Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Inherit Metab Dis ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39038845

RESUMEN

ALDH7A1 deficiency is an epileptic encephalopathy whose seizures respond to treatment with supraphysiological doses of pyridoxine. It arises as a result of damaging variants in ALDH7A1, a gene in the lysine catabolism pathway. α-Aminoadipic semialdehyde (α-AASA) and Δ1-piperideine-6-carboxylate (P6C), which accumulate because of the block in the lysine pathway, are diagnostic biomarkers for this disorder. Recently, it has been reported that 6-oxo-pipecolic acid (6-oxo-PIP) also accumulates in the urine, CSF and plasma of ALDH7A1-deficient individuals and that, given its improved stability, it may be a more suitable biomarker for this disorder. This study measured 6-oxo-PIP in urine from a cohort of 30 patients where α-AASA was elevated and showed that it was above the normal range in all those above 6 months of age. However, 6-oxo-PIP levels were within the normal range in 33% of the patients below 6 months of age. Levels increased with age and correlated with a decrease in α-AASA levels. Longitudinal analysis of urine samples from ALDH7A1-deficient patients who were on a lysine restricted diet whilst receiving supraphysiological doses of pyridoxine showed that levels of 6-oxo-PIP remained elevated whilst α-AASA decreased. Similar to α-AASA, we found that elevated urinary excretion of 6-oxo-PIP can also occur in individuals with molybdenum cofactor deficiency. This study demonstrates that urinary 6-oxo-PIP may not be a suitable biomarker for ALDH7A1 deficiency in neonates. However, further studies are needed to understand the biochemistry leading to its accumulation and its potential long-term side effects.

2.
Neonatal Netw ; 43(3): 139-147, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38816225

RESUMEN

Although a rare cause of neonatal seizures, inborn errors of metabolism (IEMs) remain an essential component of a comprehensive differential diagnosis for poorly controlled neonatal epilepsy. Diagnosing neonatal-onset metabolic conditions proves a difficult task for clinicians; however, routine state newborn screening panels now include many IEMs. Three in particular-pyridoxine-dependent epilepsy, maple syrup urine disease, and Zellweger spectrum disorders-are highly associated with neonatal epilepsy and neurocognitive injury yet are often misdiagnosed. As research surrounding biomarkers for these conditions is emerging and gene sequencing technologies are advancing, clinicians are beginning to better establish early identification strategies for these diseases. In this literature review, the authors aim to present clinicians with an innovative clinical guide highlighting IEMs associated with neonatal-onset seizures, with the goal of promoting quality care and safety.


Asunto(s)
Convulsiones , Humanos , Recién Nacido , Convulsiones/diagnóstico , Tamizaje Neonatal/métodos , Errores Innatos del Metabolismo/diagnóstico , Errores Innatos del Metabolismo/complicaciones , Diagnóstico Diferencial , Enfermedad de la Orina de Jarabe de Arce/diagnóstico , Enfermedad de la Orina de Jarabe de Arce/complicaciones
3.
Epilepsy Behav ; 146: 109363, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37499576

RESUMEN

Lysine, as an essential amino acid, predominantly undergoes metabolic processes through the saccharopine pathway, whereas a smaller fraction follows the pipecolic acid pathway. Although the liver is considered the primary organ for lysine metabolism, it is worth noting that lysine catabolism also takes place in other tissues and organs throughout the body, including the brain. Enzyme deficiency caused by pathogenic variants in its metabolic pathway may lead to a series of neurometabolic diseases, among which glutaric aciduria type 1 and pyridoxine-dependent epilepsy have the most significant clinical manifestations. At present, through research, we have a deeper understanding of the multiple pathophysiological mechanisms related to these diseases, including intracerebral accumulation of neurotoxic metabolites, imbalance between GABAergic and glutamatergic neurotransmission, energy deprivation due to metabolites, and the dysfunction of antiquitin. Because of the complexity of these diseases, their clinical manifestations are also diverse. The early implementation of lysine-restricted diets and supplementation with arginine and carnitine has reported positive impacts on the neurodevelopmental outcomes of patients. Presently, there is more robust evidence supporting the effectiveness of these treatments in glutaric aciduria type 1 compared with pyridoxine-dependent epilepsy.


Asunto(s)
Encefalopatías Metabólicas , Epilepsia , Humanos , Lisina/metabolismo , Epilepsia/metabolismo , Encefalopatías Metabólicas/complicaciones , Encefalopatías Metabólicas/metabolismo
4.
Mol Genet Metab ; 135(4): 350-356, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35279367

RESUMEN

BACKGROUND: Seventy-five percent of patients with pyridoxine-dependent epilepsy due to α-aminoadipic semialdehyde dehydrogenase deficiency (PDE-ALDH7A1) suffer intellectual developmental disability despite pyridoxine treatment. Adjunct lysine reduction therapies (LRT), aimed at lowering putative neurotoxic metabolites, are associated with improved cognitive outcomes. However, possibly due to timing of treatment, not all patients have normal intellectual function. METHODS: This retrospective, multi-center cohort study evaluated the effect of timing of pyridoxine monotherapy and pyridoxine with adjunct LRT on neurodevelopmental outcome. Patients with confirmed PDE-ALDH7A1 with at least one sibling with PDE-ALDH7A1 and a difference in age at treatment initiation were eligible and identified via the international PDE registry, resulting in thirty-seven patients of 18 families. Treatment regimen was pyridoxine monotherapy in ten families and pyridoxine with adjunct LRT in the other eight. Primary endpoints were standardized and clinically assessed neurodevelopmental outcomes. Clinical neurodevelopmental status was subjectively assessed over seven domains: overall neurodevelopment, speech/language, cognition, fine and gross motor skills, activities of daily living and behavioral/psychiatric abnormalities. RESULTS: The majority of early treated siblings on pyridoxine monotherapy performed better than their late treated siblings on the clinically assessed domain of fine motor skills. For siblings on pyridoxine and adjunct LRT, the majority of early treated siblings performed better on clinically assessed overall neurodevelopment, cognition, and behavior/psychiatry. Fourteen percent of the total cohort was assessed as normal on all domains. CONCLUSION: Early treatment with pyridoxine and adjunct LRT may be beneficial for neurodevelopmental outcome. When evaluating a more extensive neurodevelopmental assessment, the actual impairment rate may be higher than the 75% reported in literature. TAKE- HOME MESSAGE: Early initiation of lysine reduction therapies adjunct to pyridoxine treatment in patients with PDE-ALDH7A1 may result in an improved neurodevelopmental outcome.


Asunto(s)
Lisina , Piridoxina , Actividades Cotidianas , Estudios de Cohortes , Epilepsia , Humanos , Piridoxina/uso terapéutico , Estudios Retrospectivos
5.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36555701

RESUMEN

Pyridoxine-dependent epilepsy (PDE) is a rare autosomal recessive developmental and epileptic encephalopathy caused by pathogenic variants in the ALDH7A1 gene (PDE-ALDH7A1), which mainly has its onset in neonates and infants. Early diagnosis and treatment are crucial to prevent severe neurological sequelae or death. Sensitive, specific, and stable biomarkers for diagnostic evaluations and follow-up examinations are essential to optimize outcomes. However, most of the known biomarkers for PDE lack these criteria. Additionally, there is little discussion regarding the interdependence of biomarkers in the PDE-ALDH7A1 metabolite profile. Therefore, the aim of this study was to understand the underlying mechanisms in PDE-ALDH7A1 and to discover new biomarkers in the plasma of patients using global metabolomics. Plasma samples from 9 patients with genetically confirmed PDE-ALDH7A1 and 22 carefully selected control individuals were analyzed by ultra high performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS). Two novel and reliable pyridoxine-independent diagnostic markers, 6-hydroxy-2-aminocaproic acid (HACA) and an isomer of C9H11NO4, were identified. Furthermore, a possible reaction mechanism is proposed for HACA. This study demonstrates the capability of global metabolomics in disease screening to detect established and novel biomarkers.


Asunto(s)
Aldehído Deshidrogenasa , Epilepsia , Lactante , Recién Nacido , Humanos , Aldehído Deshidrogenasa/genética , Epilepsia/diagnóstico , Epilepsia/genética , Piridoxina , Biomarcadores
6.
J Inherit Metab Dis ; 44(1): 178-192, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33200442

RESUMEN

Pyridoxine-dependent epilepsy (PDE-ALDH7A1) is an autosomal recessive condition due to a deficiency of α-aminoadipic semialdehyde dehydrogenase, which is a key enzyme in lysine oxidation. PDE-ALDH7A1 is a developmental and epileptic encephalopathy that was historically and empirically treated with pharmacologic doses of pyridoxine. Despite adequate seizure control, most patients with PDE-ALDH7A1 were reported to have developmental delay and intellectual disability. To improve outcome, a lysine-restricted diet and competitive inhibition of lysine transport through the use of pharmacologic doses of arginine have been recommended as an adjunct therapy. These lysine-reduction therapies have resulted in improved biochemical parameters and cognitive development in many but not all patients. The goal of these consensus guidelines is to re-evaluate and update the two previously published recommendations for diagnosis, treatment, and follow-up of patients with PDE-ALDH7A1. Members of the International PDE Consortium initiated evidence and consensus-based process to review previous recommendations, new research findings, and relevant clinical aspects of PDE-ALDH7A1. The guideline development group included pediatric neurologists, biochemical geneticists, clinical geneticists, laboratory scientists, and metabolic dieticians representing 29 institutions from 16 countries. Consensus guidelines for the diagnosis and management of patients with PDE-ALDH7A1 are provided.


Asunto(s)
Arginina/administración & dosificación , Suplementos Dietéticos , Epilepsia/dietoterapia , Epilepsia/diagnóstico , Aldehído Deshidrogenasa/deficiencia , Consenso , Epilepsia/tratamiento farmacológico , Humanos , Cooperación Internacional , Lisina/deficiencia , Piridoxina/uso terapéutico
7.
J Nutr ; 150(Suppl 1): 2556S-2560S, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33000154

RESUMEN

Lysine is an essential amino acid, and inherited diseases of its metabolism therefore represent defects of lysine catabolism. Although some of these enzyme defects are not well described yet, glutaric aciduria type I (GA1) and antiquitin (2-aminoadipic-6-semialdehyde dehydrogenase) deficiency represent the most well-characterized diseases. GA1 is an autosomal recessive disorder due to a deficiency of glutaryl-CoA dehydrogenase. Untreated patients exhibit early onset macrocephaly and may present a neurological deterioration with regression and movement disorder at the time of a presumably "benign" infection most often during the first year of life. This is associated with a characteristic neuroimaging pattern with frontotemporal atrophy and striatal injuries. Diagnosis relies on the identification of glutaric and 3-hydroxyglutaric acid in urine along with plasma glutarylcarnitine. Treatment consists of a low-lysine diet aiming at reducing the putatively neurotoxic glutaric and 3-hydroxyglutaric acids. Additional therapeutic measures include administration of l-carnitine associated with emergency measures at the time of intercurrent illnesses aiming at preventing brain injury. Early treated (ideally through newborn screening) patients exhibit a favorable long-term neurocognitive outcome, whereas late-treated or untreated patients may present severe neurocognitive irreversible disabilities. Antiquitin deficiency is the most common form of pyridoxine-dependent epilepsy. α-Aminoadipic acid semialdehyde (AASA) and Δ-1-piperideine-6-carboxylate (P6C) accumulate proximal to the enzymatic block. P6C forms a complex with pyridoxal phosphate (PLP), a key vitamer of pyridoxine, thereby reducing PLP bioavailability and subsequently causing epilepsy. Urinary AASA is a biomarker of antiquitin deficiency. Despite seizure control, only 25% of the pyridoxine-treated patients show normal neurodevelopment. Low-lysine diet and arginine supplementation are proposed in some patients with decrease of AASA, but the impact on neurodevelopment is unclear. In summary, GA1 and antiquitin deficiency are the 2 main human defects of lysine catabolism. Both include neurological impairment. Lysine dietary restriction is a key therapy for GA1, whereas its benefits in antiquitin deficiency appear less clear.


Asunto(s)
Aldehído Deshidrogenasa/deficiencia , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Encefalopatías Metabólicas Innatas/metabolismo , Encefalopatías Metabólicas/metabolismo , Encéfalo/metabolismo , Epilepsia/metabolismo , Glutaril-CoA Deshidrogenasa/deficiencia , Lisina/metabolismo , Ácido 2-Aminoadípico/análogos & derivados , Ácido 2-Aminoadípico/metabolismo , Aldehído Deshidrogenasa/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Arginina/uso terapéutico , Encéfalo/patología , Encefalopatías Metabólicas/terapia , Encefalopatías Metabólicas Innatas/terapia , Carnitina/análogos & derivados , Carnitina/metabolismo , Carnitina/uso terapéutico , Epilepsia/terapia , Glutaratos/metabolismo , Glutaril-CoA Deshidrogenasa/metabolismo , Humanos , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/terapia , Fosfato de Piridoxal/metabolismo , Piridoxina/metabolismo , Piridoxina/uso terapéutico
8.
J Inherit Metab Dis ; 43(3): 635-644, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31652343

RESUMEN

Certain loss-of-function mutations in the gene encoding the lysine catabolic enzyme aldehyde dehydrogenase 7A1 (ALDH7A1) cause pyridoxine-dependent epilepsy (PDE). Missense mutations of Glu427, especially Glu427Gln, account for ~30% of the mutated alleles in PDE patients, and thus Glu427 has been referred to as a mutation hot spot of PDE. Glu427 is invariant in the ALDH superfamily and forms ionic hydrogen bonds with the nicotinamide ribose of the NAD+ cofactor. Here we report the first crystal structures of ALDH7A1 containing pathogenic mutations targeting Glu427. The mutant enzymes E427Q, Glu427Asp, and Glu427Gly were expressed in Escherichia coli and purified. The recombinant enzymes displayed negligible catalytic activity compared to the wild-type enzyme. The crystal structures of the mutant enzymes complexed with NAD+ were determined to understand how the mutations impact NAD+ binding. In the E427Q and E427G structures, the nicotinamide mononucleotide is highly flexible and lacks a defined binding pose. In E427D, the bound NAD+ adopts a "retracted" conformation in which the nicotinamide ring is too far from the catalytic Cys residue for hydride transfer. Thus, the structures revealed a shared mechanism for loss of function: none of the variants are able to stabilise the nicotinamide of NAD+ in the pose required for catalysis. We also show that these mutations reduce the amount of active tetrameric ALDH7A1 at the concentration of NAD+ tested. Altogether, our results provide the three-dimensional molecular structural basis of the most common pathogenic variants of PDE and implicate strong (ionic) hydrogen bonds in the aetiology of a human disease.


Asunto(s)
Aldehído Deshidrogenasa/química , Aldehído Deshidrogenasa/genética , Epilepsia/genética , Epilepsia/patología , Mutación Missense , Aldehído Deshidrogenasa/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Conformación Proteica , Homología de Secuencia
9.
J Inherit Metab Dis ; 43(4): 891-900, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31930735

RESUMEN

Antiquitin (ATQ) deficiency leads to tissue, plasma, and urinary accumulation of alpha-aminoadipic semialdehyde (AASA) and its Schiff base delta-1-piperideine-6-carboxylate (P6C). Although genetic testing of ALDH7A1 is the most definitive diagnostic method, quantifications of pathognomonic metabolites are important for the diagnosis and evaluation of therapeutic and dietary interventions. Current metabolite quantification methods use laborious, technically highly complex, and expensive liquid chromatography-tandem mass spectro-metry, which is available only in selected laboratories worldwide. Incubation of ortho-aminobenzaldehyde (oABA) with P6C leads to the formation of a triple aromatic ring structure with characteristic absorption and fluorescence properties. The mean concentration of P6C in nine urine samples from seven ATQ-deficient patients under standard treatment protocols was statistically highly significantly different (P < .001) compared to the mean of 74 healthy controls aged between 2 months and 57 years. Using this limited data set the specificity and sensitivity is 100% for all tested age groups using a P6C cut-off of 2.11 µmol/mmol creatinine, which represents the 99% prediction interval of the P6C concentrations in 17 control urine samples from children below 6 years of age. Plasma P6C concentrations were only elevated in one ATQ subject, possibly because P6C is trapped by pyridoxal-5-phosphate (PLP) blocking fusing with oABA. Nevertheless, both urine and plasma samples were amenable to the quantification of exogenous P6C with high response rates. The P6C quantification method using fusion of oABA with P6C is fast, simple, and inexpensive and might be readily implemented into routine clinical diagnostic laboratories for the early diagnosis of neonatal pyridoxine-dependent epilepsy.


Asunto(s)
Aldehído Deshidrogenasa/deficiencia , Benzaldehídos/orina , Epilepsia/orina , Ácidos Picolínicos/orina , Adolescente , Adulto , Aldehído Deshidrogenasa/genética , Estudios de Casos y Controles , Niño , Preescolar , Dieta , Epilepsia/diagnóstico , Epilepsia/genética , Epilepsia/metabolismo , Femenino , Humanos , Lactante , Lisina/metabolismo , Masculino , Persona de Mediana Edad , Adulto Joven
10.
J Inherit Metab Dis ; 42(2): 353-361, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30043187

RESUMEN

Pyridoxine dependent epilepsy (PDE) is a treatable epileptic encephalopathy characterized by a positive response to pharmacologic doses of pyridoxine. Despite seizure control, at least 75% of individuals have intellectual disability and developmental delay. Current treatment paradigms have resulted in improved cognitive outcomes emphasizing the importance of an early diagnosis. As genetic testing is increasingly accepted as first tier testing for epileptic encephalopathies, we aimed to provide a comprehensive overview of ALDH7A1 mutations that cause PDE. The genotypes, ethnic origin and reported gender was collected from 185 subjects with a diagnosis of PDE. The population frequency for the variants in this report and the existing literature were reviewed in the Genome Aggregation Database (gnomAD). Novel variants identified in population databases were also evaluated through in silico prediction software and select variants were over-expressed in an E.coli-based expression system to measure α-aminoadipic semialdehyde dehydrogenase activity and production of α-aminoadipic acid. This study adds 47 novel variants to the literature resulting in a total of 165 reported pathogenic variants. Based on this report, in silico predictions, and general population data, we estimate an incidence of approximately 1:64,352 live births. This report provides a comprehensive overview of known ALDH7A1 mutations that cause PDE, and suggests that PDE may be more common than initially estimated. Due to the relative high frequency of the disease, the likelihood of under-diagnosis given the wide clinical spectrum and limited awareness among clinicians as well as the cognitive improvement noted with early treatment, newborn screening for PDE may be warranted.


Asunto(s)
Aldehído Deshidrogenasa/genética , Epilepsia/genética , Ácido 2-Aminoadípico/metabolismo , Genotipo , Humanos , Mutación
11.
J Inherit Metab Dis ; 42(3): 565-574, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30663059

RESUMEN

Pyridoxine-dependent epilepsy (PDE) is often characterized as an early onset epileptic encephalopathy with dramatic clinical improvement following pyridoxine supplementation. Unfortunately, not all patients present with classic neonatal seizures or respond to an initial pyridoxine trial, which can result in the under diagnosis of this treatable disorder. Restriction of lysine intake and transport is associated with improved neurologic outcomes, although treatment should be started in the first year of life to be effective. Because of the documented diagnostic delay and benefit of early treatment, we aimed to develop a newborn screening method for PDE. Previous studies have demonstrated the accumulation of Δ1 -piperideine-6-carboxylate and α-aminoadipic semialdehyde in individuals with PDE, although these metabolites are unstable at room temperature (RT) limiting their utility for newborn screening. As a result, we sought to identify a biomarker that could be applied to current newborn screening paradigms. We identified a novel metabolite, 6-oxo-pipecolate (6-oxo-PIP), which accumulates in substantial amounts in blood, plasma, urine, and cerebral spinal fluid of individuals with PDE. Using a stable isotope-labeled internal standard, we developed a nonderivatized liquid chromatography tandem mass spectrometry-based method to quantify 6-oxo-PIP. This method replicates the analytical techniques used in many laboratories and could be used with few modifications in newborn screening programs. Furthermore, 6-oxo-PIP was measurable in urine for 4 months even when stored at RT. Herein, we report a novel biomarker for PDE that is stable at RT and can be quantified using current newborn screening techniques.


Asunto(s)
Epilepsia/diagnóstico , Tamizaje Neonatal/métodos , Ácidos Pipecólicos/análisis , Biomarcadores , Cromatografía Liquida , Femenino , Humanos , Recién Nacido , Masculino
12.
Biochim Biophys Acta Mol Basis Dis ; 1863(1): 121-128, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27615426

RESUMEN

Lysine is catabolized in mammals through the saccharopine and pipecolate pathways - the former is mainly hepatic and renal, and the latter is believed to play a role in the cerebral lysine oxidation. Both pathways lead to the formation of aminoadipic semialdehyde (AASA) that is then oxidized to aminoadipate (AAA) by antiquitin (ALDH7A1). Mutations in the ALDH7A1 gene result in the accumulation of AASA and its cyclic form, piperideine-6-carboxylate (P6C), which causes pyridoxine-dependent epilepsy (PDE). P6C reacts with pyridoxal 5'-phosphate (PLP) causing its inactivation. Here, we used liquid chromatography-mass spectrometry to investigate lysine catabolism in mice injected with lysine labelled at either its nitrogen epsilon (ε-15N) or nitrogen alpha (α-15N). Analysis of ε-15N and α-15N lysine catabolites in plasma, liver and brain suggested the saccharopine as the main pathway for AAA biosynthesis. Although there was evidence for upstream cerebral pipecolate pathway activity, the resulting pipecolate does not appear to be further oxidized into AASA/P6C/AAA. By far the bulk of lysine degradation and therefore, the primary source of lysine catabolites are hepatic and renal. The results indicate that the saccharopine pathway is primarily responsible for body's production of AASA/P6C. The centrality of the saccharopine pathway in whole body lysine catabolism opens new possibilities of therapeutic targets for PDE. We suggest that inhibition of this pathway upstream of AASA/P6C synthesis may be used to prevent its accumulation benefiting PDE patients. Inhibition of the enzyme aminoadipic semialdehyde synthase, for example, could constitute a new strategy to treat PDE and other inherited diseases of lysine catabolism.


Asunto(s)
Ácido 2-Aminoadípico/metabolismo , Epilepsia/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Redes y Vías Metabólicas , Ácido 2-Aminoadípico/análogos & derivados , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Ácidos Picolínicos/metabolismo , Fosfato de Piridoxal/metabolismo
14.
Mol Cell Probes ; 32: 18-23, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27856333

RESUMEN

Pyridoxine dependent epilepsy (PDE) (OMIM#266100) is a neonatal form of epilepsy, caused by dysfunction of the enzyme α-aminoadipic semialdehyde dehydrogenase (ALDH7A1 or Antiquitin). This enzyme converts α-aminoadipic semialdehyde (α-AASA) into α-aminoadipate (AAA), a critical step in the lysine metabolism of the brain. ALDH7A1 dysfunction causes an accumulation of α-AASA and δ1-piperideine-6-carboxylic acid (P6C), which are in equilibrium with each other. P6C binds and inactivates pyridoxal 5'-phosphate (PLP), the active form of pyridoxine. Individuals affected by ALDH7A1 deficiency show pre-natal and post-natal seizures, which respond to oral pyridoxine but not to other pediatric anti-epileptic drugs. We discovered a novel missense mutation (c.566G > A, p.Gly189Glu) in homozygous state residing in the NAD+ binding domain coding region of exon 6 and affecting an highly conserved amino acid residue. The seizures stopped under post-natal pyridoxine therapy, nevertheless a longer follow-up is needed to evaluate the intellectual development of the child, who is additionally treated with oral l-arginine since the 13th month of life. Developmental delay with or without structural cortex abnormalities were reported in several patients. A brain MRI scan revealed hyperintense white matter in the right cerebellum compatible with cerebellar gliosis. Taken together, our studies enlarge the group of missense pathogenic mutations of ALDH7A1 gene and reveal a novel cerebellar finding within the PDE patients cohort.


Asunto(s)
Aldehído Deshidrogenasa/genética , Epilepsia/genética , Mutación Missense/genética , Aldehído Deshidrogenasa/química , Secuencia de Aminoácidos , Secuencia de Bases , Consanguinidad , Exones/genética , Femenino , Homocigoto , Humanos , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Linaje
15.
Metab Brain Dis ; 32(2): 443-451, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27882480

RESUMEN

We report treatment outcome of eleven patients with pyridoxine-dependent epilepsy caused by pathogenic variants in ALDH7A1 (PDE-ALDH7A1). We developed a clinical severity score to compare phenotype with biochemical features, genotype and delays in the initiation of pyridoxine. Clinical severity score included 1) global developmental delay/ intellectual disability; 2) age of seizure onset prior to pyridoxine; 3) current seizures on treatment. Phenotype scored 1-3 = mild; 4-6 = moderate; and 7-9 = severe. Five patients had mild, four patients had moderate, and two patients had severe phenotype. Phenotype ranged from mild to severe in eight patients (no lysine-restricted diet in the infantile period) with more than 10-fold elevated urine or plasma α-AASA levels. Phenotype ranged from mild to moderate in patients with homozygous truncating variants and from moderate to severe in patients with homozygous missense variants. There was no correlation between severity of the phenotype and the degree of α-AASA elevation in urine or genotype. All patients were on pyridoxine, nine patients were on arginine and five patients were on the lysine-restricted diet. 73% of the patients became seizure free on pyridoxine. 25% of the patients had a mild phenotype on pyridoxine monotherapy. Whereas, 100% of the patients, on the lysine-restricted diet initiated within their first 7 months of life, had a mild phenotype. Early initiation of lysine-restricted diet and/or arginine therapy likely improved neurodevelopmental outcome in young patients with PDE-ALDH7A1.


Asunto(s)
Epilepsia/tratamiento farmacológico , Epilepsia/genética , Piridoxina/uso terapéutico , Vitaminas/uso terapéutico , Ácido 2-Aminoadípico/análogos & derivados , Ácido 2-Aminoadípico/sangre , Ácido 2-Aminoadípico/orina , Adolescente , Aldehído Deshidrogenasa/genética , Arginina/uso terapéutico , Niño , Preescolar , Estudios de Cohortes , Femenino , Genotipo , Humanos , Lactante , Lisina , Masculino , Mutación Missense , Fenotipo , Piridoxina/administración & dosificación , Estudios Retrospectivos , Convulsiones/tratamiento farmacológico , Convulsiones/fisiopatología , Resultado del Tratamiento , Vitaminas/administración & dosificación
16.
Int J Mol Sci ; 18(7)2017 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-28671587

RESUMEN

Inborn errors of metabolism (IEM) are a rare cause of epilepsy, but seizures and epilepsy are frequently encountered in patients with IEM. Since these disorders are related to inherited enzyme deficiencies with resulting effects on metabolic/biochemical pathways, the term "metabolic epilepsy" can be used to include these conditions. These epilepsies can present across the life span, and share features of refractoriness to anti-epileptic drugs, and are often associated with co-morbid developmental delay/regression, intellectual, and behavioral impairments. Some of these disorders are amenable to specific treatment interventions; hence timely and appropriate diagnosis is critical to improve outcomes. In this review, we discuss those disorders in which epilepsy is a dominant feature and present an approach to the clinical recognition, diagnosis, and management of these disorders, with a greater focus on primarily treatable conditions. Finally, we propose a tiered approach that will permit a clinician to systematically investigate, identify, and treat these rare disorders.


Asunto(s)
Epilepsia/diagnóstico , Epilepsia/etiología , Epilepsia/terapia , Errores Innatos del Metabolismo/complicaciones , Errores Innatos del Metabolismo/metabolismo , Adolescente , Adulto , Factores de Edad , Biomarcadores , Niño , Preescolar , Manejo de la Enfermedad , Electroencefalografía , Pruebas Genéticas , Humanos , Lactante , Recién Nacido , Errores Innatos del Metabolismo/diagnóstico , Neuroimagen/métodos , Fenotipo , Evaluación de Síntomas , Adulto Joven
17.
Mol Genet Metab ; 118(3): 167-172, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27324284

RESUMEN

Pyridoxine-Dependent Epilepsy (PDE) is a recessive disorder caused by deficiency of α-aminoadipic semialdehyde dehydrogenase in the catabolic pathway of lysine. It is characterized by intractable seizures controlled by the administration of pharmacological doses of vitamin B6. Despite seizure control with pyridoxine, intellectual disability and developmental delays are still observed in some patients with PDE, likely due to the accumulation of toxic intermediates in the lysine catabolic pathway: alpha-aminoadipic semialdehyde (AASA), delta-1-piperideine-6-carboxylate (P6C), and pipecolic acid. Here we evaluate biochemical and clinical parameters in two PDE patients treated with a lysine-restricted diet and arginine supplementation (100-150mg/kg), aimed at reducing the levels of PDE biomarkers. Lysine restriction resulted in decreased accumulation of PDE biomarkers and improved development. Plasma lysine but not plasma arginine, directly correlated with plasma levels of AASA-P6C (p<0.001, r(2)=0.640) and pipecolic acid (p<0.01, r(2)=0.484). In addition, plasma threonine strongly correlated with the levels of AASA-P6C (p<0.0001, r(2)=0.732) and pipecolic acid (p<0.005, r(2)=0.527), suggesting extreme sensitivity of threonine catabolism to pyridoxine availability. Our results further support the use of dietary therapies in combination with pyridoxine for the treatment of PDE.


Asunto(s)
Arginina/administración & dosificación , Biomarcadores/sangre , Epilepsia/dietoterapia , Lisina/sangre , Preescolar , Suplementos Dietéticos , Epilepsia/metabolismo , Femenino , Humanos , Lactante , Lisina/deficiencia , Masculino , Ácidos Pipecólicos/sangre , Estudios Retrospectivos , Sacaropina Deshidrogenasas/sangre , Resultado del Tratamiento
18.
Metab Brain Dis ; 31(6): 1435-1443, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27438048

RESUMEN

Pyridoxine-dependent epilepsy (PDE) is a pharmacoresistant epileptogenic encephalopathy controlled by pyridoxine supplementation at pharmacological doses. Despite supplementation, the long-term outcome is often poor possibly because of recurrent seizures and developmental structural brain abnormalities. We report on five patients with PDE from three unrelated families. The diagnosis was confirmed by ALDH7A1 sequencing, which allowed for the characterization of two homozygous variations [NM_001182.3:c.1279G > C - p.(Glu427Gln) and c.834G > A - p.(Val278Val)]. Brain autopsy was conducted for one untreated patient with molecularly confirmed antiquitin deficiency. Macroscopic and histological examination revealed a combination of lesions resulting from recurrent seizures and consisting of extensive areas of cortical necrosis, gliosis, and hippocampic sclerosis. The examination also revealed developmental abnormalities including corpus callosum dysgenesis and corticospinal pathfinding anomalies. This case is the second to be reported in the literature, and our findings show evidence that antiquitin is required for normal brain development and functioning. Despite prophylactic prenatal pyridoxine supplementation during the last trimester of pregnancy in one of the three families and sustained pyridoxine treatment in three living patients, the clinical outcome remained poor with delayed acquisition of neurocognitive skills. Combined therapy (pyridoxine/arginine supplementation and lysine-restricted diet) should be considered early in the course of the disease for a better long-term outcome. Enhanced knowledge of PDE features is required to improve treatment strategies.


Asunto(s)
Epilepsia/genética , Epilepsia/patología , Niño , Preescolar , Suplementos Dietéticos , Epilepsia/dietoterapia , Resultado Fatal , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Piridoxina/administración & dosificación
19.
Mol Genet Metab ; 116(1-2): 35-43, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26026794

RESUMEN

Pyridoxine-dependent epilepsy (PDE) is an epileptic encephalopathy characterized by response to pharmacologic doses of pyridoxine. PDE is caused by deficiency of α-aminoadipic semialdehyde dehydrogenase resulting in impaired lysine degradation and subsequent accumulation of α-aminoadipic semialdehyde. Despite adequate seizure control with pyridoxine monotherapy, 75% of individuals with PDE have significant developmental delay and intellectual disability. We describe a new combined therapeutic approach to reduce putative toxic metabolites from impaired lysine metabolism. This approach utilizes pyridoxine, a lysine-restricted diet to limit the substrate that leads to neurotoxic metabolite accumulation and L-arginine to compete for brain lysine influx and liver mitochondrial import. We report the developmental and biochemical outcome of six subjects who were treated with this triple therapy. Triple therapy reduced CSF, plasma, and urine biomarkers associated with neurotoxicity in PDE. The addition of arginine supplementation to children already treated with dietary lysine restriction and pyridoxine further reduced toxic metabolites, and in some subjects appeared to improve neurodevelopmental outcome. Dietary lysine restriction was associated with improved seizure control in one subject, and the addition of arginine supplementation increased the objective motor outcome scale in two twin siblings, illustrating the contribution of each component of this treatment combination. Optimal results were noted in the individual treated with triple therapy early in the course of the disease. Residual disease symptoms could be related to early injury suggested by initial MR imaging prior to initiation of treatment or from severe epilepsy prior to diagnosis. This observational study reports the use of triple therapy, which combines three effective components in this rare condition, and suggests that early diagnosis and treatment with this new triple therapy may ameliorate the cognitive impairment in PDE.


Asunto(s)
Aminoácidos/uso terapéutico , Arginina/uso terapéutico , Epilepsia/tratamiento farmacológico , Lisina/uso terapéutico , Trastornos del Neurodesarrollo/tratamiento farmacológico , Piridoxina/uso terapéutico , Complejo Vitamínico B/uso terapéutico , Encéfalo/metabolismo , Encéfalo/patología , Líquido Cefalorraquídeo/metabolismo , Dietoterapia , Suplementos Dietéticos , Quimioterapia Combinada , Epilepsia/sangre , Epilepsia/orina , Femenino , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Estudios Retrospectivos
20.
Neurol Sci ; 36(12): 2209-12, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26232297

RESUMEN

Pyridoxine-dependent epilepsy (PDE) is a rare autosomal recessive disorder characterized by intractable seizures in neonates and infants. The seizures cannot be controlled with antiepileptic medications but respond both clinically and electrographically to large daily supplements of pyridoxine (vitamin B6). PDE is caused by mutations in the ALDH7A1 gene. Molecular genetic analysis of the ALDH7A1 gene was performed in seven patients, referred with clinical diagnosis of PDE. Mutations were detected in a dizygotic twin pair and a non-related boy with classical form of PDE. Direct sequencing of the ALDH7A1 gene revealed one novel (c.297delG, p.Trp99*) and two already reported (c.328C>T, p.Arg110*; c.584A>G, p.Asn195Ser) mutations. Here, we report the first genetically proven cases of PDE in Bulgaria.


Asunto(s)
Aldehído Deshidrogenasa/genética , Epilepsia/genética , Predisposición Genética a la Enfermedad , Mutación/genética , Piridoxina/efectos adversos , Anticonvulsivantes/uso terapéutico , Bulgaria , Niño , Preescolar , Análisis Mutacional de ADN/métodos , Suplementos Dietéticos , Epilepsia/inducido químicamente , Epilepsia/tratamiento farmacológico , Femenino , Humanos , Lactante , Masculino , Convulsiones/diagnóstico , Convulsiones/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA