Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 366
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Annu Rev Biochem ; 90: 709-737, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-33606955

RESUMEN

Intricate relationships between endocytosis and cellular signaling, first recognized nearly 40 years ago through the study of tyrosine kinase growth factor receptors, are now known to exist for multiple receptor classes and to affect myriad physiological and developmental processes. This review summarizes our present understanding of how endocytosis orchestrates cellular signaling networks, with an emphasis on mechanistic underpinnings and focusing on two receptor classes-tyrosine kinase and G protein-coupled receptors-that have been investigated in particular detail. Together, these examples provide a useful survey of the current consensus, uncertainties, and controversies in this rapidly advancing area of cell biology.


Asunto(s)
Endocitosis/fisiología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Membrana Celular/metabolismo , Endosomas/metabolismo , Humanos , Lisosomas/metabolismo , Transporte de Proteínas , Transducción de Señal
2.
Annu Rev Cell Dev Biol ; 36: 359-383, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32692593

RESUMEN

The proto-oncogenic epidermal growth factor (EGF) receptor (EGFR) is a tyrosine kinase whose sensitivity and response to growth factor signals that vary over time and space determine cellular behavior within a developing tissue. The molecular reorganization of the receptors on the plasma membrane and the enzyme-kinetic mechanisms of phosphorylation are key determinants that couple growth factor binding to EGFR signaling. To enable signal initiation and termination while simultaneously accounting for suppression of aberrant signaling, a coordinated coupling of EGFR kinase and protein tyrosine phosphatase activity is established through space by vesicular dynamics. The dynamical operation mode of this network enables not only time-varying growth factor sensing but also adaptation of the response depending on cellular context. By connecting spatially coupled enzymatic kinase/phosphatase processes and the corresponding dynamical systems description of the EGFR network, we elaborate on the general principles necessary for processing complex growth factor signals.


Asunto(s)
Receptores ErbB/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Animales , Biocatálisis , Plasticidad de la Célula , Receptores ErbB/química , Humanos , Transducción de Señal , Factores de Tiempo
3.
Mol Cell ; 82(6): 1089-1106.e12, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35231400

RESUMEN

The recruitment of signaling proteins into activated receptor tyrosine kinases (RTKs) to produce rapid, high-fidelity downstream response is exposed to the ambiguity of random diffusion to the target site. Liquid-liquid phase separation (LLPS) overcomes this by providing elevated, localized concentrations of the required proteins while impeding competitor ligands. Here, we show a subset of phosphorylation-dependent RTK-mediated LLPS states. We then investigate the formation of phase-separated droplets comprising a ternary complex including the RTK, (FGFR2); the phosphatase, SHP2; and the phospholipase, PLCγ1, which assembles in response to receptor phosphorylation. SHP2 and activated PLCγ1 interact through their tandem SH2 domains via a previously undescribed interface. The complex of FGFR2 and SHP2 combines kinase and phosphatase activities to control the phosphorylation state of the assembly while providing a scaffold for active PLCγ1 to facilitate access to its plasma membrane substrate. Thus, LLPS modulates RTK signaling, with potential consequences for therapeutic intervention.


Asunto(s)
Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Transducción de Señal , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Tirosina/metabolismo , Dominios Homologos src
4.
Mol Cell ; 79(3): 390-405.e7, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32619402

RESUMEN

Despite their apparent lack of catalytic activity, pseudokinases are essential signaling molecules. Here, we describe the structural and dynamic properties of pseudokinase domains from the Wnt-binding receptor tyrosine kinases (PTK7, ROR1, ROR2, and RYK), which play important roles in development. We determined structures of all pseudokinase domains in this family and found that they share a conserved inactive conformation in their activation loop that resembles the autoinhibited insulin receptor kinase (IRK). They also have inaccessible ATP-binding pockets, occluded by aromatic residues that mimic a cofactor-bound state. Structural comparisons revealed significant domain plasticity and alternative interactions that substitute for absent conserved motifs. The pseudokinases also showed dynamic properties that were strikingly similar to those of IRK. Despite the inaccessible ATP site, screening identified ATP-competitive type-II inhibitors for ROR1. Our results set the stage for an emerging therapeutic modality of "conformational disruptors" to inhibit or modulate non-catalytic functions of pseudokinases deregulated in disease.


Asunto(s)
Moléculas de Adhesión Celular/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas Receptoras/química , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/química , Secuencia de Aminoácidos , Animales , Baculoviridae/genética , Baculoviridae/metabolismo , Sitios de Unión , Moléculas de Adhesión Celular/antagonistas & inhibidores , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Clonación Molecular , Cristalografía por Rayos X , Expresión Génica , Humanos , Ratones , Modelos Moleculares , Células Precursoras de Linfocitos B/citología , Células Precursoras de Linfocitos B/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Inhibidores de Proteínas Quinasas/química , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/antagonistas & inhibidores , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Receptores de la Familia Eph/antagonistas & inhibidores , Receptores de la Familia Eph/química , Receptores de la Familia Eph/genética , Receptores de la Familia Eph/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Spodoptera , Homología Estructural de Proteína , Especificidad por Sustrato
5.
Trends Biochem Sci ; 48(2): 156-171, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36115755

RESUMEN

Cell-surface receptors mediate communication between cells and their environment. Lateral membrane organization and dynamic receptor cluster formation are fundamental in signal transduction and cell signaling. However, it is not yet fully understood how receptor clustering modulates a wide variety of physiologically relevant processes. Recent growing evidence indicates that biological responses triggered by membrane receptors can be modulated even in the absence of the natural receptor ligand. We review the most recent findings on how ligand-independent receptor clustering can regulate transmembrane signaling. We discuss the latest technologies to control receptor assembly, such as DNA nanotechnology, optogenetics, and optochemistry, focusing on the biological relevance and unraveling of ligand-independent signaling.


Asunto(s)
Receptores de Superficie Celular , Transducción de Señal , Ligandos , Transducción de Señal/fisiología , Membrana Celular/metabolismo , Receptores de Superficie Celular/metabolismo , Análisis por Conglomerados
6.
Mol Cell Proteomics ; 23(7): 100780, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38703893

RESUMEN

New tools for cell signaling pathway inference from multi-omics data that are independent of previous knowledge are needed. Here, we propose a new de novo method, the de novo multi-omics pathway analysis (DMPA), to model and combine omics data into network modules and pathways. DMPA was validated with published omics data and was found accurate in discovering reported molecular associations in transcriptome, interactome, phosphoproteome, methylome, and metabolomics data, and signaling pathways in multi-omics data. DMPA was benchmarked against module discovery and multi-omics integration methods and outperformed previous methods in module and pathway discovery especially when applied to datasets of relatively low sample sizes. Transcription factor, kinase, subcellular location, and function prediction algorithms were devised for transcriptome, phosphoproteome, and interactome modules and pathways, respectively. To apply DMPA in a biologically relevant context, interactome, phosphoproteome, transcriptome, and proteome data were collected from analyses carried out using melanoma cells to address gamma-secretase cleavage-dependent signaling characteristics of the receptor tyrosine kinase TYRO3. The pathways modeled with DMPA reflected the predicted function and its direction in validation experiments.


Asunto(s)
Proteómica , Transducción de Señal , Humanos , Proteómica/métodos , Algoritmos , Transcriptoma , Metabolómica/métodos , Biología Computacional/métodos , Proteoma/metabolismo , Fosfoproteínas/metabolismo , Multiómica
7.
Proc Natl Acad Sci U S A ; 120(8): e2213090120, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36791110

RESUMEN

Many types of human cancers are being treated with small molecule ATP-competitive inhibitors targeting the kinase domain of receptor tyrosine kinases. Despite initial successful remission, long-term treatment almost inevitably leads to the emergence of drug resistance mutations at the gatekeeper residue hindering the access of the inhibitor to a hydrophobic pocket at the back of the ATP-binding cleft. In addition to reducing drug efficacy, gatekeeper mutations elevate the intrinsic activity of the tyrosine kinase domain leading to more aggressive types of cancer. However, the mechanism of gain-of-function by gatekeeper mutations is poorly understood. Here, we characterized fibroblast growth factor receptor (FGFR) tyrosine kinases harboring two distinct gatekeeper mutations using kinase activity assays, NMR spectroscopy, bioinformatic analyses, and MD simulations. Our data show that gatekeeper mutations destabilize the autoinhibitory conformation of the DFG motif locally and of the kinase globally, suggesting they impart gain-of-function by facilitating the kinase's ability to populate the active state.


Asunto(s)
Neoplasias , Proteínas Tirosina Quinasas Receptoras , Humanos , Receptores de Factores de Crecimiento de Fibroblastos/genética , Neoplasias/tratamiento farmacológico , Mutación , Adenosina Trifosfato/uso terapéutico , Tirosina , Inhibidores de Proteínas Quinasas/química
8.
EMBO J ; 40(14): e107182, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34086370

RESUMEN

Integration of signalling downstream of individual receptor tyrosine kinases (RTKs) is crucial to fine-tune cellular homeostasis during development and in pathological conditions, including breast cancer. However, how signalling integration is regulated and whether the endocytic fate of single receptors controls such signalling integration remains poorly elucidated. Combining quantitative phosphoproteomics and targeted assays, we generated a detailed picture of recycling-dependent fibroblast growth factor (FGF) signalling in breast cancer cells, with a focus on distinct FGF receptors (FGFRs). We discovered reciprocal priming between FGFRs and epidermal growth factor (EGF) receptor (EGFR) that is coordinated at recycling endosomes. FGFR recycling ligands induce EGFR phosphorylation on threonine 693. This phosphorylation event alters both FGFR and EGFR trafficking and primes FGFR-mediated proliferation but not cell invasion. In turn, FGFR signalling primes EGF-mediated outputs via EGFR threonine 693 phosphorylation. This reciprocal priming between distinct families of RTKs from recycling endosomes exemplifies a novel signalling integration hub where recycling endosomes orchestrate cellular behaviour. Therefore, targeting reciprocal priming over individual receptors may improve personalized therapies in breast and other cancers.


Asunto(s)
Endosomas/metabolismo , Transporte de Proteínas/fisiología , Transducción de Señal/fisiología , Tirosina/metabolismo , Línea Celular Tumoral , Endocitosis/fisiología , Receptores ErbB/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Fosforilación/fisiología
9.
Biochem J ; 481(7): 547-564, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38533769

RESUMEN

Activins are one of the three distinct subclasses within the greater Transforming growth factor ß (TGFß) superfamily. First discovered for their critical roles in reproductive biology, activins have since been shown to alter cellular differentiation and proliferation. At present, members of the activin subclass include activin A (ActA), ActB, ActC, ActE, and the more distant members myostatin and GDF11. While the biological roles and signaling mechanisms of most activins class members have been well-studied, the signaling potential of ActE has remained largely unknown. Here, we characterized the signaling capacity of homodimeric ActE. Molecular modeling of the ligand:receptor complexes showed that ActC and ActE shared high similarity in both the type I and type II receptor binding epitopes. ActE signaled specifically through ALK7, utilized the canonical activin type II receptors, ActRIIA and ActRIIB, and was resistant to the extracellular antagonists follistatin and WFIKKN. In mature murine adipocytes, ActE invoked a SMAD2/3 response via ALK7, like ActC. Collectively, our results establish ActE as a specific signaling ligand which activates the type I receptor, ALK7.


Asunto(s)
Proteínas Portadoras , Factor de Crecimiento Transformador beta , Ratones , Animales , Factor de Crecimiento Transformador beta/metabolismo , Ligandos , Receptores de Activinas/genética , Receptores de Activinas/metabolismo , Activinas/metabolismo
10.
J Cell Biochem ; 125(1): 59-78, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38047468

RESUMEN

The study aimed to evaluate the antioxidant, protein kinase inhibitory (PKIs) potential, cytotoxicity activity of Streptomyces clavuligerus extract. DPPH assay revealed a robust free radical scavenging capacity (IC50 28.90 ± 0.24 µg/mL) of organic extract with a maximum inhibition percentage of 61 ± 1.04%. PKIs assay revealed the formation of a whitish bald zone by S. clavuligerus extracts which indicates the presence of PKIs. The cytotoxicity activity of organic fraction of extract through Sulforhodamine B assay on MCF-7, Hop-62, SiHa, and PC-3 cell lines demonstrated the lowest GI50 value against the MCF-7 cell line followed by the PC-3 cell line, showing potent growth inhibitory potential against human breast cancer and human prostate cancer cell line. HR-LCMS analysis identified multiple secondary metabolites from the organic and aqueous extracts of S. clavuligerus when incubated at 30°C under 200 rpm for 3 days. All the secondary metabolites were elucidated for their potential to inhibit RTKs by molecular docking, molecular dynamic simulation, MM/GBSA calculations, and free energy approach. It revealed the superior inhibitory potential of epirubicin (Epi) and dodecaprenyl phosphate-galacturonic acid (DPGA) against fibroblast growth factors receptor (FGFR). Epi also exhibited excellent inhibitory activity against the platelet-derived growth factor receptor (PDGFR), while DPGA effectively inhibited the vascular endothelial growth factor receptor. Additionally, the presence Epi in S. clavuligerus extract was validated through the HPLC technique. Thus, our findings highlight a superior inhibitory potential of Epi against FGFR and PDGFR RTKs than the FDA-approved drug.


Asunto(s)
Neoplasias , Inhibidores de Proteínas Quinasas , Streptomyces , Masculino , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Simulación del Acoplamiento Molecular , Factor A de Crecimiento Endotelial Vascular , Epirrubicina , Células MCF-7
11.
IUBMB Life ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38708996

RESUMEN

Pancreatic cancer is one of the deadliest diseases with a poor prognosis and a five-survival rate. The STAT3 pathway is hyperactivated which contributes to the sustained proliferative signals in pancreatic cancer cells. We have isolated kaempferide (KF), an O-methylated flavonol, from the green propolis of Mimosa tenuiflora and examined its effect on two forms of cell death namely, apoptosis and paraptosis. KF significantly increased the cleavage of caspase-3 and PARP. It also downmodulated the expression of Alix (an intracellular inhibitor of paraptosis) and increased the expression of CHOP and ATF4 (transcription factors that promote paraptosis) indicating that KF promotes apoptosis as well as paraptosis. KF also increased intracellular reactive oxygen species (ROS) suggesting the perturbance of the redox state. N-acetylcysteine reverted the apoptosis- and paraptosis-inducing effects of KF. Some ROS inducers are known to suppress the STAT3 pathway and investigation revealed that KF downmodulates STAT3 and its upstream kinases (JAK1, JAK2, and Src). Additionally, KF also elevated the expression of SHP-1, a tyrosine phosphatase which is involved in the negative modulation of the STAT3 pathway. Knockdown of SHP-1 prevented KF-driven STAT3 inhibition. Altogether, KF has been identified as a promoter of apoptosis and paraptosis in pancreatic cancer cells through the elevation of ROS generation and SHP-1 expression.

12.
Biochem J ; 480(23): 1909-1928, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38038975

RESUMEN

Signaling by the extracellular signal-regulated kinase (ERK) pathway controls many cellular processes, including cell division, death, and differentiation. In this second installment of a two-part review, we address the question of how the ERK pathway exerts distinct and context-specific effects on multiple processes. We discuss how the dynamics of ERK activity induce selective changes in gene expression programs, with insights from both experiments and computational models. With a focus on single-cell biosensor-based studies, we summarize four major functional modes for ERK signaling in tissues: adjusting the size of cell populations, gradient-based patterning, wave propagation of morphological changes, and diversification of cellular gene expression states. These modes of operation are disrupted in cancer and other related diseases and represent potential targets for therapeutic intervention. By understanding the dynamic mechanisms involved in ERK signaling, there is potential for pharmacological strategies that not only simply inhibit ERK, but also restore functional activity patterns and improve disease outcomes.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular , Neoplasias , Humanos , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Transducción de Señal , Fosforilación , Sistema de Señalización de MAP Quinasas
13.
Biochem J ; 480(23): 1887-1907, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38038974

RESUMEN

Extracellular signal-regulated kinase (ERK) has long been studied as a key driver of both essential cellular processes and disease. A persistent question has been how this single pathway is able to direct multiple cell behaviors, including growth, proliferation, and death. Modern biosensor studies have revealed that the temporal pattern of ERK activity is highly variable and heterogeneous, and critically, that these dynamic differences modulate cell fate. This two-part review discusses the current understanding of dynamic activity in the ERK pathway, how it regulates cellular decisions, and how these cell fates lead to tissue regulation and pathology. In part 1, we cover the optogenetic and live-cell imaging technologies that first revealed the dynamic nature of ERK, as well as current challenges in biosensor data analysis. We also discuss advances in mathematical models for the mechanisms of ERK dynamics, including receptor-level regulation, negative feedback, cooperativity, and paracrine signaling. While hurdles still remain, it is clear that higher temporal and spatial resolution provide mechanistic insights into pathway circuitry. Exciting new algorithms and advanced computational tools enable quantitative measurements of single-cell ERK activation, which in turn inform better models of pathway behavior. However, the fact that current models still cannot fully recapitulate the diversity of ERK responses calls for a deeper understanding of network structure and signal transduction in general.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular , Transducción de Señal , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fosforilación , Sistema de Señalización de MAP Quinasas , Diferenciación Celular
14.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34507989

RESUMEN

The phosphoinositide 3-kinase regulatory subunit p85α is a key regulator of kinase signaling and is frequently mutated in cancers. In the present study, we showed that in addition to weakening the inhibitory interaction between p85α and p110α, a group of driver mutations in the p85α N-terminal SH2 domain activated EGFR, HER2, HER3, c-Met, and IGF-1R in a p110α-independent manner. Cancer cells expressing these mutations exhibited the activation of p110α and the AKT pathway. Interestingly, the activation of EGFR, HER2, and c-Met was attributed to the ability of driver mutations to inhibit HER3 ubiquitination and degradation. The resulting increase in HER3 protein levels promoted its heterodimerization with EGFR, HER2, and c-Met, as well as the allosteric activation of these dimerized partners; however, HER3 silencing abolished this transactivation. Accordingly, inhibitors of either AKT or the HER family reduced the oncogenicity of driver mutations. The combination of these inhibitors resulted in marked synergy. Taken together, our findings provide mechanistic insights and suggest therapeutic strategies targeting a class of recurrent p85α mutations.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Dominio Catalítico/genética , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Fosfatidilinositol 3-Quinasa Clase Ia/fisiología , Células HCT116 , Humanos , Mutación , Neoplasias/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Dominios Proteicos/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor ErbB-3/metabolismo , Transducción de Señal , Dominios Homologos src
15.
Curr Issues Mol Biol ; 45(12): 9709-9722, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38132452

RESUMEN

The maintenance of plasma pH is critical for life in all organisms. The kidney plays a critical role in acid-base regulation in vertebrates by controlling the plasma concentration of bicarbonate. The receptor tyrosine kinase IRR (insulin receptor-related receptor) is expressed in renal ß-intercalated cells and is involved in alkali sensing due to its ability to autophosphorylate under alkalization of extracellular medium (pH > 7.9). In mice with a knockout of the insrr gene, which encodes for IRR, urinary bicarbonate secretion in response to alkali loading is impaired. The specific regulatory mechanisms in the kidney that are under the control of IRR remain unknown. To address this issue, we analyzed and compared the kidney transcriptomes of wild-type and insrr knockout mice under basal or bicarbonate-loaded conditions. Transcriptomic analyses revealed a differential regulation of a number of genes in the kidney. Using TaqMan real-time PCR, we confirmed different expressions of the slc26a4, rps7, slc5a2, aqp6, plcd1, gapdh, rny3, kcnk5, slc6a6 and atp6v1g3 genes in IRR knockout mice. Also, we found that the expression of the kcnk5 gene is increased in wild-type mice after bicarbonate loading but not in knockout mice. Gene set enrichment analysis between the IRR knockout and wild-type samples identified that insrr knockout causes alterations in expression of genes related mostly to the ATP metabolic and electron transport chain processes.

16.
Anal Bioanal Chem ; 415(1): 67-82, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36190534

RESUMEN

Receptor tyrosine kinases (RTKs) are the essential regulators of cell signal transduction pathways and play important roles in biological processes. RTK dimerization is generally considered the first step in receptor activation and cell communication. And the abnormal expression of RTK dimers is closely related to the occurrence and development of many diseases. Therefore, the visualization of RTK dimerization is of great significance for monitoring physiological processes. The genetic and nongenetic imaging strategies have attracted widespread attention due to their high efficiency and high sensitivity. In this review, the RTKs and their dimers as well as the advances in strategies for imaging RTK dimers are introduced. Furthermore, we analyze the limitations of existing imaging strategies and put forward suggestions for the future development of imaging probes. We expect that this review will inspire more in-depth investigation of RTK dimers, which will also broaden the application of strategies of RTK dimers in biomedical areas.


Asunto(s)
Proteínas Tirosina Quinasas Receptoras , Transducción de Señal , Proteínas Tirosina Quinasas Receptoras/metabolismo , Dimerización
17.
Mol Divers ; 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36790582

RESUMEN

New 3-substituted oxindole derivatives were designed and synthesized as antiproliferative agents. The antiproliferative activity of compounds 6a-j was evaluated against 60 NCI cell lines. Among these tested compounds, compounds 6f and 6g showed remarkable antiproliferative activity, specifically against leukemia and breast cancer cell lines. Compound 6f was the most promising antiproliferative agent against MCF-7 (human breast cancer) with an IC50 value of 14.77 µM compared to 5-fluorouracil (5FU) (IC50 = 2.02 µM). Notably, compound 6f hampered receptor tyrosine EGFR fundamentally with an IC50 value of 1.38 µM, compared to the reference sunitinib with an IC50 value of 0.08 µM. Moreover, compound 6f afforded anti-tubulin polymerization activity with an IC50 value of 7.99 µM as an outstanding observable activity compared with the reference combretastatin A4 with an IC50 value of 2.64 µM. In silico molecular-docking results of compound 6f in the ATP-binding site of EGFR agreed with the in vitro results. Besides, the investigation of the physicochemical properties of compound 6f via the egg-boiled method clarified good lipophilicity, GIT absorption, and blood-brain barrier penetration properties.

18.
Proc Natl Acad Sci U S A ; 117(46): 28763-28774, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33139573

RESUMEN

The molecular mechanisms by which receptor tyrosine kinases (RTKs) and heterotrimeric G proteins, two major signaling hubs in eukaryotes, independently relay signals across the plasma membrane have been extensively characterized. How these hubs cross-talk has been a long-standing question, but answers remain elusive. Using linear ion-trap mass spectrometry in combination with biochemical, cellular, and computational approaches, we unravel a mechanism of activation of heterotrimeric G proteins by RTKs and chart the key steps that mediate such activation. Upon growth factor stimulation, the guanine-nucleotide exchange modulator dissociates Gαi•ßγ trimers, scaffolds monomeric Gαi with RTKs, and facilitates the phosphorylation on two tyrosines located within the interdomain cleft of Gαi. Phosphorylation triggers the activation of Gαi and inhibits second messengers (cAMP). Tumor-associated mutants reveal how constitutive activation of this pathway impacts cell's decision to "go" vs. "grow." These insights define a tyrosine-based G protein signaling paradigm and reveal its importance in eukaryotes.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Animales , Células COS , Chlorocebus aethiops , Receptores ErbB/metabolismo , Células HEK293 , Células HeLa , Proteínas de Unión al GTP Heterotriméricas/fisiología , Humanos , Fosforilación , Proteínas Tirosina Quinasas Receptoras/fisiología , Transducción de Señal , Tirosina/metabolismo
19.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36835322

RESUMEN

Human InsR, IGF1R, and IRR receptor tyrosine kinases (RTK) of the insulin receptor subfamily play an important role in signaling pathways for a wide range of physiological processes and are directly associated with many pathologies, including neurodegenerative diseases. The disulfide-linked dimeric structure of these receptors is unique among RTKs. Sharing high sequence and structure homology, the receptors differ dramatically in their localization, expression, and functions. In this work, using high-resolution NMR spectroscopy supported by atomistic computer modeling, conformational variability of the transmembrane domains and their interactions with surrounding lipids were found to differ significantly between representatives of the subfamily. Therefore, we suggest that the heterogeneous and highly dynamic membrane environment should be taken into account in the observed diversity of the structural/dynamic organization and mechanisms of activation of InsR, IGF1R, and IRR receptors. This membrane-mediated control of receptor signaling offers an attractive prospect for the development of new targeted therapies for diseases associated with dysfunction of insulin subfamily receptors.


Asunto(s)
Desarrollo de Medicamentos , Receptor de Insulina , Humanos , Dominios Proteicos , Receptor de Insulina/química , Receptor de Insulina/fisiología , Transducción de Señal
20.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36982721

RESUMEN

The tyrosine kinase inhibitor (TKI) cabozantinib might impede the growth of the sunitinib-resistant cell lines by targeting MET and AXL overexpression in metastatic renal cell carcinoma (mRCC). We studied the role of MET and AXL in the response to cabozantinib, particularly following long-term administration with sunitinib. Two sunitinib-resistant cell lines, 786-O/S and Caki-2/S, and the matching 786-O/WT and Caki-2/WT cells were exposed to cabozantinib. The drug response was cell-line-specific. The 786-O/S cells were less growth-inhibited by cabozantinib than 786-O/WT cells (p-value = 0.02). In 786-O/S cells, the high level of phosphorylation of MET and AXL was not affected by cabozantinib. Despite cabozantinib hampering the high constitutive phosphorylation of MET, the Caki-2 cells showed low sensitivity to cabozantinib, and this was independent of sunitinib pretreatment. In both sunitinib-resistant cell lines, cabozantinib increased Src-FAK activation and impeded mTOR expression. The modulation of ERK and AKT was cell-line-specific, mirroring the heterogeneity among the patients. Overall, the MET- and AXL-driven status did not affect cell responsiveness to cabozantinib in the second-line treatment. The activation of Src-FAK might counteract cabozantinib activity and contribute to tumor survival and may be considered an early indicator of therapy response.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Sunitinib/farmacología , Sunitinib/uso terapéutico , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/patología , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/patología , Anilidas/uso terapéutico , Línea Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA