Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Circulation ; 150(5): 374-389, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38991046

RESUMEN

BACKGROUND: The heart comprises many types of cells such as cardiomyocytes, endothelial cells (ECs), fibroblasts, smooth muscle cells, pericytes, and blood cells. Every cell type responds to various stressors (eg, hemodynamic overload and ischemia) and changes its properties and interrelationships among cells. To date, heart failure research has focused mainly on cardiomyocytes; however, other types of cells and their cell-to-cell interactions might also be important in the pathogenesis of heart failure. METHODS: Pressure overload was imposed on mice by transverse aortic constriction and the vascular structure of the heart was examined using a tissue transparency technique. Functional and molecular analyses including single-cell RNA sequencing were performed on the hearts of wild-type mice and EC-specific gene knockout mice. Metabolites in heart tissue were measured by capillary electrophoresis-time of flight-mass spectrometry system. The vaccine was prepared by conjugating the synthesized epitope peptides with keyhole limpet hemocyanin and administered to mice with aluminum hydroxide as an adjuvant. Tissue samples from heart failure patients were used for single-nucleus RNA sequencing to examine gene expression in ECs and perform pathway analysis in cardiomyocytes. RESULTS: Pressure overload induced the development of intricately entwined blood vessels in murine hearts, leading to the accumulation of replication stress and DNA damage in cardiac ECs. Inhibition of cell proliferation by a cyclin-dependent kinase inhibitor reduced DNA damage in ECs and ameliorated transverse aortic constriction-induced cardiac dysfunction. Single-cell RNA sequencing analysis revealed upregulation of Igfbp7 (insulin-like growth factor-binding protein 7) expression in the senescent ECs and downregulation of insulin signaling and oxidative phosphorylation in cardiomyocytes of murine and human failing hearts. Overexpression of Igfbp7 in the murine heart using AAV9 (adeno-associated virus serotype 9) exacerbated cardiac dysfunction, while EC-specific deletion of Igfbp7 and the vaccine targeting Igfbp7 ameliorated cardiac dysfunction with increased oxidative phosphorylation in cardiomyocytes under pressure overload. CONCLUSIONS: Igfbp7 produced by senescent ECs causes cardiac dysfunction and vaccine therapy targeting Igfbp7 may be useful to prevent the development of heart failure.


Asunto(s)
Insuficiencia Cardíaca , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina , Ratones Noqueados , Animales , Insuficiencia Cardíaca/metabolismo , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/genética , Ratones , Humanos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratones Endogámicos C57BL , Masculino , Modelos Animales de Enfermedad
2.
Circulation ; 149(21): 1670-1688, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38314577

RESUMEN

BACKGROUND: Preeclampsia is a serious disease of pregnancy that lacks early diagnosis methods or effective treatment, except delivery. Dysregulated uterine immune cells and spiral arteries are implicated in preeclampsia, but the mechanistic link remains unclear. METHODS: Single-cell RNA sequencing and spatial transcriptomics were used to identify immune cell subsets associated with preeclampsia. Cell-based studies and animal models including conditional knockout mice and a new preeclampsia mouse model induced by recombinant mouse galectin-9 were applied to validate the pathogenic role of a CD11chigh subpopulation of decidual macrophages (dMφ) and to determine its underlying regulatory mechanisms in preeclampsia. A retrospective preeclampsia cohort study was performed to determine the value of circulating galectin-9 in predicting preeclampsia. RESULTS: We discovered a distinct CD11chigh dMφ subset that inhibits spiral artery remodeling in preeclampsia. The proinflammatory CD11chigh dMφ exhibits perivascular enrichment in the decidua from patients with preeclampsia. We also showed that trophoblast-derived galectin-9 activates CD11chigh dMφ by means of CD44 binding to suppress spiral artery remodeling. In 3 independent preeclampsia mouse models, placental and plasma galectin-9 levels were elevated. Galectin-9 administration in mice induces preeclampsia-like phenotypes with increased CD11chigh dMφ and defective spiral arteries, whereas galectin-9 blockade or macrophage-specific CD44 deletion prevents such phenotypes. In pregnant women, increased circulating galectin-9 levels in the first trimester and at 16 to 20 gestational weeks can predict subsequent preeclampsia onset. CONCLUSIONS: These findings highlight a key role of a distinct perivascular inflammatory CD11chigh dMφ subpopulation in the pathogenesis of preeclampsia. CD11chigh dMφ activated by increased galectin-9 from trophoblasts suppresses uterine spiral artery remodeling, contributing to preeclampsia. Increased circulating galectin-9 may be a biomarker for preeclampsia prediction and intervention.


Asunto(s)
Decidua , Galectinas , Macrófagos , Preeclampsia , Remodelación Vascular , Preeclampsia/metabolismo , Preeclampsia/inmunología , Embarazo , Femenino , Animales , Galectinas/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/patología , Ratones , Humanos , Decidua/metabolismo , Decidua/patología , Ratones Noqueados , Útero/metabolismo , Útero/irrigación sanguínea , Modelos Animales de Enfermedad , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/genética , Estudios Retrospectivos , Ratones Endogámicos C57BL , Antígenos CD11
3.
Arterioscler Thromb Vasc Biol ; 44(5): 1135-1143, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38572648

RESUMEN

BACKGROUND: Acute coronary syndrome (ACS) involves plaque-related thrombosis, causing primary ischemic cardiomyopathy or lethal arrhythmia. We previously demonstrated a unique immune landscape of myeloid cells in the culprit plaques causing ACS by using single-cell RNA sequencing. Here, we aimed to characterize T cells in a single-cell level, assess clonal expansion of T cells, and find a therapeutic target to prevent ACS. METHODS: We obtained the culprit lesion plaques from 4 patients with chronic coronary syndrome (chronic coronary syndrome plaques) and the culprit lesion plaques from 3 patients with ACS (ACS plaques) who were candidates for percutaneous coronary intervention with directional coronary atherectomy. Live CD45+ immune cells were sorted from each pooled plaque samples and applied to the 10× platform for single-cell RNA sequencing analysis. We also extracted RNA from other 3 ACS plaque samples and conducted unbiased TCR (T-cell receptor) repertoire analysis. RESULTS: CD4+ T cells were divided into 5 distinct clusters: effector, naive, cytotoxic, CCR7+ (C-C chemokine receptor type 7) central memory, and FOXP3 (forkhead box P3)+ regulatory CD4+ T cells. The proportion of central memory CD4+ T cells was higher in the ACS plaques. Correspondingly, dendritic cells also tended to express more HLAs (human leukocyte antigens) and costimulatory molecules in the ACS plaques. The velocity analysis suggested the differentiation flow from central memory CD4+ T cells into effector CD4+ T cells and that from naive CD4+ T cells into central memory CD4+ T cells in the ACS plaques, which were not observed in the chronic coronary syndrome plaques. The bulk repertoire analysis revealed clonal expansion of TCRs in each patient with ACS and suggested that several peptides in the ACS plaques work as antigens and induced clonal expansion of CD4+ T cells. CONCLUSIONS: For the first time, we revealed single cell-level characteristics of CD4+ T cells in patients with ACS. CD4+ T cells could be therapeutic targets of ACS. REGISTRATION: URL: https://upload.umin.ac.jp/cgi-open-bin/icdr_e/ctr_view.cgi?recptno=R000046521; Unique identifier: UMIN000040747.


Asunto(s)
Síndrome Coronario Agudo , Linfocitos T CD4-Positivos , Placa Aterosclerótica , Análisis de la Célula Individual , Humanos , Síndrome Coronario Agudo/inmunología , Síndrome Coronario Agudo/genética , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Masculino , Persona de Mediana Edad , Femenino , Anciano , RNA-Seq , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Vasos Coronarios/inmunología , Vasos Coronarios/patología , Análisis de Secuencia de ARN , Enfermedad de la Arteria Coronaria/inmunología , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/patología , Fenotipo
4.
Artículo en Inglés | MEDLINE | ID: mdl-38868940

RESUMEN

BACKGROUND: Plasma concentration of PAI-1 (plasminogen activator inhibitor-1) correlates with arterial stiffness. Vascular smooth muscle cells (SMCs) express PAI-1, and the intrinsic stiffness of SMCs is a major determinant of total arterial stiffness. We hypothesized that PAI-1 promotes SMC stiffness by regulating the cytoskeleton and that pharmacological inhibition of PAI-1 decreases SMC and aortic stiffness. METHODS: PAI-039, a specific inhibitor of PAI-1, and small interfering RNA were used to inhibit PAI-1 expression in cultured human SMCs. Effects of PAI-1 inhibition on SMC stiffness, F-actin (filamentous actin) content, and cytoskeleton-modulating enzymes were assessed. WT (wild-type) and PAI-1-deficient murine SMCs were used to determine PAI-039 specificity. RNA sequencing was performed to determine the effects of PAI-039 on SMC gene expression. In vivo effects of PAI-039 were assessed by aortic pulse wave velocity. RESULTS: PAI-039 significantly reduced intrinsic stiffness of human SMCs, which was accompanied by a significant decrease in cytoplasmic F-actin content. PAI-1 gene knockdown also decreased cytoplasmic F-actin. PAI-1 inhibition significantly increased the activity of cofilin, an F-actin depolymerase, in WT murine SMCs, but not in PAI-1-deficient SMCs. RNA-sequencing analysis suggested that PAI-039 upregulates AMPK (AMP-activated protein kinase) signaling in SMCs, which was confirmed by Western blotting. Inhibition of AMPK prevented activation of cofilin by PAI-039. In mice, PAI-039 significantly decreased aortic stiffness and tunica media F-actin content without altering the elastin or collagen content. CONCLUSIONS: PAI-039 decreases intrinsic SMC stiffness and cytoplasmic stress fiber content. These effects are mediated by AMPK-dependent activation of cofilin. PAI-039 also decreases aortic stiffness in vivo. These findings suggest that PAI-1 is an important regulator of the SMC cytoskeleton and that pharmacological inhibition of PAI-1 has the potential to prevent and treat cardiovascular diseases involving arterial stiffening.

5.
Circulation ; 147(6): 482-497, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36515099

RESUMEN

BACKGROUND: Transplant arteriosclerosis is a major complication in long-term survivors of heart transplantation. Increased lymph flow from donor heart to host lymph nodes has been reported to play a role in transplant arteriosclerosis, but how lymphangiogenesis affects this process is unknown. METHODS: Vascular allografts were transplanted among various combinations of mice, including wild-type, Lyve1-CreERT2;R26-tdTomato, CAG-Cre-tdTomato, severe combined immune deficiency, Ccr2KO, Foxn1KO, and lghm/lghdKO mice. Whole-mount staining and 3-dimensional reconstruction identified lymphatic vessels within the grafted arteries. Lineage tracing strategies delineated the cellular origin of lymphatic endothelial cells. Adeno-associated viral vectors and a selective inhibitor were used to regulate lymphangiogenesis. RESULTS: Lymphangiogenesis within allograft vessels began at the anastomotic sites and extended from preexisting lymphatic vessels in the host. Tertiary lymphatic organs were identified in transplanted arteries at the anastomotic site and lymphatic vessels expressing CCL21 (chemokine [C-C motif] ligand 21) were associated with these immune structures. Fibroblasts in the vascular allografts released VEGF-C (vascular endothelial growth factor C), which stimulated lymphangiogenesis into the grafts. Inhibition of VEGF-C signaling inhibited lymphangiogenesis, neointima formation, and adventitial fibrosis of vascular allografts. These studies identified VEGF-C released from fibroblasts as a signal stimulating lymphangiogenesis extending from the host into the vascular allografts. CONCLUSIONS: Formation of lymphatic vessels plays a key role in the immune response to vascular transplantation. The inhibition of lymphangiogenesis may be a novel approach to prevent transplant arteriosclerosis.


Asunto(s)
Arteriosclerosis , Trasplante de Corazón , Vasos Linfáticos , Ratones , Animales , Humanos , Linfangiogénesis , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Factor C de Crecimiento Endotelial Vascular/farmacología , Trasplante de Corazón/efectos adversos , Células Endoteliales/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Donantes de Tejidos , Vasos Linfáticos/patología , Arteriosclerosis/metabolismo
6.
Circulation ; 147(5): 409-424, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36448446

RESUMEN

BACKGROUND: Extensive evidence from single-center studies indicates that a subset of patients with chronic advanced heart failure (HF) undergoing left ventricular assist device (LVAD) support show significantly improved heart function and reverse structural remodeling (ie, termed "responders"). Furthermore, we recently published a multicenter prospective study, RESTAGE-HF (Remission from Stage D Heart Failure), demonstrating that LVAD support combined with standard HF medications induced remarkable cardiac structural and functional improvement, leading to high rates of LVAD weaning and excellent long-term outcomes. This intriguing phenomenon provides great translational and clinical promise, although the underlying molecular mechanisms driving this recovery are largely unknown. METHODS: To identify changes in signaling pathways operative in the normal and failing human heart and to molecularly characterize patients who respond favorably to LVAD unloading, we performed global RNA sequencing and phosphopeptide profiling of left ventricular tissue from 93 patients with HF undergoing LVAD implantation (25 responders and 68 nonresponders) and 12 nonfailing donor hearts. Patients were prospectively monitored through echocardiography to characterize their myocardial structure and function and identify responders and nonresponders. RESULTS: These analyses identified 1341 transcripts and 288 phosphopeptides that are differentially regulated in cardiac tissue from nonfailing control samples and patients with HF. In addition, these unbiased molecular profiles identified a unique signature of 29 transcripts and 93 phosphopeptides in patients with HF that distinguished responders after LVAD unloading. Further analyses of these macromolecules highlighted differential regulation in 2 key pathways: cell cycle regulation and extracellular matrix/focal adhesions. CONCLUSIONS: This is the first study to characterize changes in the nonfailing and failing human heart by integrating multiple -omics platforms to identify molecular indices defining patients capable of myocardial recovery. These findings may guide patient selection for advanced HF therapies and identify new HF therapeutic targets.


Asunto(s)
Insuficiencia Cardíaca , Trasplante de Corazón , Corazón Auxiliar , Humanos , Transcriptoma , Estudios Prospectivos , Fosfopéptidos/metabolismo , Proteómica , Donantes de Tejidos , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/terapia , Insuficiencia Cardíaca/metabolismo , Miocardio/metabolismo
7.
J Transl Med ; 22(1): 622, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965536

RESUMEN

BACKGROUND: Inhibition of kinases is the ever-expanding therapeutic approach to various types of cancer. Typically, assessment of the treatment response is accomplished by standard, volumetric imaging procedures, performed weeks to months after the onset of treatment, given the predominantly cytostatic nature of the kinase inhibitors, at least when used as single agents. Therefore, there is a great clinical need to develop new monitoring approaches to detect the response to kinase inhibition much more promptly. Noninvasive 1H magnetic resonance spectroscopy (MRS) can measure in vitro and in vivo concentration of key metabolites which may potentially serve as biomarkers of response to kinase inhibition. METHODS: We employed mantle cell lymphoma (MCL) cell lines demonstrating markedly diverse sensitivity of inhibition of Bruton's tyrosine kinase (BTK) regarding their growth and studied in-depth effects of the inhibition on various aspects of cell metabolism including metabolite synthesis using metabolomics, glucose and oxidative metabolism by Seahorse XF technology, and concentration of index metabolites lactate, alanine, total choline and taurine by 1H MRS. RESULTS: Effective BTK inhibition profoundly suppressed key cell metabolic pathways, foremost pyrimidine and purine synthesis, the citrate (TCA) cycle, glycolysis, and pyruvate and glutamine/alanine metabolism. It also inhibited glycolysis and amino acid-related oxidative metabolism. Finally, it profoundly and quickly decreased concentration of lactate (a product of mainly glycolysis) and alanine (an indicator of amino acid metabolism) and, less universally total choline both in vitro and in vivo, in the MCL xenotransplant model. The decrease correlated directly with the degree of inhibition of lymphoma cell expansion and tumor growth. CONCLUSIONS: Our results indicate that BTK inhibition exerts a broad and profound suppressive effect on cell metabolism and that the affected index metabolites such as lactate, alanine may serve as early, sensitive, and reliable biomarkers of inhibition in lymphoma patients detectable by noninvasive MRS-based imaging method. This kind of imaging-based detection may also be applicable to other kinase inhibitors, as well as diverse lymphoid and non-lymphoid malignancies.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Linfoma de Células del Manto , Inhibidores de Proteínas Quinasas , Humanos , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Animales , Agammaglobulinemia Tirosina Quinasa/metabolismo , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Linfoma de Células del Manto/metabolismo , Linfoma de Células del Manto/patología , Linfoma de Células del Manto/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Biomarcadores de Tumor/metabolismo , Proliferación Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones , Biomarcadores/metabolismo
8.
Circ Res ; 131(1): 24-41, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35587025

RESUMEN

BACKGROUND: Heart development relies on tight spatiotemporal control of cardiac gene expression. Genes involved in this intricate process have been identified using animals and pluripotent stem cell-based models of cardio(myo)genesis. Recently, the repertoire of cardiomyocyte differentiation models has been expanded with iAM-1, a monoclonal line of conditionally immortalized neonatal rat atrial myocytes (NRAMs), which allows toggling between proliferative and differentiated (ie, excitable and contractile) phenotypes in a synchronized and homogenous manner. METHODS: In this study, the unique properties of conditionally immortalized NRAMs (iAMs) were exploited to identify and characterize (lowly expressed) genes with an as-of-yet uncharacterized role in cardiomyocyte differentiation. RESULTS: Transcriptome analysis of iAM-1 cells at different stages during one cycle of differentiation and subsequent dedifferentiation identified ≈13 000 transcripts, of which the dynamic changes in expression upon cardiomyogenic differentiation mostly opposed those during dedifferentiation. Among the genes whose expression increased during differentiation and decreased during dedifferentiation were many with known (lineage-specific) functions in cardiac muscle formation. Filtering for cardiac-enriched low-abundance transcripts, identified multiple genes with an uncharacterized role during cardio(myo)genesis including Sbk2 (SH3 domain binding kinase family member 2). Sbk2 encodes an evolutionarily conserved putative serine/threonine protein kinase, whose expression is strongly up- and downregulated during iAM-1 cell differentiation and dedifferentiation, respectively. In neonatal and adult rats, the protein is muscle-specific, highly atrium-enriched, and localized around the A-band of cardiac sarcomeres. Knockdown of Sbk2 expression caused loss of sarcomeric organization in NRAMs, iAMs and their human counterparts, consistent with a decrease in sarcomeric gene expression as evinced by transcriptome and proteome analyses. Interestingly, co-immunoprecipitation using Sbk2 as bait identified possible interaction partners with diverse cellular functions (translation, intracellular trafficking, cytoskeletal organization, chromatin modification, sarcomere formation). CONCLUSIONS: iAM-1 cells are a relevant and suitable model to identify (lowly expressed) genes with a hitherto unidentified role in cardiomyocyte differentiation as exemplified by Sbk2: a regulator of atrial sarcomerogenesis.


Asunto(s)
Miocitos Cardíacos , Sarcómeros , Animales , Diferenciación Celular , Atrios Cardíacos , Miocardio , Miocitos Cardíacos/metabolismo , Ratas , Sarcómeros/metabolismo
9.
Arterioscler Thromb Vasc Biol ; 43(1): e46-e61, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36384268

RESUMEN

BACKGROUND: Diabetes is a major risk factor for peripheral arterial disease. Clinical and preclinical studies suggest an impaired collateral remodeling and angiogenesis in response to atherosclerotic arterial occlusion in diabetic conditions, although the underlying mechanisms are poorly understood. OBJECTIVE: To clarify the cellular and molecular mechanisms underlying impaired postischemic adaptive vascular responses and to evaluate rHDL (reconstituted HDL)-ApoA-I nanotherapy to rescue the defect in type 2 diabetic mouse model of hindlimb ischemia. METHODS AND RESULTS: Hindlimb ischemia was induced by unilateral femoral artery ligation. Collateral and capillary parameters together with blood flow recovery were analyzed from normoxic adductor and ischemic gastrocnemius muscles, respectively, at day 3 and 7 post-ligation. In response to femoral artery ligation, collateral lumen area was significantly reduced in normoxic adductor muscles. Distally, ischemic gastrocnemius muscles displayed impaired perfusion recovery and angiogenesis paralleled with persistent inflammation. Muscle-specific mRNA sequencing revealed differential expression of genes critical for smooth muscle proliferation and sprouting angiogenesis in normoxic adductor and ischemic gastrocnemius, respectively, at day 7 post-ligation. Genes typical for macrophage (Mϕ) subsets were differentially expressed across both muscle types. Cell-specific gene expression, flow cytometry, and immunohistochemistry revealed persistent IFN-I response gene upregulation in arterial endothelial cells, ECs and Mϕs from T2DM mice associated with impaired collateral remodeling, angiogenesis and perfusion recovery. Furthermore, rHDL nanotherapy rescued impaired collateral remodeling and angiogenesis through dampening EC and Mϕ inflammation in T2DM mice. CONCLUSIONS: Our results suggest that an impaired collateral remodeling and sprouting angiogenesis in T2DM mice is associated with persistent IFN-I response in ECs and Mϕs. Dampening persistent inflammation and skewing ECs and Mϕ phenotype toward less inflammatory ones using rHDL nanotherapy may serve as a potential therapeutic target for T2DM peripheral arterial disease.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Enfermedad Arterial Periférica , Ratones , Animales , Neovascularización Fisiológica , Células Endoteliales/metabolismo , Apolipoproteína A-I/metabolismo , Macrófagos/metabolismo , Isquemia , Músculo Esquelético/irrigación sanguínea , Arteria Femoral/metabolismo , Diabetes Mellitus Tipo 2/genética , Inflamación/metabolismo , Enfermedad Arterial Periférica/metabolismo , Fenotipo , Miembro Posterior/irrigación sanguínea , Ratones Endogámicos C57BL , Circulación Colateral
10.
J Med Genet ; 60(6): 615-619, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36535754

RESUMEN

BACKGROUND: Up to 7% of patients with Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD) remain genetically undiagnosed after routine genetic testing. These patients are thought to carry deep intronic variants, structural variants or splicing alterations not detected through multiplex ligation-dependent probe amplification or exome sequencing. METHODS: RNA was extracted from seven muscle biopsy samples of patients with genetically undiagnosed DMD/BMD after routine genetic diagnosis. RT-PCR of the DMD gene was performed to detect the presence of alternative transcripts. Droplet digital PCR and whole-genome sequencing were also performed in some patients. RESULTS: We identified an alteration in the mRNA level in all the patients. We detected three pseudoexons in DMD caused by deep intronic variants, two of them not previously reported. We also identified a chromosomal rearrangement between Xp21.2 and 8p22. Furthermore, we detected three exon skipping events with unclear pathogenicity. CONCLUSION: These findings indicate that mRNA analysis of the DMD gene is a valuable tool to reach a precise genetic diagnosis in patients with a clinical and anatomopathological suspicion of dystrophinopathy that remain genetically undiagnosed after routine genetic testing.


Asunto(s)
Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Distrofina/genética , ARN Mensajero/genética , Mutación , Reacción en Cadena de la Polimerasa Multiplex
11.
J Med Genet ; 60(5): 450-459, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36113988

RESUMEN

BACKGROUND: Spliceogenic variants in disease-causing genes are often presumed pathogenic since most induce frameshifts resulting in loss of function. However, it was recently shown in cancer predisposition genes that some may trigger in-frame anomalies that preserve function. Here, we addressed this question by using MSH2, a DNA mismatch repair gene implicated in Lynch syndrome, as a model system. METHODS: Eighteen MSH2 variants, mostly localised within canonical splice sites, were analysed by using minigene splicing assays. The impact of the resulting protein alterations was assessed in a methylation tolerance-based assay. Clinicopathological characteristics of variant carriers were collected. RESULTS: Three in-frame RNA biotypes were identified based on variant-induced spliceogenic outcomes: exon skipping (E3, E4, E5 and E12), segmental exonic deletions (E7 and E15) and intronic retentions (I3, I6, I12 and I13). The 10 corresponding protein isoforms exhibit either large deletions (49-93 amino acids (aa)), small deletions (12 or 16 aa) or insertions (3-10 aa) within different functional domains. We showed that all these modifications abrogate MSH2 function, in agreement with the clinicopathological features of variant carriers. CONCLUSION: Altogether, these data demonstrate that MSH2 function is intolerant to in-frame indels caused by the spliceogenic variants analysed in this study, supporting their pathogenic nature. This work stresses the importance of combining complementary RNA and protein approaches to ensure accurate clinical interpretation of in-frame spliceogenic variants.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Sitios de Empalme de ARN , Empalme del ARN , Humanos , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/patología , Homólogo 1 de la Proteína MutL/genética , Proteína 2 Homóloga a MutS/genética , Sitios de Empalme de ARN/genética , Empalme del ARN/genética
12.
Circulation ; 146(8): 623-638, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35880523

RESUMEN

BACKGROUND: Cellular rejection after heart transplantation imparts significant morbidity and mortality. Current immunosuppressive strategies are imperfect, target recipient T cells, and have adverse effects. The innate immune response plays an essential role in the recruitment and activation of T cells. Targeting the donor innate immune response would represent the earliest interventional opportunity within the immune response cascade. There is limited knowledge about donor immune cell types and functions in the setting of cardiac transplantation, and no current therapeutics exist for targeting these cell populations. METHODS: Using genetic lineage tracing, cell ablation, and conditional gene deletion, we examined donor mononuclear phagocyte diversity and macrophage function during acute cellular rejection of transplanted hearts in mice. We performed single-cell RNA sequencing on donor and recipient macrophages and monocytes at multiple time points after transplantation. On the basis of our imaging and single-cell RNA sequencing data, we evaluated the functional relevance of donor CCR2+ (C-C chemokine receptor 2) and CCR2- macrophages using selective cell ablation strategies in donor grafts before transplant. Last, we performed functional validation that donor macrophages signal through MYD88 (myeloid differentiation primary response protein 88) to facilitate cellular rejection. RESULTS: Donor macrophages persisted in the rejecting transplanted heart and coexisted with recipient monocyte-derived macrophages. Single-cell RNA sequencing identified donor CCR2+ and CCR2- macrophage populations and revealed remarkable diversity among recipient monocytes, macrophages, and dendritic cells. Temporal analysis demonstrated that donor CCR2+ and CCR2- macrophages were transcriptionally distinct, underwent significant morphologic changes, and displayed unique activation signatures after transplantation. Although selective depletion of donor CCR2- macrophages reduced allograft survival, depletion of donor CCR2+ macrophages prolonged allograft survival. Pathway analysis revealed that donor CCR2+ macrophages are activated through MYD88/nuclear factor kappa light chain enhancer of activated B cells signaling. Deletion of MYD88 in donor macrophages resulted in reduced antigen-presenting cell recruitment, reduced ability of antigen-presenting cells to present antigen to T cells, decreased emergence of allograft-reactive T cells, and extended allograft survival. CONCLUSIONS: Distinct populations of donor and recipient macrophages coexist within the transplanted heart. Donor CCR2+ macrophages are key mediators of allograft rejection, and deletion of MYD88 signaling in donor macrophages is sufficient to suppress rejection and extend allograft survival. This highlights the therapeutic potential of donor heart-based interventions.


Asunto(s)
Trasplante de Corazón , Animales , Rechazo de Injerto/prevención & control , Trasplante de Corazón/efectos adversos , Humanos , Macrófagos , Ratones , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide/genética , Donantes de Tejidos
13.
Circulation ; 145(8): 606-619, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35113653

RESUMEN

BACKGROUND: The pathogenic missense variant p.G125R in TBX5 (T-box transcription factor 5) causes Holt-Oram syndrome (also known as hand-heart syndrome) and early onset of atrial fibrillation. Revealing how an altered key developmental transcription factor modulates cardiac physiology in vivo will provide unique insights into the mechanisms underlying atrial fibrillation in these patients. METHODS: We analyzed ECGs of an extended family pedigree of Holt-Oram syndrome patients. Next, we introduced the TBX5-p.G125R variant in the mouse genome (Tbx5G125R) and performed electrophysiologic analyses (ECG, optical mapping, patch clamp, intracellular calcium measurements), transcriptomics (single-nuclei and tissue RNA sequencing), and epigenetic profiling (assay for transposase-accessible chromatin using sequencing, H3K27ac [histone H3 lysine 27 acetylation] CUT&RUN [cleavage under targets and release under nuclease sequencing]). RESULTS: We discovered high incidence of atrial extra systoles and atrioventricular conduction disturbances in Holt-Oram syndrome patients. Tbx5G125R/+ mice were morphologically unaffected and displayed variable RR intervals, atrial extra systoles, and susceptibility to atrial fibrillation, reminiscent of TBX5-p.G125R patients. Atrial conduction velocity was not affected but systolic and diastolic intracellular calcium concentrations were decreased and action potentials were prolonged in isolated cardiomyocytes of Tbx5G125R/+ mice compared with controls. Transcriptional profiling of atria revealed the most profound transcriptional changes in cardiomyocytes versus other cell types, and identified over a thousand coding and noncoding transcripts that were differentially expressed. Epigenetic profiling uncovered thousands of TBX5-p.G125R-sensitive, putative regulatory elements (including enhancers) that gained accessibility in atrial cardiomyocytes. The majority of sites with increased accessibility were occupied by Tbx5. The small group of sites with reduced accessibility was enriched for DNA-binding motifs of members of the SP (specificity protein) and KLF (Krüppel-like factor) families of transcription factors. These data show that Tbx5-p.G125R induces changes in regulatory element activity, alters transcriptional regulation, and changes cardiomyocyte behavior, possibly caused by altered DNA binding and cooperativity properties. CONCLUSIONS: Our data reveal that a disease-causing missense variant in TBX5 induces profound changes in the atrial transcriptional regulatory network and epigenetic state in vivo, leading to arrhythmia reminiscent of those seen in human TBX5-p.G125R variant carriers.


Asunto(s)
Anomalías Múltiples , Regulación de la Expresión Génica , Cardiopatías Congénitas , Defectos del Tabique Interatrial , Heterocigoto , Deformidades Congénitas de las Extremidades Inferiores , Mutación Missense , Linaje , Proteínas de Dominio T Box , Deformidades Congénitas de las Extremidades Superiores , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Sustitución de Aminoácidos , Animales , Fibrilación Atrial/genética , Fibrilación Atrial/metabolismo , Femenino , Atrios Cardíacos/metabolismo , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Defectos del Tabique Interatrial/genética , Defectos del Tabique Interatrial/metabolismo , Humanos , Deformidades Congénitas de las Extremidades Inferiores/genética , Deformidades Congénitas de las Extremidades Inferiores/metabolismo , Masculino , Ratones , Ratones Mutantes , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Deformidades Congénitas de las Extremidades Superiores/genética , Deformidades Congénitas de las Extremidades Superiores/metabolismo
14.
Arterioscler Thromb Vasc Biol ; 42(7): 811-818, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35587695

RESUMEN

Smooth muscle cells and endothelial cells have a remarkable level of plasticity in vascular pathologies. In thoracic and abdominal aortic aneurysms, smooth muscle cells have been suggested to undergo phenotypic switching and to contribute to degradation of the aortic wall structure in response to, for example, inflammatory mediators, dysregulation of growth factor signaling or oxidative stress. Recently, endothelial-to-mesenchymal transition, and a clonal expansion of degradative smooth muscle cells and immune cells, as well as mesenchymal stem-like cells have been suggested to contribute to the progression of aortic aneurysms. What are the factors driving the aortic cell phenotype changes and how vascular flow, known to affect aortic wall structure and to be altered in aortic aneurysms, could affect aortic cell remodeling? In this review, we summarize the current literature on aortic cell heterogeneity and phenotypic switching in relation to changes in vascular flow and aortic wall structure in aortic aneurysms in clinical samples with special focus on smooth muscle and endothelial cells. The differences between thoracic and abdominal aortic aneurysms are discussed.


Asunto(s)
Aneurisma de la Aorta Abdominal , Aneurisma de la Aorta Torácica , Aneurisma de la Aorta , Aneurisma de la Aorta/metabolismo , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Torácica/patología , Células Endoteliales/metabolismo , Humanos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo
15.
J Med Genet ; 59(12): 1227-1233, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36041817

RESUMEN

BACKGROUND: Aminoacyl-tRNA synthetases (ARS) are key enzymes catalysing the first reactions in protein synthesis, with increasingly recognised pleiotropic roles in tumourgenesis, angiogenesis, immune response and lifespan. Germline mutations in several ARS genes have been associated with both recessive and dominant neurological diseases. Recently, patients affected with microcephaly, intellectual disability and ataxia harbouring biallelic variants in the seryl-tRNA synthetase encoded by seryl-tRNA synthetase 1 (SARS1) were reported. METHODS: We used exome sequencing to identify the causal variant in a patient affected by complex spastic paraplegia with ataxia, intellectual disability, developmental delay and seizures, but without microcephaly. Complementation and serylation assays using patient's fibroblasts and an Saccharomyces cerevisiae model were performed to examine this variant's pathogenicity. RESULTS: A de novo splice site deletion in SARS1 was identified in our patient, resulting in a 5-amino acid in-frame insertion near its active site. Complementation assays in S. cerevisiae and serylation assays in both yeast strains and patient fibroblasts proved a loss-of-function, dominant negative effect. Fibroblasts showed an abnormal cell shape, arrested division and increased beta-galactosidase staining along with a senescence-associated secretory phenotype (raised interleukin-6, p21, p16 and p53 levels). CONCLUSION: We refine the phenotypic spectrum and modes of inheritance of a newly described, ultrarare neurodevelopmental disorder, while unveiling the role of SARS1 as a regulator of cell growth, division and senescence.


Asunto(s)
Aminoacil-ARNt Sintetasas , Discapacidad Intelectual , Microcefalia , Serina-ARNt Ligasa , Humanos , Aminoacil-ARNt Sintetasas/genética , Ataxia , Senescencia Celular/genética , Discapacidad Intelectual/genética , Ligasas , Microcefalia/genética , Paraplejía/genética , Saccharomyces cerevisiae/genética , Serina-ARNt Ligasa/química , Serina-ARNt Ligasa/metabolismo
16.
J Pak Med Assoc ; 73(12): 2462-2464, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38083933

RESUMEN

A 65-year-old woman presented to our hospital with 5 days of chest tightness, dyspnoea, and lower abdominal distension. Echocardiography revealed a mass in the right atrium. An emergency operation was carried out to prevent tumour shedding. The patient was discharged on the 4th day of tumour resection, without any complications At the 18 months follow-up, she suffered from kidney and lung tumours. She refused any treatment and passed away. scRNA-seq was applied to analyse the nature of the tumour. The cellular components of benign tumours include chondrocytes, smooth muscle cells, fibroblasts, mesenchymal stromal cells, and osteoblasts. Additionally, the cyclic guanosine monophosphate (cGMP-PKG) signalling pathway, transcriptional misregulation in cancer, and the p53 signalling pathway may be related to the growth of this tumour. scRNA-seq is a good approach to analyse growth patterns of cardiac tumours and helpful for distinguishing the nature of the tumour.


Asunto(s)
Neoplasias Cardíacas , Femenino , Humanos , Anciano , Neoplasias Cardíacas/diagnóstico por imagen , Neoplasias Cardíacas/genética , Análisis de Secuencia de ARN
17.
Circulation ; 143(22): 2169-2187, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33726497

RESUMEN

BACKGROUND: Arrhythmogenic cardiomyopathy (ACM) manifests with sudden death, arrhythmias, heart failure, apoptosis, and myocardial fibro-adipogenesis. The phenotype typically starts at the epicardium and advances transmurally. Mutations in genes encoding desmosome proteins, including DSP (desmoplakin), are major causes of ACM. METHODS: To delineate contributions of the epicardium to the pathogenesis of ACM, the Dsp allele was conditionally deleted in the epicardial cells in mice upon expression of tamoxifen-inducible Cre from the Wt1 locus. Wild type (WT) and Wt1-CreERT2:DspW/F were crossed to Rosa26mT/mG (R26mT/mG) dual reporter mice to tag the epicardial-derived cells with the EGFP (enhanced green fluorescent protein) reporter protein. Tagged epicardial-derived cells from adult Wt1-CreERT2:R26mT/mG and Wt1-CreERT2: R26mT/mG:DspW/F mouse hearts were isolated by fluorescence-activated cell staining and sequenced by single-cell RNA sequencing. RESULTS: WT1 (Wilms tumor 1) expression was progressively restricted postnatally and was exclusive to the epicardium by postnatal day 21. Expression of Dsp was reduced in the epicardial cells but not in cardiac myocytes in the Wt1-CreERT2:DspW/F mice. The Wt1-CreERT2:DspW/F mice exhibited premature death, cardiac dysfunction, arrhythmias, myocardial fibro-adipogenesis, and apoptosis. Single-cell RNA sequencing of ≈18 000 EGFP-tagged epicardial-derived cells identified genotype-independent clusters of endothelial cells, fibroblasts, epithelial cells, and a very small cluster of cardiac myocytes, which were confirmed on coimmunofluorescence staining of the myocardial sections. Differentially expressed genes between the paired clusters in the 2 genotypes predicted activation of the inflammatory and mitotic pathways-including the TGFß1 (transforming growth factor ß1) and fibroblast growth factors-in the epicardial-derived fibroblast and epithelial clusters, but predicted their suppression in the endothelial cell cluster. The findings were corroborated by analysis of gene expression in the pooled RNA-sequencing data, which identified predominant dysregulation of genes involved in epithelial-mesenchymal transition, and dysregulation of 146 genes encoding the secreted proteins (secretome), including genes in the TGFß1 pathway. Activation of the TGFß1 and its colocalization with fibrosis in the Wt1-CreERT2:R26mT/mG:DspW/F mouse heart was validated by complementary methods. CONCLUSIONS: Epicardial-derived cardiac fibroblasts and epithelial cells express paracrine factors, including TGFß1 and fibroblast growth factors, which mediate epithelial-mesenchymal transition, and contribute to the pathogenesis of myocardial fibrosis, apoptosis, arrhythmias, and cardiac dysfunction in a mouse model of ACM. The findings uncover contributions of the epicardial-derived cells to the pathogenesis of ACM.


Asunto(s)
Cardiomiopatías/fisiopatología , Comunicación Paracrina/inmunología , Pericardio/fisiopatología , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Animales , Cardiomiopatías/mortalidad , Modelos Animales de Enfermedad , Humanos , Ratones , Análisis de Supervivencia
18.
Circulation ; 143(2): 120-134, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33118835

RESUMEN

BACKGROUND: Heart failure (HF) with preserved ejection fraction (HFpEF) constitutes half of all HF but lacks effective therapy. Understanding of its myocardial biology remains limited because of a paucity of heart tissue molecular analysis. METHODS: We performed RNA sequencing on right ventricular septal endomyocardial biopsies prospectively obtained from patients meeting consensus criteria for HFpEF (n=41) contrasted with right ventricular septal tissue from patients with HF with reduced ejection fraction (HFrEF, n=30) and donor controls (n=24). Principal component analysis and hierarchical clustering tested for transcriptomic distinctiveness between groups, effect of comorbidities, and differential gene expression with pathway enrichment contrasted HF groups and donor controls. Within HFpEF, non-negative matrix factorization and weighted gene coexpression analysis identified molecular subgroups, and the resulting clusters were correlated with hemodynamic and clinical data. RESULTS: Patients with HFpEF were more often women (59%), African American (68%), obese (median body mass index 41), and hypertensive (98%), with clinical HF characterized by 65% New York Heart Association Class III or IV, nearly all on a loop diuretic, and 70% with a HF hospitalization in the previous year. Principal component analysis separated HFpEF from HFrEF and donor controls with minimal overlap, and this persisted after adjusting for primary comorbidities: body mass index, sex, age, diabetes, and renal function. Hierarchical clustering confirmed group separation. Nearly half the significantly altered genes in HFpEF versus donor controls (1882 up, 2593 down) changed in the same direction in HFrEF; however, 5745 genes were uniquely altered between HF groups. Compared with controls, uniquely upregulated genes in HFpEF were enriched in mitochondrial adenosine triphosphate synthesis/electron transport, pathways downregulated in HFrEF. HFpEF-specific downregulated genes engaged endoplasmic reticulum stress, autophagy, and angiogenesis. Body mass index differences largely accounted for HFpEF upregulated genes, whereas neither this nor broader comorbidity adjustment altered pathways enriched in downregulated genes. Non-negative matrix factorization identified 3 HFpEF transcriptomic subgroups with distinctive pathways and clinical correlates, including a group closest to HFrEF with higher mortality, and a mostly female group with smaller hearts and proinflammatory signaling. These groupings remained after sex adjustment. Weighted gene coexpression analysis yielded analogous gene clusters and clinical groupings. CONCLUSIONS: HFpEF exhibits distinctive broad transcriptomic signatures and molecular subgroupings with particular clinical features and outcomes. The data reveal new signaling targets to consider for precision therapeutics.


Asunto(s)
Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Miocardio/metabolismo , Volumen Sistólico/fisiología , Transcriptoma/fisiología , Anciano , Cateterismo Cardíaco/métodos , Femenino , Insuficiencia Cardíaca/patología , Humanos , Masculino , Persona de Mediana Edad , Miocardio/patología , Estudios Prospectivos
19.
Circulation ; 144(5): 382-392, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-33928785

RESUMEN

BACKGROUND: Phospholamban (PLN) is a critical regulator of calcium cycling and contractility in the heart. The loss of arginine at position 14 in PLN (R14del) is associated with dilated cardiomyopathy with a high prevalence of ventricular arrhythmias. How the R14 deletion causes dilated cardiomyopathy is poorly understood, and there are no disease-specific therapies. METHODS: We used single-cell RNA sequencing to uncover PLN R14del disease mechanisms in human induced pluripotent stem cells (hiPSC-CMs). We used both 2-dimensional and 3-dimensional functional contractility assays to evaluate the impact of modulating disease-relevant pathways in PLN R14del hiPSC-CMs. RESULTS: Modeling of the PLN R14del cardiomyopathy with isogenic pairs of hiPSC-CMs recapitulated the contractile deficit associated with the disease in vitro. Single-cell RNA sequencing revealed the induction of the unfolded protein response (UPR) pathway in PLN R14del compared with isogenic control hiPSC-CMs. The activation of UPR was also evident in the hearts from PLN R14del patients. Silencing of each of the 3 main UPR signaling branches (IRE1, ATF6, or PERK) by siRNA exacerbated the contractile dysfunction of PLN R14del hiPSC-CMs. We explored the therapeutic potential of activating the UPR with a small molecule activator, BiP (binding immunoglobulin protein) inducer X. PLN R14del hiPSC-CMs treated with BiP protein inducer X showed a dose-dependent amelioration of the contractility deficit in both 2-dimensional cultures and 3-dimensional engineered heart tissues without affecting calcium homeostasis. CONCLUSIONS: Together, these findings suggest that the UPR exerts a protective effect in the setting of PLN R14del cardiomyopathy and that modulation of the UPR might be exploited therapeutically.


Asunto(s)
Proteínas de Unión al Calcio/genética , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Susceptibilidad a Enfermedades , Eliminación de Secuencia , Respuesta de Proteína Desplegada , Adaptación Fisiológica , Biomarcadores , Cardiomiopatías/diagnóstico , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/fisiopatología , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Manejo de la Enfermedad , Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Terapia Molecular Dirigida , Contracción Miocárdica/efectos de los fármacos , Análisis de la Célula Individual , Transcriptoma
20.
Arterioscler Thromb Vasc Biol ; 41(2): 585-600, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33327741

RESUMEN

The transition of healthy arteries and cardiac valves into dense, cell-rich, calcified, and fibrotic tissues is driven by a complex interplay of both cellular and molecular mechanisms. Specific cell types in these cardiovascular tissues become activated following the exposure to systemic stimuli including circulating lipoproteins or inflammatory mediators. This activation induces multiple cascades of events where changes in cell phenotypes and activation of certain receptors may trigger multiple pathways and specific alterations to the transcriptome. Modifications to the transcriptome and proteome can give rise to pathological cell phenotypes and trigger mechanisms that exacerbate inflammation, proliferation, calcification, and recruitment of resident or distant cells. Accumulating evidence suggests that each cell type involved in vascular and valvular diseases is heterogeneous. Single-cell RNA sequencing is a transforming medical research tool that enables the profiling of the unique fingerprints at single-cell levels. Its applications have allowed the construction of cell atlases including the mammalian heart and tissue vasculature and the discovery of new cell types implicated in cardiovascular disease. Recent advances in single-cell RNA sequencing have facilitated the identification of novel resident cell populations that become activated during disease and has allowed tracing the transition of healthy cells into pathological phenotypes. Furthermore, single-cell RNA sequencing has permitted the characterization of heterogeneous cell subpopulations with unique genetic profiles in healthy and pathological cardiovascular tissues. In this review, we highlight the latest groundbreaking research that has improved our understanding of the pathological mechanisms of atherosclerosis and future directions for calcific aortic valve disease.


Asunto(s)
Enfermedades Cardiovasculares/genética , Sistema Cardiovascular/metabolismo , Perfilación de la Expresión Génica , RNA-Seq , Análisis de la Célula Individual , Transcriptoma , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/terapia , Sistema Cardiovascular/patología , Toma de Decisiones Clínicas , Humanos , Fenotipo , Medicina de Precisión , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA