RESUMEN
Halophyte-based remediation emerges as a novel strategy for ameliorating saline soils, offering a sustainable alternative to conventional leaching methods. While bioremediation is recognized for its ability to energize soil fertility and structure, the complex interplays among plant traits, soil functions, and soil microbial diversity remain greatly unknown. Here, we conducted a 5-year field experiment involving the continuous cultivation of the annual halophyte Suaeda salsa in saline soils to explore soil microbial diversity and their relationships with plant traits and soil functions. Our findings demonstrate that a decline in soil salinity corresponded with increases in the biomass and seed yield of S. salsa, which sustained a consistent seed oil content of approximately 22% across various salinity levels. Significantly, prolonged cultivation of halophytes substantially augmented soil microbial diversity, particularly from the third year of cultivation. Moreover, we identified positive associations between soil multifunctionality, seed yield, and taxonomic richness within a pivotal microbial network module. Soils enriched with taxa from this module showed enhanced multifunctionality and greater seed yields, correlating with the presence of functional genes implicated in nitrogen fixation and nitrification. Genomic analysis suggests that these taxa have elevated gene copy numbers of crucial functional genes related to nutrient cycling. Overall, our study emphasizes that the continuous cultivation of S. salsa enhances soil microbial diversity and recovers soil multifunctionality, expanding the understanding of plant-soil-microbe feedback in bioremediation.IMPORTANCEThe restoration of saline soils utilizing euhalophytes offers a viable alternative to conventional irrigation techniques for salt abatement and soil quality enhancement. The ongoing cultivation of the annual Suaeda salsa and its associated plant traits, soil microbial diversity, and functionalities are, however, largely underexplored. Our investigation sheds light on these dynamics, revealing that cultivation of S. salsa sustains robust plant productivity while fostering soil microbial diversity and multifunctionality. Notably, the links between enhanced soil multifunctionality, increased seed yield, and network-dependent taxa were found, emphasizing the importance of key microbial taxa linked with functional genes vital to nitrogen fixation and nitrification. These findings introduce a novel understanding of the role of soil microbes in bioremediation and advance our knowledge of the ecological processes that are vital for the rehabilitation of saline environments.
Asunto(s)
Chenopodiaceae , Suelo , Suelo/química , Solución Salina , Cloruro de Sodio , Nitrificación , Plantas Tolerantes a la SalRESUMEN
Widespread saline soils in Northwest China pose a serious threat to the region's ability to use infrastructure safely because they are prone to soil structure damage when subjected to external environmental fluctuations, which in turn affects the stability of the foundations for buildings. The non-destructive approach of measuring resistivity can be used to swiftly reflect the subsoil body's state and make assumptions about its safety. However, the electrical resistivity of the underground soil body can be used to quickly identify unstable areas because the resistivity is influenced by the water content, salt content, and structural characteristics of the soil body. To do this, it is necessary to understand the coupling relationship between various factors. In this study, we first constructed samples with various water, salt, and soil structure characteristics, and then used indoor tests, such as soil resistivity measurement and thermogravimetric analysis, to analyze the multiple factors affecting the resistivity characteristics of the soil. The relationship between soil resistivity and actual saline soil diseases in Northwest China was then further discussed in conjunction with the results of the indoor tests and analyses. subsequently, the resistivity and soil properties have been measured in the field at specific locations in Northwest China where railway roadbeds are diseased. The study's findings can theoretically support a deeper comprehension of the law and mechanism of soil resistivity change, as well as provide assistance for building infrastructure in Northwest China.
Asunto(s)
Cloruro de Sodio , Suelo , Suelo/química , China , Agua , ElectricidadRESUMEN
Soil salinization is a critical environmental issue that limits plant productivity and disrupts ecosystem functions. As important indicators of soil environment, soil microbes play essential roles in driving nutrient cycling and sustaining ecosystem services. Therefore, understanding how microbial communities and their functional potentials respond to varying levels of soil salinization across different land use types is crucial for the restoration and management of salt-affected ecosystems. In this study, we randomly selected 63 sites across the Hetao Plain, covering an area of â¼2500 km2. Our results showed that both salinity- and fertility-related soil parameters were significantly correlated with bacterial and archaeal diversities, with soil salinity emerging as the stronger predictor of prokaryotic diversity. Intriguingly, bacterial and archaeal communities were tightly interlinked but displayed opposite trends in response to environmental factors, indicating a clear microbial niche differentiation driven by soil salinity. Moreover, the generalist functions of bacteria and archaea (e.g., chemoheterotrophy) exhibited contrasting responses to environmental parameters, while their specialist functions (e.g., nitrification) responded consistently. These findings highlight the pivotal role of soil salinity in shaping the niche differentiation of bacterial and archaeal communities in saline soils, providing insights to guide salinity-centered restoration strategies for effective marginal land management.
RESUMEN
The salinity of European soil is increasing every year, causing severe economic damage (estimated 1-3 million hectares in the enlarged EU). This study uses the biomass of halophytes-tall fescue (grass) and hemp of the Bialobrzeskie variety from saline soils-for bioenergy, second generation biofuels and designing new materials-fillers for polymer composites. In the bioethanol obtaining process, in the first stage, the grass and hemp biomass were pretreated with 1.5% NaOH. Before and after the treatment, the chemical composition was determined and the FTIR spectra and SEM pictures were taken. Then, the process of simultaneous saccharification and fermentation (SSF) was carried out. The concentration of ethanol for both the grass and hemp biomass was approx. 7 g·L-1 (14 g·100 g-1 of raw material). In addition, trials of obtaining green composites with halophyte biomass using polymers (PP) and biopolymers (PLA) as a matrix were performed. The mechanical properties of the composites (tensile and flexural tests) were determined. It was found that the addition of a compatibilizer improved the adhesion at the interface of PP composites with a hemp filler. In conclusion, the grass and hemp biomass were found to be an interesting and promising source to be used for bioethanol and biocomposites production. The use of annually renewable plant biomass from saline soils for biorefinering processes opens up opportunities for the development of a new value chains and new approaches to sustainable agriculture.
Asunto(s)
Biotecnología/métodos , Biomasa , Etanol/metabolismo , Fermentación/fisiologíaRESUMEN
Saline area may tend to be a productive land; however, many of salt-affected soils have nitrogen limitation and depend on plant-associated diazotrophs as their source of 'new' nitrogen. Herein, a total of 316 salinity tolerant nitrogen-fixing endophytic bacteria were isolated from roots of the halophyte Suaeda sp. sampled from 22 different areas of Iran to prepare the collection of nitrogen-fixing bacterial endophytes and evaluate the plant growth-promoting effect of effective isolates on growth of the halophyte Suaeda maritima. All of the identified nitrogen-fixing endophytes were classified to Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes phylum while we did not detect common nitrogen-fixing endophyte of glycophytes like Azospirillum. The genera Pseudomonas and Microbacterium were both encountered in high abundance in all samples, indicating that they might play an advanced role in the micro-ecosystem of the halophyte Suaeda. In addition, the results also showed that not only soil salinity can affect halophyte endophytic composition but also other factors such as geographical location, plant species, and other soil properties may be involved. Interestingly, only Zhihengliuella halotolerans and Brachybacterium sp. belonging to Actinobacteria could grow in semi-solid N-free (NFb) medium supplemented with 6% NaCl and highly enhanced growth of S. maritima in vitro. Overall, this study offers useful new resources for nitrogen-fixing endophytic bacteria which may be utilized to improve approaches for providing bio-fertilizer useful in saline-based agriculture.
Asunto(s)
Chenopodiaceae/microbiología , Endófitos , Bacterias Fijadoras de Nitrógeno , Actinobacteria/aislamiento & purificación , Actinobacteria/metabolismo , Agricultura , Chenopodiaceae/crecimiento & desarrollo , ADN Bacteriano , Endófitos/clasificación , Endófitos/genética , Endófitos/aislamiento & purificación , Fertilizantes , Microbiota/genética , Micrococcaceae/metabolismo , Nitrógeno/metabolismo , Bacterias Fijadoras de Nitrógeno/clasificación , Bacterias Fijadoras de Nitrógeno/genética , Bacterias Fijadoras de Nitrógeno/aislamiento & purificación , Filogenia , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , Salinidad , Plantas Tolerantes a la Sal/microbiología , Microbiología del SueloRESUMEN
Environmental change is one of the primary issues faced by the farming community. Low rainfall and high temperature in arid and semiarid regions lead to the development of secondary salinisation, thus making the problem more severe. Under saline conditions, sodium is the most crucial cation that competes with potassium (K) and adversely affects plant metabolism by inhibiting plant enzymatic activities. Potassium-solubilising bacteria (KSB) play a vital role in solubilising fixed potassium and making it accessible to plants. In the current study, 42 KSB strains were isolated from paddy rhizosphere soil grown under salt-affected conditions. The plant-growth-promoting (PGP) properties of these rhizobacteria were also evaluated. Thirteen KSB strains, positive for all tested PGP traits, were evaluated for potassium solubilisation under sodium stress, namely, 0%, 3%, 5% and 7% NaCl stress. The five best strains (Acinetobacter pittii strain L1/4, A. pittii strain L3/3, Rhizobium pusense strain L3/4, Cupriavidus oxalaticus strain L4/12 and Ochrobactrum ciceri strain L5/1) based on the K-solubilising potential were identified by amplification, sequencing and bioinformatic analysis of the 16S rDNA sequences. The maximum potassium solubilisation was measured at 30 °C and pH 7 with glucose as carbon source. The application of these KSB strains significantly improved the shoot length, fresh weight, dry weight and chlorophyll contents of paddy plants grown under saline conditions. Hence, these strains could be halotolerant KSB bioinoculants that can be used to protect plants against salt stress.
Asunto(s)
Potasio , Microbiología del Suelo , Acinetobacter , Cupriavidus , Monitoreo del Ambiente , Ochrobactrum , RhizobiumRESUMEN
Biochar, which including pyrochar (PBC) and hydrochar (HBC), has been tested as a soil enhancer to improve saline soils. However, the effects of PBC and HBC application on ammonia (NH3) volatilization and dissolved organic matter (DOM) in saline paddy soils are poorly understood. In this research, marsh moss-derived PBC and HBC biochar types were applied to paddy saline soils at 0.5 % (w/w) and 1.5 % (w/w) rates to assess their impact on soil NH3 volatilization and DOM using a soil column experiment. The results revealed that soil NH3 volatilization significantly increased by 56.1 % in the treatment with 1.5 % (w/w) HBC compared to the control without PBC or HBC. Conversely, PBC and the lower application rate of HBC led to decrease in NH3 volatilization ranging from 2.4 % to 12.1 %. Floodwater EC is a dominant factor in NH3 emission. Furthermore, the fluorescence intensities of the four fractions (all humic substances) were found to be significantly higher in the 1.5 % (w/w) HBC treatment applied compared to the other treatments, as indicated by parallel factor analysis modeling. This study highlights the potential for soil NH3 losses and DOM leaching in saline paddy soils due to the high application rate of HBC. These findings offer valuable insights into the effects of PBC and HBC on rice paddy saline soil ecosystems.
RESUMEN
Carbon dioxide (CO2) is a primary greenhouse gas that has experienced a surge in atmospheric concentration due to human activities and lifestyles. It is imperative to curtail atmospheric CO2 levels promptly to alleviate the multifaceted impacts of climate warming. The soil serves as a natural reservoir for CO2 sequestration. The scientific premise of this study is that CO2 sequestration in agriculturally relevant, organically-deficient saline soil can be achieved by incorporating alkaline earth silicates. Volcanic ash (VA) was used as a soil amendment for CO2 removal from saline soil by leveraging enhanced silicate rock weathering (ERW). The study pursued two primary objectives: first, we aimed to evaluate the impact of various doses of VA, employed as an amendment for organically-deficient soil, on the growth performance of key cultivated crops (sorghum and mung bean) in inland saline-alkaline agricultural regions of northeastern China. Second, we aimed to assess alterations in the physical properties of the amended soil through mineralogical examinations, utilizing X-ray diffraction (XRD) and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS) analyses, quantifying the increase in inorganic carbon content within the soil. In the potting tests, mung bean plant height exhibited a noteworthy increase of approximately 41 % with the addition of 10 % VA. Sorghum plant height and aboveground and belowground biomass dry weights increased with VA application across all tested doses. At the optimal VA application rate (20 %), the sorghum achieved a CO2 sequestration rate of 0.14 kg CO2·m-2·month-1. XRD and SEM-EDS analyses confirmed that the augmented inorganic carbon in the VA-amended soils stemmed primarily from calcite accumulation. These findings contribute to elucidating the mechanism underlying VA as an amendment for organically-deficient soils and provide an effective approach for enhancing the carbon sink capacity of saline soils.
Asunto(s)
Suelo , Sorghum , Humanos , Suelo/química , Dióxido de Carbono/análisis , Erupciones Volcánicas , Agricultura , Tiempo (Meteorología) , Grano Comestible/química , Secuestro de Carbono , SilicatosRESUMEN
The combination of biochar and nitrogen (N) fertilization in agricultural salt-affected soils is an effective strategy for amending the soil and promoting production. To investigate the effect of nitrogen reduction combined with biochar application on a soda saline soil and soybean growth in black soil areas, a pot experiment was set up with two biochar application levels, 0 (B0) and 4.5 t/hm2 (B1); two biochar application depths, 0-20 cm (H1) and 0-40 cm (H2); and two nitrogen application levels, conventional nitrogen application (N0) and nitrogen reduction of 15% (N1). The results showed that the application of biochar improved the saline soil status and significantly increased soybean yield under lower nitrogen application. Moreover, increasing the depth of biochar application enhanced the effectiveness of biochar in reducing saline soil barriers to crop growth, which promoted soybean growth. Increasing the depth of biochar application increased the K+ and Ca2+ contents, soil nitrogen content, N fertilizer agronomic efficiency, leaf total nitrogen, N use efficiency, AN, Tr, gs, SPAD, leaf water potential, water content and soybean yield and its components. However, the Na+ content, SAR, ESP, Na+/K+, Ci and water use efficiency decreased with increasing biochar depth. Among the treatments with low nitrogen input and biochar, B1H1N1 resulted in the greatest soil improvement in the 0-20 cm soil layer compared with B0N0; for example, K+ content increased by 61.87%, Na+ content decreased by 44.80%, SAR decreased by 46.68%, and nitrate nitrogen increased by 26.61%. However, in the 20-40 cm soil layer, B1H2N1 had the greatest effect on improving the soil physicochemical properties, K+ content increased by 62.54%, Na+ content decreased by 29.76%, SAR decreased by 32.85%, and nitrate nitrogen content increased by 30.77%. In addition, compared with B0N0, total leaf nitrogen increased in B1H2N1 by 25.07%, N use efficiency increased by 6.7%, N fertilizer agronomic efficiency increased by 32.79%, partial factor productivity of nitrogen increased by 28.37%, gs increased by 22.10%, leaf water potential increased by 27.33% and water content increased by 6.44%. In conclusion, B1H2N1 had the greatest effect on improving the condition of saline soil; it not only effectively regulated the distribution of salt in soda saline soil and provided a low-salt environment for crop growth but also activated deep soil resources. Therefore, among all treatments investigated in this study, B1H2N1 was considered most suitable for improving the condition of soda saline soil in black soil areas and enhancing the growth of soybean plants.
RESUMEN
Soil salinization is a severe environmental problem that restricts plant productivity and ecosystem functioning. Straw amendment could increase the fertility of saline soils by improving microbial activity and carbon sequestration, however, the adaptation and ecological preference of potential fungal decomposers after straw addition under varied soil salinities remains elusive. Here, a soil microcosm study was conducted by incorporating wheat and maize straws into soils with a range of salinities, respectively. We showed that the amendment of straws increased MBC, SOC, DOC and NH4+-N contents by 75.0 %, 17.2 %, 88.3 % and 230.9 %, respectively, but decreased NO3--N content by 79.0 %, irrespective of soil salinity, with intensified connections among these parameters after straw addition. Although soil salinity had a more profound effect on both fungal α- and ß-diversity, straw amendment also significantly reduced fungal Shannon diversity and changed community composition, especially for severe saline soil. Complexity of the fungal co-occurrence network was specifically strengthened after straw addition, with average degree increasing from 11.9 in the control to 22.0 and 22.7 in wheat and maize straw treatments, respectively. Intriguingly, there was very little overlap among the straw-enriched ASVs (Amplicon Sequence Variants) in each saline soil, indicating the soil-specific involvement of potential fungal decomposers. Particularly, fungal species belonging to Cephalotrichum and unclassified Sordariales were the most responsive to straw addition in severe saline soil, whereas light saline soil supported the enrichment of Coprinus and Schizothecium species after straw addition. Together, our study provides a new insight on the common and specific responses of soil chemical and biological characteristics at different salinity levels under straw management, which will help guide precise microbial-based strategies to boost straw decomposition in future agricultural practice and environmental management of saline-alkali lands.
Asunto(s)
Ecosistema , Suelo , Suelo/química , Salinidad , Agricultura , Zea mays/química , Triticum , Microbiología del SueloRESUMEN
Introduction: To clarify the effects of microtopography on plant growth and soil water, salt and nutrient characteristics of saline soils in mudflats within muddy coastal zones and explore suitable microtopographic modifications. Methods: Six microtopographic modification patterns, namely, S-shaped, stripe-shaped, pin-shaped, stepshaped, dense stripe-shaped and crescent-shaped patterns, were established in the coastal mudflats of the Yellow River Delta. The soil water, salt, ion, total carbon, total nitrogen, and total phosphorus contents and their ecological stoichiometric characteristics were measured and analyzed after theimplementation of different microtopographic modification patterns, with bare mudflats as the control. Results: The results showed that microtopographic modification significantly changed the soil water and salt contents and the soil total carbon, total nitrogen and total phosphorus contents. Compared with the bare ground, microtopographic transformation significantly promoted the growth of the pioneer plant Suaeda salsa, significantly increased the soil water and nutrient contents, and significantly decreased the soil salinity. The soil salinity was mainly reduced by Na+ and Cl- ions. The soil salinity and nutrient contents gradually decreased with increasing soil depth, indicating the occurrence of surface aggregation. Compared to that of the bare ground, the soil C/N was significantly lower and the N/P was significantly higher in the microtopographic treatments, and the overall performance suggested soil N limitation. The ions contained in the saline soil were dominated by Na+ and Cl-, followed by Mg2+ and SO4 2-, with lower contents of K+, Ca2+ and HCO3 -. Among the six microtopography modification patterns, the crescent-shaped pattern best promoted vegetation restoration. This pattern was the most effective in reducing soil salinity, with a 98.53% reduction in soil salinity compared with that of bare ground, followed by the pin-shaped pattern. Compared with that in the bare ground samples, the nutrient content in the samples from the step-shaped modification increased by 23.27%; finally, the S-shaped, step-shaped and dense stripe-shaped patterns performed poorly in terms of plant restoration and soil improvement. Discussion: It is suggested that a crescent-shaped pattern should be considered first when carrying out microtopographic transformation on the beaches of the Yellow River Delta, followed by stripe-shaped and pin-shaped patterns. The dense strip-shaped should not be adopted.
RESUMEN
The challenge of managing agricultural phosphorus (P) in saline regions entails both reducing leaching for environmental protection and maintaining soil available P levels for crop production, which could be achieved through functional microorganisms that can facilitate P transformation processes like P assimilation, inorganic P solubilization, and organic P mineralization. In this study, we proposed an integrated utilization of phosphorus-accumulating bacteria (PAB) and phosphorus-solubilizing bacteria (PSB) to reach the goal of alleviating P leaching while improving soil available P levels. The study conducted a microcosm experiment that combined a soil column test, soil incubation, and pot experiment to evaluate the effect of bacterial inoculants on soil P leaching, soil P availability, and plant P accumulation. The results showed that the application of PAB reduced 22.6 % of dissolved P leaching through the absorption of labile phosphate in the soil, and 17.3 % of particulate P leaching through the promoted soil aggregation. The integrated inoculation of PSB and PAB synergistically improved soil available P content by 18.3 % through the mineralization of soil organic P, and remarkably boosted wheat growth and its P accumulation. Microbial community analysis revealed that the integrated microbial treatment decreased the diversity of soil bacterial community and increased the abundance of native microbial species, i.g. Lysobacter and Ramlibacter, which were positively correlated with soil available P content and alkaline phosphatase level. In conclusion, the integrated microbial strategy based on halotolerant PAB and PSB has great potential for sustainable P management in saline areas and agricultural activities.
Asunto(s)
Inoculantes Agrícolas , Fósforo , Fósforo/análisis , Suelo , Bacterias , Fosfatos/análisisRESUMEN
The enhancement of cadmium (Cd) extraction by plants from contaminated soils associated with phosphate-solubilizing bacteria (PSB) has been widely reported, but the underlying mechanism remains scarcely, especially in Cd-contaminated saline soils. In this study, a green fluorescent protein-labeled PSB, the strain E. coli-10527, was observed to be abundantly colonized in the rhizosphere soils and roots of halophyte Suaeda salsa after inoculation in saline soil pot tests. Cd extraction by plants was significantly promoted. The enhanced Cd phytoextraction by E. coli-10527 was not solely dependent on bacterial efficient colonization, but more significantly, relied on the remodeling of rhizosphere microbiota, as confirmed by soil sterilization test. Taxonomic distribution and co-occurrence network analyses suggested that E. coli-10527 strengthened the interactive effects of keystone taxa in the rhizosphere soils, and enriched the key functional bacteria that involved in plant growth promotion and soil Cd mobilization. Seven enriched rhizospheric taxa (Phyllobacterium, Bacillus, Streptomyces mirabilis, Pseudomonas mirabilis, Rhodospirillale, Clostridium, and Agrobacterium) were obtained from 213 isolated strains, and were verified to produce phytohormone and promote soil Cd mobilization. E. coli-10527 and those enriched taxa could assemble as a simplified synthetic community to strengthen Cd phytoextraction through their synergistic interactions. Therefore, the specific microbiota in rhizosphere soils enriched by the inoculated PSB were also the key to intensifying Cd phytoextraction.
Asunto(s)
Chenopodiaceae , Contaminantes del Suelo , Cadmio/metabolismo , Suelo , Plantas Tolerantes a la Sal/metabolismo , Escherichia coli/metabolismo , Contaminantes del Suelo/metabolismo , Biodegradación Ambiental , Microbiología del Suelo , Bacterias/metabolismo , Rizosfera , Fosfatos/análisisRESUMEN
Quinoa is extensively cultivated for its nutritional value, and its exceptional capacity to endure elevated salt levels presents a promising resolution to the agricultural quandaries posed by salinity stress. However, limited research has been dedicated to elucidating the correlation between alterations in the salinity soil microbial community and nitrogen transformations. To scrutinize the underlying mechanisms behind quinoa's salt tolerance, we assessed the changes in microbial community structure and the abundance of nitrogen transformation genes across three distinct salinity thresholds (1 g·kg-1, 3 g·kg-1, and 6 g·kg-1) at two distinct time points (35 and 70 days). The results showed the positive effect of quinoa on the soil microbial community structure, including changes in key populations and its regulatory role in soil nitrogen cycling under salt stress. Choroflexi, Acidobacteriota, and Myxococcota were inhibited by increased salinity, while the relative abundance of Bacteroidota increased. Proteobacteria and Actinobacteria showed relatively stable abundances across time and salinity levels. Quinoa possesses the ability to synthesize or modify the composition of keystone species or promote the establishment of highly complex microbial networks (modularity index > 0.4) to cope with fluctuations in external salt stress environments. Furthermore, quinoa exhibited nitrogen (N) cycling by downregulating denitrification genes (nirS, nosZ), upregulating nitrification genes (Archaeal amoA (AOA), Bacterial amoA (AOB)), and stabilizing nitrogen fixation genes (nifH) to absorb nitrate-nitrogen (NO3-_N). This study paves the way for future research on regulating quinoa, promoting soil microbial communities, and nitrogen transformation in saline environments.
RESUMEN
Photosynthetic performance and biomass at different growth stages of the salt-sensitive KDML105 rice cultivar, three improved lines (RD73, CSSL8-94, and TSKC1-144), and the salt-tolerant standard genotype (Pokkali) were investigated under non-saline, semi-saline, and the heavy-saline field conditions in the northeast of Thailand. In the non-saline field, net photosynthesis rates (Pn) of all genotypes remained high from the early vegetative stage to the milky stage and then dramatically reduced at maturity. In contrast, in both saline fields, Pn was the highest at the early vegetative stage and continuously declining until maturity. Leaf chlorophyll content remained high from the early vegetative to milky stage then reduced at maturity for all three field conditions. During the reproductive phase, Pn of KDML105 and the improved lines were reduced by 4-17% in the heavy-saline field, while that of Pokkali was increased (11-19% increase over that of the non-saline). Pokkali also showed a prominent increase in water use efficiency (WUE) under salinity. Nevertheless, rice leaves under saline conditions maintained the PSII integrity, as indicated by the pre-dawn values of maximum quantum yield of PSII photochemistry (Fv/Fm) of higher than 0.8. Pokkali under the semi-saline and the heavy-saline conditions exhibited 51% and 27% increases in final biomass, and 64% and 42% increases in filled grain weight plant-1, respectively. In the semi-saline condition, RD73, TSKC1-144, CSSL8-94, and KDML105 showed moderate salt tolerance by displaying 24%, 18.6%, 15%, and 11.3% increases in final biomass, and 24%, 4%, 13%, and 6% increases in filled grain weight plant-1, respectively. In contrast, in the heavy-saline field, final biomass of RD73, KDML105, CSSL8-94, and TSKC1-144 showed 48%, 45%, 38%, and 36% reductions from that in the non-saline field, while the filled grain weight plant-1 were reduced by 45%, 58%, 35%, and 32%, respectively. This indicated that the improved lines carrying drought- and/or salt-tolerance genes achieved an increased salt tolerance level than the parental elite cultivar, KDML105.
RESUMEN
Subsurface drainage (SSD) has been proved to be an effective technology to reclaim waterlogged saline soils. Three SSD projects were implemented in Haryana, India in 2009, 2012 and 2016 to study the long term effect of SSD (10, 7 and 3 years) operation on restoring productivity and carbon sequestration potential of degraded waterlogged saline soils under prevalent rice-wheat cropping system. These studies indicated that successful operation of SSD improved soil quality parameters such as bulk density, BD (from 1.58 to 1.52 Mg m-3), saturated hydraulic conductivity, SHC (from 3.19 to 5.07 cm day-1); electrical conductivity, ECe (from 9.72 to 2.18 dS m-1), soil organic carbon, OC (from 0.22 to 0.34 %), dehydrogenase activity, DHA (from 15.44 to 31.65 µg g-1 24 h-1), and alkaline phosphatase, ALPA (from 16.66 to 40.11 µg P-NP g-1 h-1) in upper soil surface (0-30 cm). The improved soil quality resulted in increased rice-wheat system yield (rice equivalent yield) by 328 %, 465 % and 665 % at Kahni, Siwana Mal and Jagsi sites, respectively. Studies also revealed that carbon sequestration potential of degraded land increased with the implementation of SSD projects. The principal component analysis (PCA) showed that % OC, ECe, ALPA, available N and K content were the most contributing factor for soil quality index (SQI). The overall result of the studies showed that SSD technology holds great potential to improve soil quality, increase crop productivity, farmers' income and ensure land degradation neutrality and food security in waterlogged saline areas of western Indo Gangetic Plain of India. Hence, it can be concluded that large scale adoption of SSD may fulfill the promise "No poverty, Zero hunger, and Life on land" sustainable development goals of United Nation in degraded waterlogged saline areas.
RESUMEN
The utilization of phosphate-solubilizing bacteria (PSB) in agriculture has long been proposed as an eco-friendly method to enhance soil phosphorus (P) availability, thereby reducing reliance on chemical P fertilizers. However, their application in saline soils is challenged by salt-induced stress on common PSB strains. In this study, we sourced bacterial strains from marine environments, aiming to identify robust PSB strains adaptable to saline conditions and assess their potential as P bio-fertilizers through a microcosm experiment. Our findings indicate that the inoculation of a selected marine PSB, Bacillus paramycoides 3-1a, increased soil available P content by 12.5% when applied alone and by 61.2% when combined with organic amendments. This enhancement results from improved inorganic P solubilization and organic P mineralization in soils. Additionally, these treatments raised soil nitrogen levels, reshaped microbial community structures, and significantly enhanced wheat (Triticum aestivum L.) growth, with P accumulation increasing by 24.2-40.9%. Our results underscore the potential of marine PSB in conjunction with organic amendments for the amelioration of saline agricultural soils.
Asunto(s)
Fósforo , Suelo , Suelo/química , Fertilizantes , Bacterias , Fosfatos , TriticumRESUMEN
Salt-affected soils have poor structure and physicochemical properties, which affect soil nitrogen cycling process closely related to the environment, such as denitrification and ammonia volatilization. Biochar and polyacrylamide (PAM) have been widely used as soil amendments to improve soil physicochemical properties. However, how they affect denitrification and ammonia volatilization in saline soils is unclear. In this study, the denitrification and ammonia volatilization rates were measured in a saline soil field ameliorated with three biochar application rates (0%, 2%, and 5%, w/w) and three PAM application rates (0, 0.4, and 1, w/w) over 3 years. The results showed that denitrification rates decreased by 23.63-39.60% with biochar application, whereas ammonia volatilization rates increased by 9.82-25.58%. The denitrification and ammonia volatilization rates decreased by 9.87-29.08% and 11.39-19.42%, respectively, following PAM addition. However, there was no significant synergistic effect of biochar and PAM amendments on the denitrification and ammonia volatilization rates. The addition of biochar mainly reduced the denitrification rate by regulating the dissolved oxygen and electrical conductivity of overlying water and absorbing soil nitrate nitrogen. Meanwhile, biochar application increased pH and stimulated the transfer of NH4+-N from soil to overlying water, thus increasing NH3 volatilization rates. Hence, there was a tradeoff between denitrification and NH3 volatilization in the saline soils induced by biochar application. PAM reduced the denitrification rate by increasing the infiltration inorganic nitrogen and slowing the conversion of ammonium to nitrate. Moreover, PAM reduced the concentration of NH4+-N in the overlying water through absorbing soil ammonium and inhibiting urea hydrolysis, thereby decreasing NH3 volatilization rate.
Asunto(s)
Amoníaco , Suelo , Resinas Acrílicas , Amoníaco/análisis , Carbón Orgánico , Desnitrificación , VolatilizaciónRESUMEN
Halophytes are capable of growing in saline environments. However, this attribute results from a wide genetic variability, making it difficult to approximate halophytes' agroecological management. We examined the hydro-climatological attributes associated with the distribution of species of the genus Suaeda in NW Mexico and SW USA, and for S. edulis in central México. The analysis focused on the introduction of the semi-domesticated species Suaeda edulis as a new crop, from central regions of México, reaching an average yield of 8 Mg ha-1 of biomass, to arid NW México. The list of Suaeda species was elaborated from the eHALOPH and Calflora databases, and the NW México Herbarium Network. According to the Hydro-Environmental Availability Index (HEAI), the central regions of Mexico reflect a greater water availability, suitable for S. edulis. In such a humid region, HEAI varied from 6 to 18, indicating sufficient moisture for crops. In contrast, other Suaeda species, including S. nigra, S. esteroa, and S. californica, spread in NW Mexico and SW United States, where the water availability is null during the year, with HEAI scoring from 0 to 4. Under such dryness, S. edulis in NW Mexico will require water through optimized irrigation and plant breeding strategies to ensure its viability as a new crop.