RESUMEN
Huangjiu is a spontaneously fermented alcoholic beverage, that undergoes intricate microbial compositional changes. This study aimed to unravel the flavor and quality formation mechanisms based on the microbial metabolism of Huangjiu. Here, metagenome techniques, chemometrics analysis, and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) metabolomics combined with microbial metabolic network were employed to investigate the distinctions and relationship between the microbial profiles and the quality characteristics, flavor metabolites, functional metabolic patterns of Huangjiu across three regions. Significant variations (P < 0.05) were observed in metabolic rate of physicochemical parameters and biogenic amine concentration among three regions. 8 aroma compounds (phenethyl acetate, phenylethyl alcohol, isobutyl alcohol, ethyl octanoate, ethyl acetate, ethyl hexanoate, isoamyl alcohol, and diethyl succinate) out of 448 volatile compounds were identified as the regional chemical markers. 25 dominant microbial genera were observed through metagenomic analysis, and 13 species were confirmed as microbial markers in three regions. A metabolic network analysis revealed that Saccharomycetales (Saccharomyces), Lactobacillales (Lactobacillus, Weissella, and Leuconostoc), and Eurotiales (Aspergillus) were the predominant populations responsible for substrate, flavor (mainly esters and phenylethyl alcohol) metabolism, Lactobacillales and Enterobacterales were closely linked with biogenic amine. These findings provide scientific evidence for regional microbial contributions to geographical characteristics of Huangjiu, and perspectives for optimizing microbial function to promote Huangjiu quality.
Asunto(s)
Bacterias , Fermentación , Cromatografía de Gases y Espectrometría de Masas , Redes y Vías Metabólicas , Metagenómica , Oryza , Compuestos Orgánicos Volátiles , Vino , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Aminas Biogénicas/análisis , Aminas Biogénicas/metabolismo , China , Aromatizantes/metabolismo , Aromatizantes/química , Metabolómica/métodos , Microbiota , Odorantes/análisis , Oryza/microbiología , Oryza/química , Oryza/metabolismo , Microextracción en Fase Sólida , Gusto , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/análisis , Vino/análisis , Vino/microbiologíaRESUMEN
BACKGROUND: Gluten-free bread (GFB) has technical bottlenecks such as hard texture, rough taste and low nutrition in practical production. In order to solve these problems, this study used germinated brown rice starch as the main raw material, and investigated the effects of soybean isolate protein (SPI) on the multiscale structure of germinated brown rice starch and bread quality. RESULTS: A gluten-free rice bread process simulation system was established, and the interaction between SPI and starch in the simulation system was characterized. The result shows that the interaction forces between SPI and germinated brown rice starch were mainly represented by hydrogen bonds, and with the addition of SPI, the crystallinity of starch showed a downward trend. At the same time, when the amount of SPI was 3%, the appearance quality was the best and the specific volume of bread was 1.08 mL g-1. When the amount of SPI was 6%, the texture quality was the best. Compared with the bread without SPI, the hardness of the bread with 6% SPI was reduced by 0.13 times, the springiness was increased by 0.03 times, the color was the most vibrant, the L* value being 1.02 times the original, and the baking loss was reduced to 0.98 times the original. CONCLUSIONS: The interaction force between SPI and germinated brown rice starch and its effect on bread quality were clarified, and these results inform choices about providing a theoretical basis for the subsequent development of higher-quality GFB. © 2024 Society of Chemical Industry.
RESUMEN
BACKGROUND: In this study, different proportions of soybean flour and gluten flour were used as partial replacements for wheat flour for the fermentation of Pixian Douban-Meju (PXDB). The aim was to study the effects of soybean flour/gluten flour on the quality improvement of PXDB. RESULTS: In comparison with the control group (CT) (0% substitution of wheat flour), substitution of wheat flower with 12.5% soybean flour (the H2 group), 7.5% gluten flour (G2), and 10% gluten flour (G3) improved the amino acid nitrogen content by 3.8%, 5.6%, and 9.4% respectively. The mixtures of wheat flour and gluten flour (G2 or G3) increased the organic acid and free amino acid content. The results of two-dimensional gas chromatography mass spectrometry (GC × GC-MS) showed that the amount of key aroma substances increased about sixfold in comparison with the CT group (194.61 g.kg-1 ), achieving 1283.67, 1113.883, and 1160.19 g.kg-1 in the H2, G2, and G3 groups, respectively. There were also more aldehydes and pyrazines in all the substitution groups. Quantitative descriptive analysis indicated that the G3 sample presented the best organoleptic quality with a reddish-brown color and a more mellow aroma than the control sample. CONCLUSION: In conclusion, the fermentation of G3 resulted in higher quality PXDB-meju, showing that partial substitution of wheat flour with gluten improved the quality of PXDB. © 2023 Society of Chemical Industry.
Asunto(s)
Harina , Glútenes , Glútenes/química , Harina/análisis , Glycine max , Polvos , Triticum/química , Aminoácidos/químicaRESUMEN
In this study, the plant node was dried in an oven (40, 50 and 60 °C), shade and temperature-controlled microwave (40, 50 and 60 °C) methods. Statistically (p<0.05), the values closest to the color values of fresh grass were determined in an oven at 40 °C drying temperature. Effective diffusion values varied between 8.85×10-8 -5.65×10-6 â m2 s-1 . While the activation energy was 61.28â kJ mol-1 in the oven, it was calculated as 85.24â kJ mol-1 in the temperature-controlled microwave. Drying data was best estimated in the Midilli-Küçük (R2 0.9998) model oven at 50 °C. The highest SMER value was calculated as 0.0098â kg kWh-1 in the temperature-controlled microwave drying method. The lowest SEC value in the temperature-controlled microwave was determined as 24.03â kWh kg-1 . It was determined that enthalpy values varied between -2484.66/-2623.38â kJ mol-1 , entropy values between -162.04/-122.65â J mol-1 and Gibbs free energy values between 453335.22-362581.40â kJ mol-1 . Drying rate values were calculated in the range of 0.0127-0.9820 g moisture g dry matter-1 in the temperature-controlled microwave, 0.0003-0.0762 g dry matter-1 in the oven, and 0.001-0.0058 g moisture g dry moisture matter-1 in the shade. Phenolic content 6957.79â µg GAE g-1 fw - 48322.27â µg GAE g-1 dw, flavonoid content 3806.67â mg KE L-1 fw - 22200.00â mg KE L-1 dw and antioxidant capacity 43.35â µmol TE g-1 fw - 323.47â µmol TE g-1 dw. The highest chlorophyll values were obtained from samples dried in an oven at 40 °C. According to the findings, it is recommended to dry the knotweed (Polygonum cognatum Meissn.) plant in a temperature-controlled microwave oven at low temperatures. In this study, in terms of drying kinetics and energy parameters, a temperature-controlled microwave dryer of 60 °C is recommended, while in terms of quality characteristics, oven 40 °C and shade methods are recommended.
Asunto(s)
Antioxidantes , Polygonum , Temperatura , Microondas , Desecación/métodosRESUMEN
The present study aims to develop recipe compositions and technology for producing sponge cakes from wholemeal flour, partially replaced with a functional plant component dry blossom flour of Sambucus nigra L. Three designs of sponge cakes with 5, 10, and 15% content of flour of Sambucus nigra L. corrected up to 100% with whole-grain oat flour were studied. Their characteristics were compared with sponge cakes of 100% wheat flour/control. The obtained new products were characterized by reduced carbohydrates, increased content of dietary fiber, and preserved volume compared to the control. The physicochemical parameters of sponge cake and marshmallows with different concentrations of dry flowers of Sambucus nigra L. included in them differed from the control with lower water absorption, pH, and moisture, while having a higher relative mass and ash content and retaining the original size. Pathogenic microorganisms such as Escherichia coli, Salmonella sp., and Staphylococcus aureus, and common coliforms were not detected in the control and experimental samples when determining the microbiological parameters. Therefore, the developed formulations are an excellent alternative to wheat flour, significantly improving some nutritional characteristics such as smell, taste, dietary fiber, and lower carbohydrate content.
RESUMEN
BACKGROUND: Having short drying time and attractive product quality are important in fruit and vegetable dehydration processing. In this work, tri-frequency (20, 40 and 60 kHz) ultrasound-ethanol pretreatment, ultrasound-water pretreatment and ethanol pretreatment were employed before infrared convection drying (ICD) of scallion stalks, which was aimed at improving the drying process and quality of the end products. The mass transfer, drying characteristics (moisture ratio and drying rate and quality properties of scallion (rehydration, color, flavor, optical microscope image, moisture distribution and microbiological quality) were analyzed. RESULTS: All pretreatments have decreased the drying time by 33.34-83.34% compared to the control, while ultrasound-ethanol pretreatment provided the highest time reduction (83.34%). The reason is that the volatility of ethanol have replaced air in the tissue, which produced a better osmotic dehydration effect and the cavitation effect of ultrasound changed the cell function of the material, so that the food tissue was rapidly compressed and expanded, resulting in damage to the cell structure. Ultrasonic-ethanol pretreatment has greatly reduced the water loss and dry matter of fresh scallion, improved the rehydration effect of dried scallion, better retained the color and flavor of scallion and effectively reduced the microbiological quality of the scallion. CONCLUSION: The tri-frequency ultrasound-ethanol pretreatment has effectively improved the drying process and quality characteristics of the dried scallion. Therefore, this research has a great contribution to the drying technology, as evident in the remarkable reduction in drying time and the improvement in the quality of the end product. © 2020 Society of Chemical Industry.
Asunto(s)
Conservación de Alimentos/métodos , Cebollas/química , Cebollas/efectos de la radiación , Desecación/instrumentación , Etanol/química , Conservación de Alimentos/instrumentación , Tallos de la Planta/química , Tallos de la Planta/efectos de la radiación , Ondas UltrasónicasRESUMEN
This study was aimed to develop chicken nuggets using spent hen meat (SHM) added with milk fat (MF) and potato mash (PM) at different levels. Four different spent hen nuggets (SHNs) i.e. T1 (75% SHM with 5% MF), T2 (70% SHM with 8% MF and 2% PM), T3 (65% SHM with 11% MF and 4% PM), and T4 (60% SHM with 14% MF and 6% PM) were formulated and compared with the control, using broiler chicken meat without MF and PM. The control, T1, and T2 were not significantly different with respect to protein and fat contents. The emulsion stability (92.2%), frying yield (84.1%), hardness (19.2 N) and chewiness (11.4 N) of T2 were similar to the control. The incorporation of MF and PM resulted in increased taste and flavor scores for SHN. The overall acceptability score was same for the control and T2. The conjugated dienes and thiobarbituric acid-reactive substance results showed that the addition of MF at 8 to 10% did not have an effect on the oxidative stability of SHN during storage. MF-incorporated SHN may be a regular chicken nugget for all consumers due to improved texture and sensory quality with similar fat content to the control.
RESUMEN
This research aimed to evaluate the influences of the pulsed electric field (PEF), ultrasound (US), and combination between them (PEF + US) on the quality of vinegar processed from date palm fruits compared with untreated vinegar (UT). Physicochemical properties, free amino acids (FAA), volatile components, organic acids, total phenolics and flavonoids, and sensory analysis were determined. The results showed that there were no significant differences in pH, total titratable acidity, ethanol content, and total sugar in all treated vinegar compared with UT. However, the values were found to be decreased (PEF + US < PEF < US < UT). Twenty-eight compounds were identified in the vinegar treated by PEF + US as the highest number of components, followed by PEF and US (23 and 22 components, respectively), compared with 19 compounds identified in UT. Compared with UT, there was a significant increase (p < 0.05) in the total FAA in dates vinegar among all treated samples (UT < US < PEF < PEF + US). Total phenolic and flavonoids contents results indicated that there was a significant increase (p < 0.05) in the treated vinegar compared with UT. Sensory analysis results indicated that no significant difference (p < 0.05) in all the parameters, except for a quite significant difference (p < 0.05) in the overall acceptability between the treated vinegar. In this study, vinegar was successfully produced from date palm fruits. Therefore, PEF + US are capable not only in enhancing the extraction process but also in the production of vinegar with good quality.
RESUMEN
This study aimed to investigate the performance of equal amounts of edible green seaweed, Ulva intestinalis powder (2.77 g kg-1), and its sulphated polysaccharide ([USP], 0.5 g kg-1, based on the extraction yield from U. intestinalis powder) on the proximate compositions, lipid oxidation, pH, colour, textural properties, cooking yield and sensory attributes of fish-surimi restructured products during storage at - 18 °C as compared with the control. Results showed incorporation of two functional components resulted in lower TBARS values compared with the control over 6 months (P ≤ 0.05). The USP incorporated fingers showed the least moisture loss over 6 months (P < 0.05). Textural properties for two functional fingers remained relatively stable from month 0 to month 6, while the hardness increased significantly (P < 0.05) in the control fingers (67 to 80 N). Additionally, the sensory attributes of all formulated fingers were judged acceptable; however, the USP containing fingers were preferred by the sensory panelists, due to their juicy texture as a result of less cooking loss comparing with others. In conclusion, this study suggests the potential use of such natural marine ingredients to maintain the quality and to extend the shelf life of surimi-based products with beneficial health effects.
RESUMEN
BACKGROUND: High-molecular-weight glutenin subunits (HMW-GSs) play a critical role in determining the viscoelastic properties of wheat. Mutations induced by ion beam radiation have been applied to improve the yield and quality of crop. In this study, HMW-GS-deficient mutant lines were selected and the effects of Glu-1 loci deletion on wheat quality properties were illustrated according to the analysis of dry seeds of common wheat (Triticum aestivum L.) Xiaoyan 81 treated with a nitrogen ion beam. RESULTS: Three HMW-GS-deficient mutant lines were obtained and then detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Large-chromosome-fragment deletion resulted in specific deficiencies, and the deleted region sizes were determined using molecular markers. Agronomic characters, quantity and proportion of glutenins and dough microstructure of the deletion lines all proved to be quite different from those of wild-type Xiaoyan 81. Analysis of quality properties suggested that GluA1(-) had superior property parameters, while GluB1(-) and GluD1(-) both showed a significant decrease in quality properties compared with Xiaoyan 81. CONCLUSION: The effects of the three Glu-1 loci on flour and dough quality-related parameters should be Glu-D1 > Glu-B1 > Glu-A1. Ion beam radiation can be used as a mutagen to create new crop mutants.
Asunto(s)
Eliminación de Gen , Sitios Genéticos/genética , Glútenes/química , Glútenes/genética , Triticum/química , Triticum/genética , Pan/análisis , ADN de Plantas/análisis , Elasticidad , Electroforesis en Gel de Poliacrilamida , Harina/análisis , Genes de Plantas , Glútenes/fisiología , Microscopía Electrónica de Rastreo , Peso Molecular , Reacción en Cadena de la Polimerasa , Subunidades de Proteína/análisis , Subunidades de Proteína/química , Subunidades de Proteína/fisiología , Semillas/química , Semillas/genética , ViscosidadRESUMEN
Effects of controlled atmosphere storage (CAS) and modified atmosphere packaging (MAP) in comparison with conventional cold storage on qualitative properties of green-mature harvested tomato were evaluated. Qualitative properties included firmness, redness value (a*), hue angle, Total Soluble Solids (TSS) content, Titratable Acidity (TA) and TSS/TA. Under CAS and MAP conditions, gas composition was 5 kPa O2 and 3 kPa CO2. Results showed that the ability of CAS and MAP to retard the ripening process was more than cold storage. With regard to maintaining texture and colour, CAS treatment was the best and MAP was better than cold storage. Although amongst storage treatments, the maximum value of TSS was observed in cold storage, its decreasing trend in CAS was slower than that in cold storage. Additionally, MAP and especially CAS slowed down the diminishing trend of TA in tomatoes.
RESUMEN
Kiwi starch (KS) is a new fruit-derived starch-based food material. In this study, wheat flour was partially replaced with 10-20% KS to make bread, and the influence of this substitution on mixed flour, dough processing performance, bread quality, and shelf life was investigated. KS substitution improved the water-binding ability of mixed flour, making it easier to gelatinize while improving viscoelasticity but reducing the integrity of the dough's gluten network structure. As the substitution rate increases, the hardness, air-cell ratio, and width-to-height ratio of bread significantly increased, while the springiness, resilience, baking loss, and specific volume reduced significantly (p < 0.05). KS enriched the bread's color and flavor by promoting the Maillard reaction during baking. Overall acceptability of 10% KS group was highest in sensory evaluation. KS substitution significantly reduced starch digestibility and expected glycemic index (GI), inhibited mold growth and reproduction during storage and prolonged the shelf life of the bread at 25 °C.
RESUMEN
Microbial fermentation emerges as a promising strategy to elevate the quality of soybean proteins in food industry. This study conducted a comprehensive assessment of the biotransformation of four types of soybean proteins by Bacillus subtilis BSNK-5, a proteinase-rich bacterium. BSNK-5 had good adaptability to each protein. Soluble protein, peptides and free amino acids increased in fermented soybean proteins (FSPs) and dominant after 48-84 h fermentation, enhancing nutritional value. Extensive proteolysis of BSNK-5 also improved antioxidant and antihypertensive activities, reaching peak level after 48 h fermentation. Furthermore, excessive proteolysis effectively enhanced the generation of beneficial spermidine without producing toxic histamine after fermentation, and formed the flavor profile with 56 volatiles in 48 h FSPs. Further degradation of amino acids showed a positive correlation with off-flavors, particularly the enrichment of 3-methylbutanoic acid. These findings establish a theoretical foundation for regulating moderate fermentation by BSNK-5 to enabling the high-value utilization of soybean protein.
Asunto(s)
Bacillus subtilis , Proteínas de Soja , Proteínas de Soja/metabolismo , Bacillus subtilis/metabolismo , Glycine max , Aminoácidos/metabolismo , Antioxidantes/metabolismo , FermentaciónRESUMEN
In this work, whiteness, water-holding capacity, gel strength, textural profile analysis were performed to examine the quality of fish balls with abalone (FBA). In addition, a correlation between quality and sensory properties was established. The addition of abalone significantly increased the water holding capacity, gel strength and textural properties of FBA, and decreased their whiteness, the best overall quality was achieved at 9 % w/w abalone addition. The E-nose and E-tongue results revealed that the addition of abalone changed the flavour of FBA. HS-SPME-GC-MS identified 65 volatile organic compounds (VOCs) and proved to be effective in reducing fishy flavour. E-nose can distinguish between the VOCs in FBA. Moreover, Umami and 1-octen-3-ol can serve as important indicators to observe changes in the quality of FBA, as they were positively connected with WHC, gumminess, chewiness, resilience, a*, hexanal, etc. The results provided a theoretical basis for the development of abalone and surimi products.
RESUMEN
To better understand the functional mechanism of four types of tea (green tea, black tea, jasmine tea, and dark tea) on the quality of stewed beef, changes in quality characteristics, proteomics, and metabolomics were investigated. Adding these four tea types decreased the pH value, L* value, shear force, and hardness of the stewed beef. Among these groups, black tea (BT) significantly improved the tenderness of the stewed beef. They have substantially impacted pathways related to protein oxidative phosphorylation, fatty acid degradation, amino acid degradation, and peroxisomes in stewed beef. The study identified that Myosin-2, Starch binding domain 1, Heat shock protein beta-6, and Myosin heavy chain four are significantly correlated with the quality characteristics of tea-treated stewed beef, making them potential biomarkers. Green tea (GT), black tea (BT), jasmine tea (JT), and dark tea (DT) led to the downregulation of 20, 36, 38, and 31 metabolites, respectively, which are lipids and lipid-like molecules in the stewed beef. The co-analysis of proteomics and metabolomics revealed that differential proteins significantly impacted metabolites associated with carbohydrates, amino acids, lipids, and other nutrients. This study determined the effects of four types of tea on the quality of stewed beef and their underlying mechanisms, providing valuable insights for applying of tea in meat products. At the same time, it can offer new ideas for developing fresh meat products.
Asunto(s)
Camellia sinensis , Carne Roja , Animales , Bovinos , Proteómica , Multiómica , Carne Roja/análisis , Té/química , LípidosRESUMEN
The physicochemical indexes and microbial diversity were investigated to compare the altered quality properties of the abdomen and cheliped muscle in swimming crab (Portunus trituberculatus) during 100 days of frozen storage at -20â. Over the extended duration of frozen storage, the sensory evaluation, moisture content, water activity (Aw), and water-holding capacity (WHC) in the abdomen and cheliped muscles of swimming crab decreased, while the pH, total volatile basic nitrogen (TVB-N), and trimethylamine (TMA) increased. The increase and decrease rates of these indicators were smaller in the abdomen than those in the cheliped muscle. High-throughput sequencing results indicated a reduction in the microbial richness and diversity in the abdomen and cheliped muscles of the swimming crab as frozen storage time extended. Proteobacteria, Actinobacteriota, and Firmicutes, Achromobacter, Kocuria, and Staphylococcus were the dominant phylum and genus in both muscle tissues, respectively. Furthermore, the correlation analysis between the composition of the microbiota and physiochemical properties revealed that the growths of Kocuria, Vibrio, Staphylococcus, and Aliiroseovarius were closely related to the physiochemical factors. The study provides a theoretical reference for quality deterioration and develops new products of different parts in the swimming crab during frozen storage.
RESUMEN
The aim of this study is to compare the quality characteristics of dry-cured loins with different levels of proteolysis and lipid oxidation and to investigate the relationship between these factors on quality characteristics. The dry-cured loins were divided into four groups [proteolytic index (PI) and 2-thiobarbituric acid reactive substances (TBARS) of high levels (HH), PI of high level and TBARS of low level (HL), PI of low level and TBARS of high level (LH), and PI and TBARS of low levels (LL)] based on the proteolysis index and TBARS. Moisture, protein, and fat content were all significantly influenced by proteolysis and lipid oxidation (p<0.05). The total fatty acid content in the high proteolysis groups (HH and HL) was significantly lower than that in the low proteolysis groups (LH and LL; p<0.05). For total free amino acid content, HH was the highest, and LL was the lowest (p<0.05). On the other hand, there was no significant difference between HL and LH (p>0.05). In the amount of total volatile compounds, there was no significant difference between HH and HL (p>0.05), but LH and LL significantly differed (p<0.05). In conclusion, proteolysis and lipid oxidation can influence the quality characteristics of dry-cured loin. Additionally, proteolysis might be as influential in generating volatile compounds as lipid oxidation.
RESUMEN
This study investigated the impact of ice temperature storage on quality and bacterial composition of processed fish paste products (PFP). Freezing curve revealed the ice temperature was -1 °C. Electric nose (e-nose) showed significant changes in volatile components within 8 days. Results of total volatile basic nitrogen (TVB-N) showed that PFP stored at 4 °C reached its limit after 2 days, whereas PFP stored at ice temperature remained stable for 6 days. Thiobarbituric acid reactive substances (TBARS) demonstrated delayed oxidation in PFP stored at ice temperature compared to 4 °C. TCA-soluble peptides indicated that the protein degradation was suppressed by ice temperature. Additionally, ice temperature inhibited microbial growth and altered bacterial composition. High-throughput sequencing revealed that Pseudomonas, Brochothrix, Carnobacterium were dominant at 4 °C, while Acinetobacter, Pseudomonas, Janthinobacterium and Brochothrix were dominant at ice temperature. In summary, ice temperature might be a potential method for maintaining the freshness of PFP.
RESUMEN
Researchers are exploring solutions to meet the growing demand for protein due to the expected increase in global population by 2050. Interest in alternative protein sources like insects has risen, driven by concerns about environmental impact and the need for sustainable food production. This study aimed to develop and evaluate the physicochemical properties of soy-protein-based burgers enriched with insect protein from Alphitobius diaperinus. Three formulations were developed: a control (B0) and burgers with 5% (B5) and 10% (B10) insect protein-Whole Buffalo Powder (WBP). The results showed that adding insect protein decreased the burger analogue's pH. A clear trend was observed of increasing total lipids and saturated fatty acids (SFA) and decreasing monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) as the WBP concentration increased from 0% to 10%. No significant differences with increasing WBP concentration in the protein content of the burger analogue, as well as the cooking yield, were noted. The WBP addition had a notable effect on the color change, especially a decrease in brightness (L*). It was shown that as the WBP concentration increased, there were no significant differences in the texture profile of the burger analogues. The formulation with 5% WBP concentration was the most acceptable in sensory analysis.
RESUMEN
Fresh yak meat is highly nutritious and prone to spoilage, so developing suitable preservation methods is crucial. In this study, hydrogel coatings composed of konjac glucomannan, Lactiplantibacillus plantarum and gallic acid (KGX) were applied to preserve fresh yak meat under ice temperature (-1 °C). After 16 days, KGX group showed lowest total viable count (5.3 ± 0.1 log cfu/g) and total volatile basic nitrogen (13.02 ± 1.40 mg/100 g), which did not exceed the relevant standards of fresh meat. Combined assessments of color, texture, pH, drip loss rate, and thiobarbituric acid reactive substances indicated that KGX coating effectively prolonged yak meat preservation. High-throughput sequencing revealed that KGX coating effectively reduced the abundance of Pseudomonas and Candida. The application of L. plantarum hydrogel coatings in conjunction with ice temperature increased the shelf life of fresh yak meat to 16-20 days, suggesting its potential as a viable preservation method for fresh meat.