Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(27): e2406884121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38935562

RESUMEN

Degeneracy and symmetry have a profound relation in quantum systems. Here, we report gate-tunable subband degeneracy in PbTe nanowires with a nearly symmetric cross-sectional shape. The degeneracy is revealed in electron transport by the absence of a quantized plateau. Utilizing a dual gate design, we can apply an electric field to lift the degeneracy, reflected as emergence of the plateau. This degeneracy and its tunable lifting were challenging to observe in previous nanowire experiments, possibly due to disorder. Numerical simulations can qualitatively capture our observation, shedding light on device parameters for future applications.

2.
Small ; : e2407277, 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39449236

RESUMEN

A homogeneous integration of various types of devices using a single material platform is an ideal route toward multifunctional devices at the single-device level for miniaturized, fast, and energy-efficient systems. However, such a single material platform is still missing. Scandium-containing III-nitrides (Sc-III-nitrides) are promising, but their electrical doping properties remain unknown. In this work, the electrical doping in Sc-III-nitrides is investigated and optoelectronic devices using Sc-III-nitrides on silicon (Si) are further demonstrated. The material format of the nanowire is used, with magnesium (Mg) serving as the impurity dopant to control the electrical doping. It is discovered that, by adjusting the Mg doping concentrations, the Sc-III-nitrides can be tuned from n-type to p-type. Device application in light-emitting is further demonstrated using the p-type Sc-III-nitrides as the hole injection layer. The performance comparison between devices using the regrown Sc-containing p-type contact layers and non-Sc-containing p-type contact layers indicates the advantage of Sc incorporation in improving the quality of the regrown p-type layer in a device structure. The electrical doping in Sc-III-nitrides demonstrated in this study represents an important step toward a homogeneous integration of different types of devices using a single material platform.

3.
Proc Natl Acad Sci U S A ; 118(4)2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33468669

RESUMEN

There has been a persistent effort to understand and control the incorporation of metal impurities in semiconductors at nanoscale, as it is important for semiconductor processing from growth, doping to making contact. Previously, the injection of metal atoms into nanoscaled semiconductor, with concentrations orders of magnitude higher than the equilibrium solid solubility, has been reported, which is often deemed to be detrimental. Here our theoretical exploration reveals that this colossal injection is because gold or aluminum atoms tend to substitute Si atoms and thus are not mobile in the lattice of Si. In contrast, the interstitial atoms in the Si lattice such as manganese (Mn) are expected to quickly diffuse out conveniently. Experimentally, we confirm the self-inhibition effect of Mn incorporation in nanoscaled silicon, as no metal atoms can be found in the body of silicon (below 1017 atoms per cm-3) by careful three-dimensional atomic mappings using highly focused ultraviolet-laser-assisted atom-probe tomography. As a result of self-inhibition effect of metal incorporation, the corresponding field-effect devices demonstrate superior transport properties. This finding of self-inhibition effect provides a missing piece for understanding the metal incorporation in semiconductor at nanoscale, which is critical not only for growing nanoscale building blocks, but also for designing and processing metal-semiconductor structures and fine-tuning their properties at nanoscale.

4.
Nanotechnology ; 34(27)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37015220

RESUMEN

In-plane selective area growth (SAG) of III-V nanowires (NWs) has emerged as a scalable materials platform for quantum electronics and photonics applications. Most applications impose strict requirements on the material characteristics which makes optimization of the crystal quality vital. Alignment of in-plane SAG NWs with respect to the substrate symmetry is of importance due to the large substrate-NW interface as well as to obtain nanostructures with well-defined facets. Understanding the role of mis-orientation is thus important for designing devices and interpretation of electrical performance of devices. Here we study the effect of mis-orientation on morphology of selectively grown NWs oriented along the [1 1̅ 1̅] direction on GaAs(2 1 1)B. Atomic force microscopy is performed to extract facet roughness as a measure of structural quality. Further, we evaluate the dependence of material incorporation in NWs on the orientation and present the facet evolution in between two high symmetry in-plane orientations. By investigating the length dependence of NW morphology, we find that the morphology of ≈1µm long nominally aligned NWs remains unaffected by the unintentional misalignment associated with the processing and alignment of the sample under study. Finally, we show that using Sb as a surfactant during growth improves root-mean-square facet roughness for large misalignment but does not lower it for nominally aligned NWs.

5.
Nano Lett ; 22(3): 1316-1323, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35049311

RESUMEN

On-demand NW light sources in a photonic integrated circuit (PIC) have faced several practical challenges. Here, we report on an all-graphene-contact, electrically pumped, on-demand transferrable NW source that is fabricated by implementing an all-graphene-contact approach in combination with a highly accurate microtransfer printing technique. A vertically p-i-n-doped top-down-fabricated semiconductor NW with optical gain structures is electrically pumped through the patterned multilayered graphene contacts. Electroluminescence (EL) spectroscopy results reveal that the electrically driven NW device exhibits strong EL emission between the contacts and displays waveguiding properties. Further, a single NW device is precisely integrated into an existing photonic waveguide to perform light coupling and waveguiding experiments. Three-dimensional numerical simulation results show a good agreement with experimental observations. We believe that our all-graphene-contact approach is readily applicable to various micro/nanostructures and devices, which facilitates stable electrical operation and thus extends their practical applicability in compact integrated circuits.

6.
Nano Lett ; 21(15): 6617-6624, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34288677

RESUMEN

Dynamic range quantifies the linear operation regime available in nanomechanical resonators. Nonlinearities dominate the response of flexural beams in the limit of very high aspect ratio and very small diameter, which leads to expectation of low dynamic range for nanowire resonators in general. However, the highest achievable dynamic range for nanowire resonators with practical dimensions remains to be determined. We report dynamic range measurements on singly clamped silicon nanowire resonators reaching remarkably high values of up to 90 dB obtained with a simple harmonic actuation scheme. We explain these measurements by a comprehensive theoretical examination of dynamic range in singly clamped flexural beams including the effect of tapering, a usual feature of semiconductor nanowires. Our analysis reveals the nanowire characteristics required for broad linear operation, and given the relationship between dynamic range and mass sensing performance, it also enables analytical determination of mass detection limits, reaching atomic-scale resolution for feasible nanowires.

7.
Nano Lett ; 21(14): 6220-6227, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34264683

RESUMEN

Plasmonic nanostructures can enable compact multiplexing of the orbital angular momentum (OAM) of light; however, strong dissipation of the highly localized OAM-distinct plasmonic fields in the near-field region hinders on-chip OAM transmission and processing. Superior transmission efficiency is offered by semiconductor nanowires sustaining highly confined optical modes, but only the polarization degree of freedom has been utilized for their selective excitation. Here we demonstrate that incident OAM beams can selectively excite single-crystalline cadmium sulfide (CdS) nanowires through coupling OAM-distinct plasmonic fields into nanowire waveguides for long-distance transportation. This allows us to build an OAM-controlled hybrid nanowire circuit for optical logic operations including AND and OR gates. In addition, this circuit enables the on-chip photoluminescence readout of OAM-encrypted information. Our results open exciting new avenues not only for nanowire photonics to develop OAM-controlled optical switches, logic gates, and modulators but also for OAM photonics to build ultracompact photonic circuits for information processing.

8.
Small ; 17(10): e2005443, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33475259

RESUMEN

A scalable and cost-effective process is used to electroplate metallic Zn seeds on stainless steel substrates. Si and Ge nanowires (NWs) are subsequently grown by placing the electroplated substrates in the solution phase of a refluxing organic solvent at temperatures >430 °C and injecting the respective liquid precursors. The native oxide layer formed on reactive metals such as Zn can obstruct NW growth and is removed in situ by injecting the reducing agent LiBH4 . The findings show that the use of Zn as a catalyst produces defect-rich Si NWs that can be extended to the synthesis of Si-Ge axial heterostructure NWs with an atomically abrupt Si-Ge interface. As an anode material, the as grown Zn seeded Si NWs yield an initial discharge capacity of 1772 mAh g-1 and a high capacity retention of 85% after 100 cycles with the active participation of both Si and Zn during cycling. Notably, the Zn seeds actively participate in the Li-cycling activities by incorporating into the Si NWs body via a Li-assisted welding process, resulting in restructuring the NWs into a highly porous network structure that maintains a stable cycling performance.

9.
Nano Lett ; 20(4): 2359-2369, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32191041

RESUMEN

We describe an optical transduction mechanism to measure the flexural mode vibrations of vertically aligned nanowires on a flat substrate with high sensitivity, linearity, and ease of implementation. We demonstrate that the light reflected from the substrate when a laser beam strikes it parallel to the nanowires is modulated proportionally to their vibration, so that measuring such modulation provides a highly efficient resonance readout. This mechanism is applicable to single nanowires or arrays without specific requirements regarding their geometry or array pattern, and no fabrication process besides the nanowire generation is required. We show how to optimize the performance of this mechanism by characterizing the split flexural modes of vertical silicon nanowires in their full dynamic range and up to the fifth mode order. The presented transduction approach is relevant for any application of nanowire resonators, particularly for integrating nanomechanical sensing in functional substrates based on vertical nanowires for biological applications.


Asunto(s)
Nanocables/química , Silicio/química , Transductores , Luz , Nanotecnología , Nanocables/ultraestructura , Dispositivos Ópticos
10.
Nano Lett ; 19(6): 3563-3568, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31117748

RESUMEN

Einstein established the quantum theory of radiation and paved the way for modern laser physics including single-photon absorption by charge carriers and finally pumping an active gain medium into population inversion. This can be easily understood in the particle picture of light. Using intense, ultrashort pulse lasers, multiphoton pumping of an active medium has been realized. In this nonlinear interaction regime, excitation and population inversion depend not only on the photon energy but also on the intensity of the incident pumping light, which can be still described solely by the particle picture of light. We demonstrate here that lowering significantly the pump photon energy further still enables population inversion and lasing in semiconductor nanowires. The extremely high electric field of the pump bends the bands and enables tunneling of electrons from the valence to the conduction band. In this regime, the light acts by the classical Coulomb force and population inversion is entirely due to the wave nature of electrons, thus the excitation becomes independent of the frequency but solely depends on the incident intensity of the pumping light.

11.
Nano Lett ; 18(7): 4206-4213, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29894627

RESUMEN

Semiconductor nanowire-based devices are among the most promising structures used to meet the current challenges of electronics, optics and photonics. Due to their high surface-to-volume ratio and excellent optical and electrical properties, devices with low power, high efficiency and high density can be created. This is of major importance for environmental issues and economic impact. Semiconductor nanowires have been used to fabricate high performance devices, including detectors, solar cells and transistors. Here, we demonstrate a technique for transferring large-area nanowire arrays to flexible substrates while retaining their excellent quantum efficiency in emission. Starting with a defect-free self-catalyzed molecular beam epitaxy (MBE) sample grown on a Si substrate, GaAs core-shell nanowires are embedded in a dielectric, removed by reactive ion etching and transferred to a plastic substrate. The original structural and optical properties, including the vertical orientation, of the nanowires are retained in the final plastic substrate structure. Nanowire emission is observed for all stages of the fabrication process, with a higher emission intensity observed for the final transferred structure, consistent with a reduction in nonradiative recombination via the modification of surface states. This transfer process could form the first critical step in the development of flexible nanowire-based light-emitting devices.

12.
Nano Lett ; 18(2): 907-915, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29257889

RESUMEN

We demonstrate the control of multiphoton electron excitations in InAs nanowires (NWs) by altering the crystal structure and the light polarization. Using few-cycle, near-infrared laser pulses from an optical parametric chirped-pulse amplification system, we induce multiphoton electron excitations in InAs nanowires with controlled wurtzite (WZ) and zincblende (ZB) segments. With a photoemission electron microscope, we show that we can selectively induce multiphoton electron emission from WZ or ZB segments of the same wire by varying the light polarization. Developing ab initio GW calculations of first to third order multiphoton excitations and using finite-difference time-domain simulations, we explain the experimental findings: While the electric-field enhancement due to the semiconductor/vacuum interface has a similar effect for all NW segments, the second and third order multiphoton transitions in the band structure of WZ InAs are highly anisotropic in contrast to ZB InAs. As the crystal phase of NWs can be precisely and reliably tailored, our findings open up for new semiconductor optoelectronics with controllable nanoscale emission of electrons through vacuum or dielectric barriers.

13.
Molecules ; 24(5)2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30823382

RESUMEN

Nanomaterials can be specially designed to enhance optical chirality and their interaction with chiral molecules can lead to enhanced enantioselectivity. Here we propose periodic arrays of Si nanowires for the generation of enhanced near-field chirality. Such structures confine the incident electromagnetic field into specific resonant modes, which leads to an increase in local optical chirality. We investigate and optimize near-field chirality with respect to the geometric parameters and excitation scheme. Specially, we propose a simple experiment for the enhanced enantioselectivity, and optimize the average chirality depending on the possible position of the chiral molecule. We believe that such a simple achiral nanowire approach can be functionalized to give enhanced chirality in the spectral range of interest and thus lead to better discrimination of enantiomers.


Asunto(s)
Campos Electromagnéticos , Nanocables/química , Estereoisomerismo
14.
Small ; 14(4)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29171727

RESUMEN

Obtaining a wavelength division multiplexer (WDM) at the micro/nanometer level is a considerable challenge that holds great potential in optical communication technology owing to the enlarged data-carrying capacity without laying more fibers. Of the progress that has been made in recent years, one of the most promising methods is to fabricate nanoscale pattern on silicon substrate, forcing signals of different wavelength to enter predesigned channels due to the alternant changes in refractive index. However, it is not an easy task to incorporate light sources into these WDM systems, because of the nonradiative characteristics of silicon itself. This study demonstrates a successful integration of laser signal sources and WDM fully with 1D semiconductor structures. Nanowires from II-VI semiconductor serve as both lasing media and low-loss waveguides for signal loading and delivering, respectively. On the basis of the distinct size-dependent cut-off effect, finely tuning the diameters of homojunctions would result in a controllable filtering of confined signal that light, beyond cut-off wavelength, cannot transfer within the narrowed segments any longer. These results pave the way for semiconductor photonic components toward integration.

15.
Small ; 14(51): e1804006, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30394008

RESUMEN

Enabling mechanical responsiveness in field-effect transistors (FETs) offers new technological opportunity beyond the reach of existing platforms. Here a new force-sensing concept is proposed by controlling the wettability of a semiconductor surface, referring to the interfacial field-effect transistors (IFETs). An IFET made by superhydrophobic semiconductor nanowires (NWs) sandwiched between a layer of 2D electron gas (2DEG) and a conductive Cassie-Baxter (CB) sessile droplet is designed. Following the hydrostatic deformation of the CB droplet upon mechanical stress, an extremely small elastic modulus of 820 pascals vertical to the substrate plane, or ≈100 times softer than Ecoflex rubbers, enabling an excellent stress detection limit down to <10 pascals and a stress sensitivity of 36 kPa-1 is proposed. The IFET exhibits an on/off current ratio exceeding 3 × 104 , as the carrier density profile at the NW/2DEG interface is modulated by a partially penetrated electrostatic field. This study demonstrates a versatile platform that bridges multiple macroscopic interfacial phenomena with nanoelectronic responses.

16.
Nano Lett ; 17(2): 747-754, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28045536

RESUMEN

Next-generation optoelectronic devices and photonic circuitry will have to incorporate on-chip compatible nanolaser sources. Semiconductor nanowire lasers have emerged as strong candidates for integrated systems with applications ranging from ultrasensitive sensing to data communication technologies. Despite significant advances in their fundamental aspects, the integration within scalable photonic circuitry remains challenging. Here we report on the realization of hybrid photonic devices consisting of nanowire lasers integrated with wafer-scale lithographically designed V-groove plasmonic waveguides. We present experimental evidence of the lasing emission and coupling into the propagating modes of the V-grooves, enabling on-chip routing of coherent and subdiffraction confined light with room-temperature operation. Theoretical considerations suggest that the observed lasing is enabled by a waveguide hybrid photonic-plasmonic mode. This work represents a major advance toward the realization of application-oriented photonic circuits with integrated nanolaser sources.

17.
Nano Lett ; 17(10): 6287-6294, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28885032

RESUMEN

III/V semiconductor nanostructures have significant potential in device applications, but effective surface passivation is critical due to their large surface-to-volume ratio. For InP such passivation has proven particularly difficult, with substantial depassivation generally observed following dielectric deposition on InP surfaces. We present a novel approach based on passivation with a phosphorus-rich interfacial oxide deposited using a low-temperature process, which is critical to avoid P-desorption. For this purpose we have chosen a POx layer deposited in a plasma-assisted atomic layer deposition (ALD) system at room temperature. Since POx is known to be hygroscopic and therefore unstable in atmosphere, we encapsulate this layer with a thin ALD Al2O3 capping layer to form a POx/Al2O3 stack. This passivation scheme is capable of improving the photoluminescence (PL) efficiency of our state-of-the-art wurtzite (WZ) InP nanowires by a factor of ∼20 at low excitation. If we apply the rate equation analysis advocated by some authors, we derive a PL internal quantum efficiency (IQE) of 75% for our passivated wires at high excitation. Our results indicate that it is more reliable to calculate the IQE as the ratio of the integrated PL intensity at room temperature to that at 10 K. By this means we derive an IQE of 27% for the passivated wires at high excitation (>10 kW cm-2), which constitutes an unprecedented level of performance for undoped InP nanowires. This conclusion is supported by time-resolved PL decay lifetimes, which are also shown to be significantly higher than previously reported for similar wires. The passivation scheme displays excellent long-term stability (>7 months) and is additionally shown to substantially improve the thermal stability of InP surfaces (>300 °C), significantly expanding the temperature window for device processing. Such effective surface passivation is a key enabling technology for InP nanowire devices such as nanolasers and solar cells.

18.
Nano Lett ; 17(4): 2336-2341, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28231001

RESUMEN

We investigate the metallic phases observed in hybrid metal-GaAs nanowire devices obtained by controlled thermal annealing of Ni/Au electrodes. Devices are fabricated onto a SiN membrane compatible with transmission electron microscopy studies. Energy dispersive X-ray spectroscopy allows us to show that the nanowire body includes two Ni-rich phases that thanks to an innovative use of electron diffraction tomography can be unambiguously identified as Ni3GaAs and Ni5As2 crystals. The mechanisms of Ni incorporation leading to the observed phenomenology are discussed.

19.
Nano Lett ; 16(8): 5080-6, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27459233

RESUMEN

We present the design and room-temperature lasing characteristics of single nanowires containing coaxial GaAs/AlGaAs multiple quantum well (MQW) active regions. The TE01 mode, which has a doughnut-shaped intensity profile and is polarized predominantly in-plane to the MQWs, is predicted to lase in these nanowire heterostructures and is thus chosen for the cavity design. Through gain and loss calculations, we determine the nanowire dimensions required to minimize loss for the TE01 mode and determine the optimal thickness and number of QWs for minimizing the threshold sheet carrier density. In particular, we show that there is a limit to the minimum and maximum number of QWs that are required for room-temperature lasing. Based on our design, we grew nanowires of a suitable diameter containing eight uniform coaxial GaAs/AlGaAs MQWs. Lasing was observed at room temperature from optically pumped single nanowires and was verified to be from TE01 mode by polarization measurements. The GaAs MQW nanowire lasers have a threshold fluence that is a factor of 2 lower than that previously demonstrated for room-temperature GaAs nanowire lasers.

20.
Nano Lett ; 16(9): 5521-7, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27532324

RESUMEN

We investigate light emission from nanoscale point-sources obtained in hybrid metal-GaAs nanowires embedding two sharp axial Schottky barriers. Devices are obtained via the formation of Ni-rich metallic alloy regions in the nanostructure body thanks to a technique of controlled thermal annealing of Ni/Au electrodes. In agreement with recent findings, visible-light electroluminescence can be observed upon suitable voltage biasing of the junctions. We investigate the time-resolved emission properties of our devices and demonstrate an electrical modulation of light generation up to 1 GHz. We explore different drive configurations and discuss the intrinsic bottlenecks of the present device architecture. Our results demonstrate a novel technique for the realization of fast subwavelength light sources with possible applications in sensing and microscopy beyond the diffraction limit.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA