herein, resting-state functional magnetic resonance imaging and a group of behavioral measures were applied to examine these questions among a large sample comprising 231 general adolescent students aged 16-20 years (52% female). Whole-brain correlation analysis and prediction analysis demonstrated that TEI was negatively linked with spontaneous activity (measured with the fractional amplitude of low-frequency fluctuations) in the bilateral medial orbitofrontal cortex (OFC), a critical site implicated in emotion-related processes. Furthermore, structural equation modeling analysis found that TEI mediated the link of OFC spontaneous activity to depressive and anxious symptoms. Collectively, the current findings present new evidence for the neurofunctional bases of TEI and suggest a potential "brain-personality-symptom" pathway for alleviating depressive and anxious symptoms among students in late adolescence.


Asunto(s)
Ansiedad , Corteza Prefrontal , Humanos , Adolescente , Femenino , Masculino , Corteza Prefrontal/diagnóstico por imagen , Emociones , Personalidad , Encéfalo , Inteligencia Emocional , Imagen por Resonancia Magnética/métodos
11.
Neuroimage ; 255: 119185, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35398284

RESUMEN

As characterized by repeated exposure of others' trauma, vicarious traumatization is a common negative psychological reaction during the COVID-19 pandemic and plays a crucial role in the development of general mental distress. This study aims to identify functional connectome that encodes individual variations of pandemic-related vicarious traumatization and reveal the underlying brain-vicarious traumatization mechanism in predicting general distress. The eligible subjects were 105 general university students (60 females, aged from 19 to 27 years) undergoing brain MRI scanning and baseline behavioral tests (October 2019 to January 2020), whom were re-contacted for COVID-related vicarious traumatization measurement (February to April 2020) and follow-up general distress evaluation (March to April 2021). We applied a connectome-based predictive modeling (CPM) approach to identify the functional connectome supporting vicarious traumatization based on a 268-region-parcellation assigned to network memberships. The CPM analyses showed that only the negative network model stably predicted individuals' vicarious traumatization scores (q2 = -0.18, MSE = 617, r [predicted, actual] = 0.18, p = 0.024), with the contributing functional connectivity primarily distributed in the fronto-parietal, default mode, medial frontal, salience, and motor network. Furthermore, mediation analysis revealed that vicarious traumatization mediated the influence of brain functional connectome on general distress. Importantly, our results were independent of baseline family socioeconomic status, other stressful life events and general mental health as well as age, sex and head motion. Our study is the first to provide evidence for the functional neural markers of vicarious traumatization and reveal an underlying neuropsychological pathway to predict distress symptoms in which brain functional connectome affects general distress via vicarious traumatization.


Asunto(s)
COVID-19 , Desgaste por Empatía , Conectoma , Encéfalo/diagnóstico por imagen , Desgaste por Empatía/epidemiología , Desgaste por Empatía/psicología , Femenino , Humanos , Imagen por Resonancia Magnética , Salud Mental , Pandemias
12.
Neuroimage ; 251: 119009, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35182752

RESUMEN

Dispositional optimism (hereinafter, optimism), as a vital character strength, reflects the tendency to hold generalized positive expectancies for future outcomes. A great number of studies have consistently shown the importance of optimism to a spectrum of physical and mental health outcomes. However, less attention has been given to the intrinsic neurodevelopmental patterns associated with interindividual differences in optimism. Here, we investigated this important question in a large sample comprising 231 healthy adolescents (16-20 years old) via structural magnetic resonance imaging and behavioral tests. We constructed individual structural covariance networks based on cortical gyrification using a recent novel approach combining probability density estimation and Kullback-Leibler divergence and estimated global (global efficiency, local efficiency and small-worldness) and regional (betweenness centrality) properties of these constructed networks using graph theoretical analysis. Partial correlations adjusted for age, sex and estimated total intracranial volume showed that optimism was positively related to global and local efficiency but not small-worldness. Partial least squares correlations indicated that optimism was positively linked to a pronounced betweenness centrality pattern, in which twelve cognition-, emotion-, and motivation-related regions made robust and reliable contributions. These findings remained basically consistent after additionally controlling for family socioeconomic status and showed significant correlations with optimism scores from 2.5 years before, which replicated the main findings. The current work, for the first time, delineated characteristics of the cortical gyrification covariance network associated with optimism, extending previous neurobiological understandings of optimism, which may navigate the development of interventions on a neural network level aimed at raising optimism.


Asunto(s)
Imagen por Resonancia Magnética , Optimismo , Adolescente , Adulto , Emociones , Humanos , Imagen por Resonancia Magnética/métodos , Motivación , Personalidad , Adulto Joven
13.
Hum Brain Mapp ; 43(4): 1256-1264, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34797010

RESUMEN

Altered topological organization of brain structural covariance networks has been observed in attention deficit hyperactivity disorder (ADHD). However, results have been inconsistent, potentially related to confounding medication effects. In addition, since structural networks are traditionally constructed at the group level, variabilities in individual structural features remain to be well characterized. Structural brain imaging with MRI was performed on 84 drug-naïve children with ADHD and 83 age-matched healthy controls. Single-subject gray matter (GM) networks were obtained based on areal similarities of GM, and network topological properties were analyzed using graph theory. Group differences in each topological metric were compared using nonparametric permutation testing. Compared with healthy subjects, GM networks in ADHD patients demonstrated significantly altered topological characteristics, including higher global and local efficiency and clustering coefficient, and shorter path length. In addition, ADHD patients exhibited abnormal centrality in corticostriatal circuitry including the superior frontal gyrus, orbitofrontal gyrus, medial superior frontal gyrus, precentral gyrus, middle temporal gyrus, and pallidum (all p < .05, false discovery rate [FDR] corrected). Altered global and nodal topological efficiencies were associated with the severity of hyperactivity symptoms and the performance on the Stroop and Wisconsin Card Sorting Test tests (all p < .05, FDR corrected). ADHD combined and inattention subtypes were differentiated by nodal attributes of amygdala (p < .05, FDR corrected). Alterations in GM network topologies were observed in drug-naïve ADHD patients, in particular in frontostriatal loops and amygdala. These alterations may contribute to impaired cognitive functioning and impulsive behavior in ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/patología , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Sustancia Gris/patología , Red Nerviosa/patología , Adolescente , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Niño , Femenino , Sustancia Gris/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen
14.
Neuropsychol Rev ; 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36125651

RESUMEN

Recent graph-theoretical studies of Parkinson's disease (PD) have examined alterations in the global properties of the brain structural connectome; however, reported alterations are not consistent. The present study aimed to identify the most robust global metric alterations in PD via a meta-analysis. A comprehensive literature search was conducted for all available diffusion MRI structural connectome studies that compared global graph metrics between PD patients and healthy controls (HC). Hedges' g effect sizes were calculated for each study and then pooled using a random-effects model in Comprehensive Meta-Analysis software, and the effects of potential moderator variables were tested. A total of 22 studies met the inclusion criteria for review. Of these, 16 studies reporting 10 global graph metrics (916 PD patients; 560 HC) were included in the meta-analysis. In the structural connectome of PD patients compared with HC, we found a significant decrease in clustering coefficient (g = -0.357, P = 0.005) and global efficiency (g = -0.359, P < 0.001), and a significant increase in characteristic path length (g = 0.250, P = 0.006). Dopaminergic medication, sex and age of patients were potential moderators of global brain network changes in PD. These findings provide evidence of decreased global segregation and integration of the structural connectome in PD, indicating a shift from a balanced small-world network to 'weaker small-worldization', which may provide useful markers of the pathophysiological mechanisms underlying PD.

15.
Depress Anxiety ; 39(1): 83-91, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34793618

RESUMEN

BACKGROUND: Neuroimaging studies in posttraumatic stress disorder (PTSD) have identified various alterations in white matter (WM) microstructural organization. However, it remains unclear whether these are localized to specific regions of fiber tracts, and what diagnostic value they might have. This study set out to explore the spatial profile of WM abnormalities along defined fiber tracts in PTSD. METHODS: Diffusion tensor images were obtained from 77 treatment-naive noncomorbid patients with PTSD and 76 demographically matched trauma-exposed non-PTSD (TENP) controls. Using automated fiber quantification, tract profiles of fractional anisotropy, axial diffusivity, mean diffusivity, and radial diffusivity were calculated to evaluate WM microstructural organization. Results were analyzed by pointwise comparisons, by correlation with symptom severity, and for diagnosis-by-sex interactions. Support vector machine analyses assessed the ability of tract profiles to discriminate PTSD from TENP. RESULTS: Compared to TENP, PTSD showed lower fractional anisotropy accompanied by higher radial diffusivity and mean diffusivity in the left uncinate fasciculus, and lower fractional anisotropy accompanied by higher radial diffusivity in the right anterior thalamic radiation. Tract profile alterations were correlated with symptom severity, suggesting a pathophysiological relevance. There were no significant differences in diagnosis-by-sex interaction. Tract profiles allowed individual classification of PTSD versus TENP with significant accuracy, of potential diagnostic utility. CONCLUSIONS: These findings add to the knowledge of the neuropathological basis of PTSD. WM alterations based on a tract-profile quantification approach are a potential biomarker for PTSD.


Asunto(s)
Trastornos por Estrés Postraumático , Sustancia Blanca , Anisotropía , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Humanos , Trastornos por Estrés Postraumático/diagnóstico por imagen , Trastornos por Estrés Postraumático/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
16.
BMC Psychiatry ; 22(1): 26, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35012507

RESUMEN

BACKGROUND: Recent neuroimaging studies revealed dysregulated neurodevelopmental, or/and neurodegenerative trajectories of both structural and functional connections in schizophrenia. However, how the alterations in the brain's structural connectivity lead to dynamic function changes in schizophrenia with age remains poorly understood. METHODS: Combining structural magnetic resonance imaging and a network control theory approach, the white matter network controllability metric (average controllability) was mapped from age 16 to 60 years in 175 drug-naïve schizophrenia patients and 155 matched healthy controls. RESULTS: Compared with controls, the schizophrenia patients demonstrated the lack of age-related decrease on average controllability of default mode network (DMN), as well as the right precuneus (a hub region of DMN), suggesting abnormal maturational development process in schizophrenia. Interestingly, the schizophrenia patients demonstrated an accelerated age-related decline of average controllability in the subcortical network, supporting the neurodegenerative model. In addition, compared with controls, the lack of age-related increase on average controllability of the left inferior parietal gyrus in schizophrenia patients also suggested a different pathway of brain development. CONCLUSIONS: By applying the control theory approach, the present study revealed age-related changes in the ability of white matter pathways to control functional activity states in schizophrenia. The findings supported both the developmental and degenerative hypotheses of schizophrenia, and suggested a particularly high vulnerability of the DMN and subcortical network possibly reflecting an illness-related early marker for the disorder.


Asunto(s)
Esquizofrenia , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagen , Adulto Joven
17.
Hum Brain Mapp ; 42(7): 2147-2158, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33566375

RESUMEN

The hippocampus and amygdala are important structures in the posttraumatic stress disorder (PTSD); however, the exact relationship between these structures and stress or PTSD remains unclear. Moreover, they consist of several functionally distinct subfields/subregions that may serve different roles in the neuropathophysiology of PTSD. Here we present a subregional profile of the hippocampus and amygdala in 145 survivors of a major earthquake and 56 non-traumatized healthy controls (HCs). We found that the bilateral hippocampus and left amygdala were significantly smaller in survivors than in HCs, and there was no difference between survivors with (n = 69) and without PTSD (trauma-exposed controls [TCs], n = 76). Analyses revealed similar results in most subfields/subregions, except that the right hippocampal body (in a head-body-tail segmentation scheme), right presubiculum, and left amygdala medial nuclei (Me) were significantly larger in PTSD patients than in TCs but smaller than in HCs. Larger hippocampal body were associated with the time since trauma in PTSD patients. The volume of the right cortical nucleus (Co) was negatively correlated with the severity of symptoms in the PTSD group but positively correlated with the same measurement in the TC group. This correlation between symptom severity and Co volume was significantly different between the PTSD and TCs. Together, we demonstrated that generalized smaller volumes in the hippocampus and amygdala were more likely to be trauma-related than PTSD-specific, and their subfields/subregions were distinctively affected. Notably, larger left Me, right hippocampal body and presubiculum were PTSD-specific; these could be preexisting factors for PTSD or reflect rapid posttraumatic reshaping.


Asunto(s)
Amígdala del Cerebelo/patología , Hipocampo/patología , Trauma Psicológico/patología , Trastornos por Estrés Postraumático/patología , Adulto , Amígdala del Cerebelo/diagnóstico por imagen , Terremotos , Femenino , Hipocampo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Trauma Psicológico/diagnóstico por imagen , Trastornos por Estrés Postraumático/diagnóstico por imagen , Sobrevivientes , Factores de Tiempo
18.
Hum Brain Mapp ; 42(10): 3156-3167, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33769638

RESUMEN

Neuroimaging studies using a variety of techniques have demonstrated abnormal patterns of spontaneous brain activity in patients with essential tremor (ET). However, the findings are variable and inconsistent, hindering understanding of underlying neuropathology. We conducted a meta-analysis of whole-brain resting-state functional neuroimaging studies in ET compared to healthy controls (HC), using anisotropic effect-size seed-based d mapping, to identify the most consistent brain activity alterations and their relation to clinical features. After systematic literature search, we included 13 studies reporting 14 comparisons, describing 286 ET patients and 254 HC. Subgroup analyses were conducted considering medication status, head tremor status, and methodological factors. Brain activity in ET is altered not only in the cerebellum and cerebral motor cortex, but also in nonmotor cortical regions including prefrontal cortex and insula. Most of the results remained unchanged in subgroup analyses of patients with head tremor, medication-naive patients, studies with statistical threshold correction, and the large subgroup of studies using functional magnetic resonance imaging. These findings not only show consistent and robust abnormalities in specific brain regions but also provide new information on the biology of patient heterogeneity, and thus help to elucidate the pathophysiology of ET.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Conectoma , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/fisiopatología , Humanos , Imagen por Resonancia Magnética , Descanso
19.
Hum Brain Mapp ; 42(15): 5101-5112, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34322939

RESUMEN

Patients with Parkinson's disease with mild cognitive impairment (PD-M) progress to dementia more frequently than those with normal cognition (PD-N), but the underlying neurobiology remains unclear. This study aimed to define the specific morphological brain network alterations in PD-M, and explore their potential diagnostic value. Twenty-four PD-M patients, 17 PD-N patients, and 29 healthy controls (HC) underwent a structural MRI scan. Similarity between interregional gray matter volume distributions was used to construct individual morphological brain networks. These were analyzed using graph theory and network-based statistics (NBS), and their relationship to neuropsychological tests was assessed. Support vector machine (SVM) was used to perform individual classification. Globally, compared with HC, PD-M showed increased local efficiency (p = .001) in their morphological networks, while PD-N showed decreased normalized path length (p = .008). Locally, similar nodal deficits were found in the rectus and lingual gyrus, and cerebellum of both PD groups relative to HC; additionally in PD-M nodal deficits involved several frontal and parietal regions, correlated with cognitive scores. NBS found that similar connections were involved in the default mode and cerebellar networks of both PD groups (to a greater extent in PD-M), while PD-M, but not PD-N, showed altered connections involving the frontoparietal network. Using connections identified by NBS, SVM allowed discrimination with high accuracy between PD-N and HC (90%), PD-M and HC (85%), and between the two PD groups (65%). These results suggest that default mode and cerebellar disruption characterizes PD, more so in PD-M, whereas frontoparietal disruption has diagnostic potential.


Asunto(s)
Cerebelo/patología , Corteza Cerebral/patología , Disfunción Cognitiva/fisiopatología , Red en Modo Predeterminado/patología , Sustancia Gris/patología , Red Nerviosa/patología , Enfermedad de Parkinson/patología , Anciano , Cerebelo/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Disfunción Cognitiva/etiología , Red en Modo Predeterminado/diagnóstico por imagen , Femenino , Sustancia Gris/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen
20.
Hum Brain Mapp ; 42(11): 3366-3378, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33939234

RESUMEN

Anxiety and depression are the most common withdrawal symptoms of methamphetamine (METH) abuse, which further exacerbate relapse of METH abuse. To date, no effective pharmacotherapy exists for METH abuse and its withdrawal symptoms. Therefore, understanding the neuromechanism underlying METH abuse and its withdrawal symptoms is essential for developing clinical strategies and improving patient care. The aims of this study were to investigate brain network abnormalities in METH abusers (MAs) and their associations with affective symptoms. Forty-eight male abstinent MAs and 48 age-gender matched healthy controls were recruited and underwent resting state functional magnetic resonance imaging (fMRI). The severity of patient anxiety and depressive symptoms were measured by Hamilton anxiety and depression rating scales, which decreased across the duration of abstinence. Independent component analysis was used to investigate the brain network functional connectivity (FC) properties. Compared with healthy controls, MAs demonstrated hypo-intra-network FC in the cerebellar network and hyper-intra-network FC in the posterior salience network. A whole-brain regression analysis revealed that FC strength of clusters located in the right rostral anterior cingulate cortex (rACC) within the ventromedial network (VMN) was associated with affective symptoms in the patients. Importantly, the intra-network FC strength of the rACC in VMN mediated the association between abstinence duration and the severity level of affective symptoms. Our results demonstrate alterations in brain functional networks underlying METH abuse, and that the FC of rACC within VMN serve as a neural substrate in the association between abstinence length and affective symptom severity in the MAs.


Asunto(s)
Trastornos Relacionados con Anfetaminas/fisiopatología , Ansiedad/fisiopatología , Estimulantes del Sistema Nervioso Central/efectos adversos , Corteza Cerebral/fisiopatología , Conectoma , Depresión/fisiopatología , Metanfetamina/efectos adversos , Red Nerviosa/fisiopatología , Síndrome de Abstinencia a Sustancias/fisiopatología , Sustancia Blanca/fisiopatología , Adulto , Trastornos Relacionados con Anfetaminas/complicaciones , Trastornos Relacionados con Anfetaminas/diagnóstico por imagen , Ansiedad/diagnóstico por imagen , Ansiedad/etiología , Corteza Cerebral/diagnóstico por imagen , Depresión/diagnóstico por imagen , Depresión/etiología , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Síndrome de Abstinencia a Sustancias/complicaciones , Síndrome de Abstinencia a Sustancias/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA