Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Obstet Gynaecol Res ; 50(3): 322-333, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38081797

RESUMEN

AIM: Preeclampsia (PE) is a pregnancy-specific syndrome characterized by hypertension and proteinuria. Recently, multiple circular RNAs (circRNAs) were considered latent clinical diagnostic markers or therapeutic targets. This study was to explore the impact of circRNA serum and glucocorticoid-induced kinase 1 (SGK1) on PE via influencing the microRNA (miR)-508-3p/PUM homolog 1 (PUM1) axis. METHODS: Placental tissues of 34 pregnant women with PE and 34 normal pregnant women were collected to measure circRNA SGK1 (circSGK1), miR-508-3p, and PUM1. Human placental trophoblasts HTR-8/SVneo were transfected with plasmids, thereafter to observe proliferation, migration, invasion, and apoptosis, analyze antioxidant molecules Troxerutin (TXN), Glutamate-cysteine ligase catalytic subunit (GCLC), NAD (P) H-quinone oxidoreductase 1 (NQO1), and determine angiogenesis. After the construction of the PE rat model, antioxidant molecules TXN, GCLC, and NQO1, vascular-associated factor vascular endothelial growth factor A (VEGF-A), and histopathological conditions were tested. Examination of the binding of circSGK1 and miR-508-3p with PUM1 was performed. RESULTS: Our data showed that circSGK1 expression was elevated in the placenta of patients with PE. Silenced circSGK1 or elevated miR-508-3p promoted the growth and antioxidant molecules and angiogenesis in trophoblast cells; CircSGK1 combined with miR-508-3p, and miR-508-3p targeted PUM1. CONCLUSIONS: In summary, suppression of circSGK1 augments antioxidant molecules and angiogenesis in trophoblast cells to attenuate PE via miR-508-3p to target PUM1.


Asunto(s)
MicroARNs , Preeclampsia , Humanos , Femenino , Embarazo , Ratas , Animales , Placenta/metabolismo , ARN Circular/genética , Antioxidantes/farmacología , Antioxidantes/metabolismo , Glucocorticoides/metabolismo , MicroARNs/genética , Preeclampsia/tratamiento farmacológico , Preeclampsia/genética , Preeclampsia/metabolismo , Angiogénesis , Factor A de Crecimiento Endotelial Vascular/metabolismo , Trofoblastos/metabolismo , Proteínas de Unión al ARN/metabolismo
2.
Am J Physiol Renal Physiol ; 325(5): F629-F637, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37676758

RESUMEN

Blood pressure (BP) follows a circadian pattern that rises during the active phase of the day (morning surge) and decreases during the inactive (night dipping) phase of the day. The morning surge coincides with increased circulating glucocorticoids and aldosterone, ligands for glucocorticoid receptors and mineralocorticoid receptors, respectively. Serum- and glucocorticoid-induced kinase 1 (SGK1), a clock-controlled and glucocorticoid receptor- and mineralocorticoid receptor-induced gene, plays a role in BP regulation in human and animal models. However, the role of SGK1 in BP circadian regulation has not yet been demonstrated. Using telemetry, we analyzed BP in the inducible renal tubule-specific Sgk1Pax8/LC1 model under basal K+ diet (1% K+) and high-K+ diet (HKD; 5% K+). Our data revealed that, under basal conditions, renal SGK1 plays a minor role in BP regulation; however, after 1 wk of HKD, Sgk1Pax8/LC1 mice exhibited significant defects in diastolic BP (DBP), including a blunted surge, a decreased amplitude, and reduced day/night differences. After prolonged HKD (7 wk), Sgk1Pax8/LC1 mice had lower BP than control mice and exhibited reduced DBP amplitude, together with decreased DBP day/night differences and midline estimating statistic of rhythm (MESOR). Interestingly, renal SGK1 deletion increased pulse pressure, likely secondary to an increase in circulating aldosterone. Taken together, our data suggest that 1) the kidney plays a significant role in setting the BP circadian rhythm; 2) renal tubule SGK1 mediates the BP surge and, thus, the day/night BP difference; 3) long-term renal SGK1 deletion results in lower BP in mutant compared with control mice; and 4) renal SGK1 indirectly regulates pulse pressure due to compensatory alterations in aldosterone levels.NEW & NOTEWORTHY Dysregulation of blood pressure (BP) circadian rhythm is associated with metabolic, cardiovascular, and kidney diseases. Our study provides experimental evidence demonstrating, for the first time, that renal tubule serum- and glucocorticoid-induced kinase 1 (SGK1) plays an essential role in inducing the BP surge. Inhibitors and activators of SGK1 signaling are parts of several therapeutic strategies. Our findings highlight the importance of the drug intake timing to be in phase with SGK1 function to avoid dysregulation of BP circadian rhythm.


Asunto(s)
Aldosterona , Glucocorticoides , Animales , Humanos , Ratones , Presión Sanguínea/fisiología , Ritmo Circadiano , Glucocorticoides/metabolismo , Riñón/metabolismo
3.
Pflugers Arch ; 474(7): 681-697, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35525869

RESUMEN

How phosphorylation of the epithelial sodium channel (ENaC) contributes to its regulation is incompletely understood. Previously, we demonstrated that in outside-out patches ENaC activation by serum- and glucocorticoid-inducible kinase isoform 1 (SGK1) was abolished by mutating a serine residue in a putative SGK1 consensus motif RXRXX(S/T) in the channel's α-subunit (S621 in rat). Interestingly, this serine residue is followed by a highly conserved proline residue rather than by a hydrophobic amino acid thought to be required for a functional SGK1 consensus motif according to in vitro data. This suggests that this serine residue is a potential phosphorylation site for the dual-specificity tyrosine phosphorylated and regulated kinase 2 (DYRK2), a prototypical proline-directed kinase. Its phosphorylation may prime a highly conserved preceding serine residue (S617 in rat) to be phosphorylated by glycogen synthase kinase 3 ß (GSK3ß). Therefore, we investigated the effect of DYRK2 on ENaC activity in outside-out patches of Xenopus laevis oocytes heterologously expressing rat ENaC. DYRK2 included in the pipette solution significantly increased ENaC activity. In contrast, GSK3ß had an inhibitory effect. Replacing S621 in αENaC with alanine (S621A) abolished the effects of both kinases. A S617A mutation reduced the inhibitory effect of GKS3ß but did not prevent ENaC activation by DYRK2. Our findings suggest that phosphorylation of S621 activates ENaC and primes S617 for subsequent phosphorylation by GSK3ß resulting in channel inhibition. In proof-of-concept experiments, we demonstrated that DYRK2 can also stimulate ENaC currents in microdissected mouse distal nephron, whereas GSK3ß inhibits the currents.


Asunto(s)
Canales Epiteliales de Sodio , Proteínas Serina-Treonina Quinasas , Animales , Canales Epiteliales de Sodio/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ratones , Oocitos/metabolismo , Fosforilación , Prolina/metabolismo , Ratas , Serina/metabolismo , Xenopus laevis/metabolismo
4.
Pathol Int ; 70(6): 355-363, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32173971

RESUMEN

Barrett's esophagus (BE) is a consequence of gastroesophageal reflux disease and is predisposed to esophageal adenocarcinoma (EAC). EAC is an exemplar model of inflammation-associated cancer. Glucocorticoids suppress inflammation through glucocorticoid receptor (GR) and serum- and glucocorticoid-induced kinase-1 (Sgk1) expressions. Therefore, we immunolocalized GR and Sgk1 in EAC and the adjacent BE tissues and studied their association with clinical disease course in 87 patients with EAC who underwent surgical resection (N = 58) or endoscopic submucosal dissection (N = 29). Low GR and Sgk1 expressions in adjacent BE tissues were associated with adverse clinical outcomes (P = 0.0008 and 0.034, respectively). Patients with low Sgk1 expression in EAC cells exhibited worse overall survival (P = 0.0018). In multivariate Cox regression analysis, low GR expression in the adjacent nonmalignant BE tissues was significantly associated with worse overall survival (P = 0.023). The present study indicated that evaluation of GR and Sgk1 expressions in both the EAC cells and adjacent nonmalignant BE tissues could help to predict clinical outcomes following endoscopic and surgical treatments. In particular, the GR status in BE tissues adjacent to EAC was an independent prognostic factor.


Asunto(s)
Adenocarcinoma/metabolismo , Esófago de Barrett/metabolismo , Neoplasias Esofágicas/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Glucocorticoides/metabolismo , Anciano , Biomarcadores de Tumor/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad
5.
Cell Mol Biol Lett ; 24: 35, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31160894

RESUMEN

BACKGROUND: Pulmonary edema is one of the pathological characteristics of acute respiratory distress syndrome (ARDS). The epithelial sodium channel (ENaC) is thought to be the rate-limiting factor for alveolar fluid clearance (AFC) during pulmonary edema. The peroxisome proliferator-activated receptor γ (PPARγ) agonist rosiglitazone was shown to stimulate ENaC-mediated salt absorption in the kidney. However, its role in the lung remains unclear. Here, we investigated the role of the PPARγ agonist in the lung to find out whether it can regulate AFC during acute lung injury (ALI). We also attempted to elucidate the mechanism for this. METHODS: Our ALI model was established through intratracheal instillation of lipopolysaccharide (LPS) in C57BL/6 J mice. The mice were randomly divided into 4 groups of 10. The control group underwent a sham operation and received an equal quantity of saline. The three experimental groups underwent intratracheal instillation of 5 mg/kg LPS, followed by intraperitoneal injection of 4 mg/kg rosiglitazone, 4 mg/kg rosiglitazone plus 1 mg/kg GW9662, or only equal quantity of saline. The histological morphology of the lung, the levels of TNF-α and IL-1ß in the bronchoalveolar lavage fluid (BALF), the level of AFC, and the expressions of αENaC and serum and glucocorticoid-induced kinase-1 (SGK1) were determined. Type 2 alveolar (AT II) cells were incubated with rosiglitazone (15 µM) with or without GW9662 (10 µM). The expressions of αENaC and SGK1 were determined 24 h later. RESULTS: A mouse model of ALI was successfully established. Rosiglitazone significantly ameliorated the lung injury, decreasing the TNF-α and IL-1ß levels in the BALF, enhancing AFC, and promoting the expressions of αENaC and SGK1 in ALI mice, which were abolished by the specific PPARγ blocker GW9662. In vitro, rosiglitazone increased the expressions of αENaC and SGK1. This increase was prevented by GW9662. CONCLUSIONS: Rosiglitazone ameliorated the lung injury and promoted ENaC-mediated AFC via a PPARγ/SGK1-dependent signaling pathway, alleviating pulmonary edema in a mouse model of ALI.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Líquido del Lavado Bronquioalveolar/química , Canales Epiteliales de Sodio/metabolismo , PPAR gamma/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Rosiglitazona/farmacología , Transducción de Señal , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Animales , Modelos Animales de Enfermedad , Mediadores de Inflamación/metabolismo , Lipopolisacáridos , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
6.
Am J Physiol Renal Physiol ; 311(2): F330-42, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27009335

RESUMEN

The stimulation of postprandial K(+) clearance involves aldosterone-independent and -dependent mechanisms. In this context, serum- and glucocorticoid-induced kinase (SGK)1, a ubiquitously expressed kinase, is one of the primary aldosterone-induced proteins in the aldosterone-sensitive distal nephron. Germline inactivation of SGK1 suggests that this kinase is fundamental for K(+) excretion under conditions of K(+) load, but the specific role of renal SGK1 remains elusive. To avoid compensatory mechanisms that may occur during nephrogenesis, we used inducible, nephron-specific Sgk1(Pax8/LC1) mice to assess the role of renal tubular SGK1 in K(+) regulation. Under a standard diet, these animals exhibited normal K(+) handling. When challenged by a high-K(+) diet, they developed severe hyperkalemia accompanied by a defect in K(+) excretion. Molecular analysis revealed reduced neural precursor cell expressed developmentally downregulated protein (NEDD)4-2 phosphorylation and total expression. γ-Epithelial Na(+) channel (ENaC) expression and α/γENaC proteolytic processing were also decreased in mutant mice. Moreover, with no lysine kinase (WNK)1, which displayed in control mice punctuate staining in the distal convoluted tubule and diffuse distribution in the connecting tubule/cortical colleting duct, was diffused in the distal convoluted tubule and less expressed in the connecting tubule/collecting duct of Sgk(Pax8/LC1) mice. Moreover, Ste20-related proline/alanine-rich kinase phosphorylation, and Na(+)-Cl(-) cotransporter phosphorylation/apical localization were reduced in mutant mice. Consistent with the altered WNK1 expression, increased renal outer medullary K(+) channel apical localization was observed. In conclusion, our data suggest that renal tubular SGK1 is important in the regulation of K(+) excretion via the control of NEDD4-2, WNK1, and ENaC.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Canales Epiteliales de Sodio/metabolismo , Proteínas Inmediatas-Precoces/deficiencia , Proteínas Inmediatas-Precoces/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Potasio/orina , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos Bloqueadores/farmacología , Dieta , Regulación de la Expresión Génica , Túbulos Renales/metabolismo , Masculino , Ratones , Ratones Noqueados , Ubiquitina-Proteína Ligasas Nedd4 , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Canales de Potasio de Rectificación Interna/inmunología , Potasio en la Dieta/farmacología , Proteína Quinasa Deficiente en Lisina WNK 1
7.
Exp Cell Res ; 331(1): 164-175, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25265063

RESUMEN

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by proteinaceous pulmonary edema and severe arterial hypoxemia with a mortality of approximately 40%. Stimulation of epithelial sodium channel (ENaC) promotes Na(+) transport, a rate-limiting step for pulmonary edema reabsorption. Insulin is known to participate in the ion transport; however, its role in pulmonary edema clearance and the regulatory mechanism involved have not been fully elucidated. In the current study, in a lipopolysaccharide-based mouse model of ALI, we found that insulin alleviated pulmonary edema by promoting ENaC-mediated alveolar fluid clearance through serum and glucocorticoid induced kinase-1 (SGK1). In alveolar epithelial cells, insulin increased the expression of α-, ß-, and γ-ENaC, which was blocked by the mammalian target of rapamycin complex 2 (mTORC2) inhibitor or knockdown of Rictor (a necessary component of mTORC2), and SGK1 inhibitor, respectively. In addition, an immunoprecipitation study demonstrated that SGK1(Ser422) phosphorylation, the key step for complete SGK1 activation by insulin, was conducted through PI3K/mTORC2 pathway. Finally, we testified the role of mTORC2 in vivo by demonstrating that PP242 prevented insulin-stimulated SGK1 activation and ENaC increase during ALI. The data revealed that during ALI, insulin stimulates alveolar fluid clearance by upregulating the expression of α-, ß-, and γ-ENaC at the cell surface, which was, at least, partially through activating mTROC2/SGK1 signaling pathway.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Modelos Animales de Enfermedad , Canales Epiteliales de Sodio/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Insulina/farmacología , Complejos Multiproteicos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Alveolos Pulmonares/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/patología , Animales , Western Blotting , Canales Epiteliales de Sodio/genética , Humanos , Hipoglucemiantes/farmacología , Proteínas Inmediatas-Precoces/genética , Técnicas para Inmunoenzimas , Inmunoprecipitación , Técnicas In Vitro , Masculino , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Complejos Multiproteicos/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/patología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/genética , Regulación hacia Arriba
8.
Biochem J ; 470(3): 303-17, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26188042

RESUMEN

Alzheimer's disease (AD) is a fatal neurodegenerative disease affecting 36 million people worldwide. Genetic and biochemical research indicate that the excessive generation of amyloid-ß peptide (Aß) from amyloid precursor protein (APP), is a major part of AD pathogenesis. FE65 is a brain-enriched adaptor protein that binds to APP. However, the role of FE65 in APP processing and the mechanisms that regulate binding of FE65 to APP are not fully understood. In the present study, we show that serum- and glucocorticoid-induced kinase 1 (SGK1) phosphorylates FE65 on Ser(610) and that this phosphorylation attenuates FE65 binding to APP. We also show that FE65 promotes amyloidogenic processing of APP and that FE65 Ser(610) phosphorylation inhibits this effect. Furthermore, we found that the effect of FE65 Ser(610) phosphorylation on APP processing is linked to a role of FE65 in metabolic turnover of APP via the proteasome. Thus FE65 influences APP degradation via the proteasome and phosphorylation of FE65 Ser(610) by SGK1 regulates binding of FE65 to APP, APP turnover and processing.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Sitios de Unión , Células CHO , Células COS , Chlorocebus aethiops , Cricetulus , Células HEK293 , Humanos , Proteínas Inmediatas-Precoces/genética , Modelos Moleculares , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/genética , Estabilidad Proteica , Proteolisis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/química
9.
Biochim Biophys Acta ; 1845(1): 1-19, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24269900

RESUMEN

N-myc down-regulated gene 1 (NDRG1) is a known metastasis suppressor in multiple cancers, being also involved in embryogenesis and development, cell growth and differentiation, lipid biosynthesis and myelination, stress responses and immunity. In addition to its primary role as a metastasis suppressor, NDRG1 can also influence other stages of carcinogenesis, namely angiogenesis and primary tumour growth. NDRG1 is regulated by multiple effectors in normal and neoplastic cells, including N-myc, histone acetylation, hypoxia, cellular iron levels and intracellular calcium. Further, studies have found that NDRG1 is up-regulated in neoplastic cells after treatment with novel iron chelators, which are a promising therapy for effective cancer management. Although the pathways by which NDRG1 exerts its functions in cancers have been documented, the relationship between the molecular structure of this protein and its functions remains unclear. In fact, recent studies suggest that, in certain cancers, NDRG1 is post-translationally modified, possibly by the activity of endogenous trypsins, leading to a subsequent alteration in its metastasis suppressor activity. This review describes the role of this important metastasis suppressor and discusses interesting unresolved issues regarding this protein.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Neoplasias/terapia , Proteínas Supresoras de Tumor/fisiología , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular/análisis , Proteínas de Ciclo Celular/química , Diferenciación Celular , Desarrollo Embrionario , Humanos , Péptidos y Proteínas de Señalización Intracelular/análisis , Péptidos y Proteínas de Señalización Intracelular/química , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Tripsina/fisiología
10.
Fluids Barriers CNS ; 20(1): 61, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596666

RESUMEN

BACKGROUND: Hydrocephalus is a pathological accumulation of cerebrospinal fluid (CSF), leading to ventriculomegaly. Hydrocephalus may be primary or secondary to traumatic brain injury, infection, or intracranial hemorrhage. Regardless of cause, current treatment involves surgery to drain the excess CSF. Importantly, there are no long-term, effective pharmaceutical treatments and this represents a clinically unmet need. Many forms of hydrocephalus involve dysregulation in water and electrolyte homeostasis, making this an attractive, druggable target. METHODS: In vitro, a combination of electrophysiological and fluid flux assays was used to elucidate secretory transepithelial electrolyte and fluid flux in a human cell culture model of the choroid plexus epithelium and to determine the involvement of serum-, glucocorticoid-induced kinase 1 (SGK1). In vivo, MRI studies were performed in a genetic rat model of hydrocephalus to determine effects of inhibition of SGK1 with a novel inhibitor, SI113. RESULTS: In the cultured cell line, SI113 reduced secretory transepithelial electrolyte and fluid flux. In vivo, SI113 blocks the development of hydrocephalus with no effect on ventricular size of wild-type animals and no overt toxic effects. Mechanistically, the development of hydrocephalus in the rat model involves an increase in activated, phosphorylated SGK1 with no change in the total amount of SGK1. SI113 inhibits phosphorylation with no changes in total SGK1 levels in the choroid plexus epithelium. CONCLUSION: These data provide a strong preclinical basis for the use of SGK1 inhibitors in the treatment of hydrocephalus.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Hidrocefalia , Humanos , Animales , Ratas , Glucocorticoides , Hidrocefalia/tratamiento farmacológico , Fosforilación , Transporte Biológico
11.
Biomed Rep ; 19(6): 94, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37901878

RESUMEN

Non-small cell lung cancer (NSCLC) is one of the deadliest types of cancer with poor prognosis, accounting for 85% of all lung cancer cases. The phosphoinositide 3-kinase (PI3K) signaling pathway is most frequently altered in NSCLC; nonetheless, targeting this pathway yields limited success primarily because of drug-induced resistance. PI3K-independent activation of serum and glucocorticoid-induced kinase 1 (SGK1) is responsible for development of resistance to PI3K/AKT inhibitors in breast cancer. The present study investigated potential of inhibiting SGK1 activity for the potentiation of PI3K inhibitor activity in NSCLC cell lines using in vitro anti-proliferation assays, protein expression profiling using western blotting and cell cycle analysis. The findings revealed that combined inhibition of PI3K/AKT and SGK1 resulted in synergistic anticancer activity, with increased apoptosis, DNA damage and cell cycle arrest in G1 phase. Furthermore, high SGK1 protein expression in NSCLC cell lines was associated with increased resistance to PI3K inhibitors. Therefore, enhanced SGK1 expression may serve as a marker to predict therapeutic response to PI3K/AKT inhibitors. Profiling of downstream signaling proteins demonstrated that, at the molecular level SGK1-mediated sensitization of NSCLC cell lines to PI3K inhibitors was achieved via inhibition of mTORC1 signaling. Increased sensitivity of NSCLC cell lines was also mediated by other oncogenic pathways, such as Ras/MEK/ERK and Wnt/ß-catenin signaling.

12.
Front Cell Dev Biol ; 10: 1007924, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531961

RESUMEN

Serum- and glucocorticoid-induced kinase 3 (SGK3), which is ubiquitously expressed in mammals, is regulated by estrogens and androgens. SGK3 is activated by insulin and growth factors through signaling pathways involving phosphatidylinositol-3-kinase (PI3K), 3-phosphoinositide-dependent kinase-1 (PDK-1), and mammalian target of rapamycin complex 2 (mTORC2). Activated SGK3 can activate ion channels (TRPV5/6, SOC, Kv1.3, Kv1.5, Kv7.1, BKCa, Kir2.1, Kir2.2, ENaC, Nav1.5, ClC-2, and ClC Ka), carriers and receptors (Npt2a, Npt2b, NHE3, GluR1, GluR6, SN1, EAAT1, EAAT2, EAAT4, EAAT5, SGLT1, SLC1A5, SLC6A19, SLC6A8, and NaDC1), and Na+/K+-ATPase, promoting the transportation of calcium, phosphorus, sodium, glucose, and neutral amino acids in the kidney and intestine, the absorption of potassium and neutral amino acids in the renal tubules, the transportation of glutamate and glutamine in the nervous system, and the transportation of creatine. SGK3-sensitive transporters contribute to a variety of physiological and pathophysiological processes, such as maintaining calcium and phosphorus homeostasis, hydro-salinity balance and acid-base balance, cell proliferation, muscle action potential, cardiac and neural electrophysiological disturbances, bone density, intestinal nutrition absorption, immune function, and multiple substance metabolism. These processes are related to kidney stones, hypophosphorous rickets, multiple syndromes, arrhythmia, hypertension, heart failure, epilepsy, Alzheimer's disease, amyotrophic lateral sclerosis, glaucoma, ataxia idiopathic deafness, and other diseases.

13.
Curr Res Struct Biol ; 4: 118-133, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573459

RESUMEN

Transcription factors play key roles in orchestrating a plethora of cellular mechanisms and controlling cellular homeostasis. Transcription factors share distinct DNA binding domains, which allows to group them into protein families. Among them, the Forkhead box O (FOXO) family contains transcription factors crucial for cellular homeostasis, longevity and response to stress. The dysregulation of FOXO signaling is linked to drug resistance in cancer therapy or cellular senescence, however, selective drugs targeting FOXOs are limited, thus knowledge about structure and dynamics of FOXO proteins is essential. Here, we provide an extensive study of structure and dynamics of all FOXO family members. We identify residues accounting for different dynamic and structural features. Furthermore, we show that the auto-inhibition of FOXO proteins by their C-terminal trans-activation domain is conserved throughout the family and that these interactions are not only possible intra-, but also inter-molecularly. This indicates a model in which FOXO transcription factors would modulate their activities by interacting mutually.

14.
Front Mol Neurosci ; 14: 798261, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899186

RESUMEN

In the central nervous system, the M-current plays a critical role in regulating subthreshold electrical excitability of neurons, determining their firing properties and responsiveness to synaptic input. The M-channel is mainly formed by subunits Kv7.2 and Kv7.3 that co-assemble to form a heterotetrametric channel. Mutations in Kv7.2 and Kv7.3 are associated with hyperexcitability phenotypes including benign familial neonatal epilepsy (BFNE) and neonatal epileptic encephalopathy (NEE). SGK1.1, the neuronal isoform of the serum and glucocorticoids-regulated kinase 1 (SGK1), increases M-current density in neurons, leading to reduced excitability and protection against seizures. Herein, using two-electrode voltage clamp on Xenopus laevis oocytes, we demonstrate that SGK1.1 selectively activates heteromeric Kv7 subunit combinations underlying the M-current. Importantly, activated SGK1.1 increases M-channel activity in the presence of two different epilepsy mutations found in Kv7.2, R207W and A306T. In addition, proximity ligation assays in the N2a cell line allowed us to address the effect of these mutations on Kv7-SGK1.1-Nedd4 molecular associations, a proposed pathway underlying augmentation of M-channel activity by SGK1.1.

15.
J Endocrinol ; 244(1): 149-162, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31600722

RESUMEN

The serum- and glucocorticoid-induced kinase 1 (SGK1) is a transcriptional target of steroid hormones including glucocorticoids or aldosterone in addition to other stimuli such as glucose. SGK1 is activated via phosphoinositide 3-kinase, placing it downstream of insulin signaling. SGK1 participates in the upregulation of kidney Na+ reabsorption by aldosterone and has been linked to obesity-related hypertension in humans. We hypothesized that a systemic increase in SGK1 activity may trigger a multiplicity of mechanisms leading to simultaneous development of the main conditions that characterize the metabolic syndrome (MetS), including hypertension. We used a transgenic mouse model made with a bacterial artificial chromosome containing the whole mouse Sgk1 gene modified to introduce an activating point mutation. Wild type or transgenic 14-week-old male mice were fed with standard chow diet or high-fat diet for up to 18 weeks. Development of the main features of MetS and hepatic steatosis were monitored, and in vitro adipocyte differentiation was studied. Our results show that transgenic animals under high-fat diet rapidly and markedly develop MetS characterized by obesity, glucose intolerance, insulin resistance, dyslipidemia and hypertension. In addition, SGK1 gain-of-function accelerates the development of hepatic steatosis. Our study suggests that inappropriate SGK1 activity represents a risk factor in developing MetS with hypertension and related end-organ damage. Our data support SGK1 as a possible therapeutic target in MetS and related complications and provides a useful gain-of-function model for pre-clinical drug testing.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Hipertensión/genética , Proteínas Inmediatas-Precoces/metabolismo , Síndrome Metabólico/genética , Obesidad/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Modelos Animales de Enfermedad , Hipertensión/etiología , Síndrome Metabólico/etiología , Ratones , Ratones Transgénicos , Obesidad/etiología , Mutación Puntual , Factores de Riesgo , Transducción de Señal/genética
16.
Am J Transl Res ; 11(8): 4946-4956, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31497211

RESUMEN

Diabetic nephropathy (DN) is a common complication of diabetes that is the dominant cause of end-stage renal disease. However, the pathological mechanism of DN is yet to be elucidated. Serum and glucocorticoid induced kinase (SGK) 1, a ubiquitously expressed kinase, was employed in the current study to assess its effect on DN in vivo and in vitro. Male BALB/C mice and a human tubular epithelial cell line (HK-2) were utilized for experimentation. Male BALB/C mice and a human tubular epithelial cell line (HK-2) were utilized for experimentation. Pathological changes were measured via HE and staining and immunohistochemistry was performed to measure the expression of SGK 1. An SGK1 inhibitor, GSK650394, was applied to analyze the role of SGK1 in HK-2 cell epithelial-mesenchymal transition (EMT). Associated protein expressions were assessed via western blotting. In addition, migration was measured using a scratch wound healing assay. 3-methyladenine (3-MA), an autophagy inhibitor, was used to determine the variation of autophagy following SGK1 inhibition. The expression of autophagy proteins were analyzed. Furthermore, the expression of PI3K, AKT, mTOR and their levels of phosphorylation were measured. The results revealed that the ultrastructure of renal tissue suffered damage and that the expression of SGK1 was markedly increased. After SGK1 inhibition, HK-2 cell EMT was suppressed and cell migration was attenuated. Furthermore, the autophagy of HK-2 cells was promoted, an increased expression of Beclin-1 and LC3 II was detected, and a decreased expression of p62 was observed. Additionally, the phosphorylation of PI3K, AKT and mTOR were markedly upregulated. The results indicated that blocking autophagy signaling via 3-MA muted SGK1-protected against HG-evoked cell injury. Our study demonstrated that SGK1 inhibition promoted autophagy and suppressed renal tubular epithelial cell EMT in DN, indicating that SGK1 may serve as a potential therapeutic target of DN.

17.
Artículo en Inglés | MEDLINE | ID: mdl-23313563

RESUMEN

OBJECTIVES: There is mounting evidence that inflammatory processes play a key role in emotional as well as cognitive dysfunctions. In this context, research employing magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MR spectroscopy) suggests a possible link between structural/functional anomalies in the brain and an increase of circulating inflammation markers. The present paper reviews this research, with particular focus on major depressive disorder (MDD), cognitive impairment in older adults, Alzheimer's disease (AD) and schizophrenia. RESULTS: In MDD, cognitive impairment and AD, inflammatory processes have been found to be associated with both structural and functional anomalies, perhaps under the influence of environmental stress. Not enough research can suggest similar considerations in schizophrenia, although studies in mice and non-human primates support the belief that inflammatory responses generated during pregnancy can affect brain development and contribute to the etiology of schizophrenia. CONCLUSIONS: The present review suggests a link between inflammatory processes and MRI detected anomalies in the brain of individuals with MDD, older adults with cognitive impairment as well as of individuals with AD and schizophrenia.


Asunto(s)
Encéfalo , Trastornos Mentales , Neuroimagen , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/patología , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/patología , Disfunción Cognitiva/inmunología , Disfunción Cognitiva/patología , Trastorno Depresivo/inmunología , Trastorno Depresivo/patología , Humanos , Trastornos Mentales/inmunología , Trastornos Mentales/patología , Trastornos Mentales/fisiopatología , Esquizofrenia/inmunología , Esquizofrenia/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA