Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Network ; : 1-29, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38433470

RESUMEN

As the number of patients increases, physicians are dealing with more and more cases of degenerative spine pathologies on a daily basis. To reduce the workload of healthcare professionals, we propose a modified Swin-UNet network model. Firstly, the Swin Transformer Blocks are improved using a residual post-normalization and scaling cosine attention mechanism, which makes the training process of the model more stable and improves the accuracy. Secondly, we use the log-space continuous position biasing method instead of the bicubic interpolation position biasing method. This method solves the problem of performance loss caused by the large difference between the resolution of the pretraining image and the resolution of the spine image. Finally, we introduce a segmentation smooth module (SSM) at the decoder stage. The SSM effectively reduces redundancy, and enhances the segmentation edge processing to improve the model's segmentation accuracy. To validate the proposed method, we conducted experiments on a real dataset provided by hospitals. The average segmentation accuracy is no less than 95%. The experimental results demonstrate the superiority of the proposed method over the original model and other models of the same type in segmenting the spinous processes of the vertebrae and the posterior arch of the spine.

2.
Comput Med Imaging Graph ; 107: 102245, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37245416

RESUMEN

Automatic segmentation of vertebral bodies (VBs) and intervertebral discs (IVDs) in 3D magnetic resonance (MR) images is vital in diagnosing and treating spinal diseases. However, segmenting the VBs and IVDs simultaneously is not trivial. Moreover, problems exist, including blurry segmentation caused by anisotropy resolution, high computational cost, inter-class similarity and intra-class variability, and data imbalances. We proposed a two-stage algorithm, named semi-supervised hybrid spine network (SSHSNet), to address these problems by achieving accurate simultaneous VB and IVD segmentation. In the first stage, we constructed a 2D semi-supervised DeepLabv3+ by using cross pseudo supervision to obtain intra-slice features and coarse segmentation. In the second stage, a 3D full-resolution patch-based DeepLabv3+ was built. This model can be used to extract inter-slice information and combine the coarse segmentation and intra-slice features provided from the first stage. Moreover, a cross tri-attention module was applied to compensate for the loss of inter-slice and intra-slice information separately generated from 2D and 3D networks, thereby improving feature representation ability and achieving satisfactory segmentation results. The proposed SSHSNet was validated on a publicly available spine MR image dataset, and remarkable segmentation performance was achieved. Moreover, results show that the proposed method has great potential in dealing with the data imbalance problem. Based on previous reports, few studies have incorporated a semi-supervised learning strategy with a cross attention mechanism for spine segmentation. Therefore, the proposed method may provide a useful tool for spine segmentation and aid clinically in spinal disease diagnoses and treatments. Codes are publicly available at: https://github.com/Meiyan88/SSHSNet.


Asunto(s)
Imagen por Resonancia Magnética , Columna Vertebral , Columna Vertebral/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Algoritmos , Aprendizaje Automático Supervisado , Procesamiento de Imagen Asistido por Computador/métodos
3.
Int J Mach Learn Cybern ; : 1-13, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37360883

RESUMEN

In recent years, more attention paid to the spine caused by related diseases, spinal parsing (the multi-class segmentation of vertebrae and intervertebral disc) is an important part of the diagnosis and treatment of various spinal diseases. The more accurate the segmentation of medical images, the more convenient and quick the clinicians can evaluate and diagnose spinal diseases. Traditional medical image segmentation is often time consuming and energy consuming. In this paper, an efficient and novel automatic segmentation network model for MR spine images is designed. The proposed Inception-CBAM Unet++ (ICUnet++) model replaces the initial module with the Inception structure in the encoder-decoder stage base on Unet++ , which uses the parallel connection of multiple convolution kernels to obtain the features of different receptive fields during in the feature extraction. According to the characteristics of the attention mechanism, Attention Gate module and CBAM module are used in the network to make the attention coefficient highlight the characteristics of the local area. To evaluate the segmentation performance of network model, four evaluation metrics, namely intersection over union (IoU), dice similarity coefficient(DSC), true positive rate(TPR), positive predictive value(PPV) are used in the study. The published SpineSagT2Wdataset3 spinal MRI dataset is used during the experiments. In the experiment results, IoU reaches 83.16%, DSC is 90.32%, TPR is 90.40%, and PPV is 90.52%. It can be seen that the segmentation indicators have been significantly improved, which reflects the effectiveness of the model.

4.
Comput Methods Programs Biomed ; 184: 105119, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31627152

RESUMEN

BACKGROUND AND OBJECTIVE: We investigated a novel method using a 2D convolutional neural network (CNN) to identify superior and inferior vertebrae in a single slice of CT images, and a post-processing for 3D segmentation and separation of cervical vertebrae. METHODS: The cervical spines of patients (N == 17, 1684 slices) from Severance and Gangnam Severance Hospitals (S/GSH) and healthy controls (N == 24, 3490 slices) from Seoul National University Bundang Hospital (SNUBH) were scanned by using various volumetric CT protocols. To prepare gold standard masks of cervical spine in CT images, each spine was segmented by using conventional image-processing methods and manually corrected by an expert. The gold standard masks were preprocessed and labeled into superior and inferior cervical vertebrae separately in the axial slices. The 2D U-Net model was trained by using the disease dataset (S/GSH) and additional validation was performed by using the healthy control dataset (SNUBH), and then the training and validation were repeated by switching the two datasets. RESULTS: In case of the model was trained with the disease dataset (S/GSH) and validated with the healthy control (SNUBH), the mean and standard deviation (SD) of the Dice similarity coefficient (DSC), Jaccard similarity coefficient (JSC), mean surface distance (MSD), and Hausdorff surface distance (HSD) were 94.37%% ± 1.45%, 89.47%% ± 2.55%, 0.33 ± 0.12 mm and 20.89 ± 3.98 mm, and 88.67%% ± 5.82%, 80.83%% ± 8.09%, 1.05 ± 0.63 mm and 29.17 ± 19.74 mm, respectively. In case of the model was trained with the healthy control (SNUBH) and validated with the disease dataset (S/GSH), the mean and SD of DSC, JSC, MSD, and HSD were 96.23%% ± 1.55%, 92.95%% ± 2.58%, 0.39 ± 0.20 mm and 16.23 ± 6.72 mm, and 93.15%% ± 3.09%, 87.54%% ± 5.11%, 0.38 ± 0.17 mm and 20.85 ± 7.11 mm, respectively. CONCLUSIONS: The results demonstrated that our fully automated method achieved comparable accuracies with inter- and intra-observer variabilities of manual segmentation by human experts, which is time consuming.


Asunto(s)
Vértebras Cervicales/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Tomografía Computarizada por Rayos X/métodos , Automatización , Estudios de Casos y Controles , Conjuntos de Datos como Asunto , Humanos , Reproducibilidad de los Resultados
5.
IEEE J Transl Eng Health Med ; 5: 1800412, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29018631

RESUMEN

The development of quantitative imaging biomarkers in medicine requires automatic delineation of relevant anatomical structures using available imaging data. However, this task is complicated in clinical medicine due to the variation in scanning parameters and protocols, even within a single medical center. Existing literature on automatic image segmentation using MR data is based on the analysis of highly homogenous images obtained using a fixed set of pulse sequence parameters (TR/TE). Unfortunately, algorithms that operate on fixed scanning parameters do not avail themselves to real-world daily clinical use due to the existing variation in scanning parameters and protocols. Thus, it is necessary to develop algorithmic techniques that can address the challenge of MR image segmentation using real clinical data. Toward this goal, we developed a multi-parametric ensemble learning technique to automatically detect and segment lumbar vertebral bodies using MR images of the spine. We use spine imaging data to illustrate our techniques since low back pain is an extremely common condition and a typical spine clinic evaluates patients that have been referred with a wide range of scanning parameters. This method was designed with special emphasis on robustness so that it can perform well despite the inherent variation in scanning protocols. Specifically, we show how a single multi-parameter ensemble model trained with manually labeled T2 scans can autonomously segment vertebral bodies on scans with echo times varying between 24 and 147 ms and relaxation times varying between 1500 and 7810 ms. Furthermore, even though the model was trained using T2-MR imaging data, it can accurately segment vertebral bodies on T1-MR and CT, further demonstrating the robustness and versatility of our methodology. We believe that robust segmentation techniques, such as the one presented here, are necessary for translating computer assisted diagnosis into everyday clinical practice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA