Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 385
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Primatol ; : e23676, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148233

RESUMEN

Using unmanned aerial vehicles (UAVs) for surveys on thermostatic animals has gained prominence due to their ability to provide practical and precise dynamic censuses, contributing to developing and refining conservation strategies. However, the practical application of UAVs for animal monitoring necessitates the automation of image interpretation to enhance their effectiveness. Based on our past experiences, we present the Sichuan snub-nosed monkey (Rhinopithecus roxellana) as a case study to illustrate the effective use of thermal cameras mounted on UAVs for monitoring monkey populations in Qinling, a region characterized by magnificent biodiversity. We used the local contrast method for a small infrared target detection algorithm to collect the total population size. Through the experimental group, we determined the average optimal grayscale threshold, while the validation group confirmed that this threshold enables automatic detection and counting of target animals in similar datasets. The precision rate obtained from the experiments ranged from 85.14% to 97.60%. Our findings reveal a negative correlation between the minimum average distance between thermal spots and the count of detected individuals, indicating higher interference in images with closer thermal spots. We propose a formula for adjusting primate population estimates based on detection rates obtained from UAV surveys. Our results demonstrate the practical application of UAV-based thermal imagery and automated detection algorithms for primate monitoring, albeit with consideration of environmental factors and the need for data preprocessing. This study contributes to advancing the application of UAV technology in wildlife monitoring, with implications for conservation management and research.

2.
Sensors (Basel) ; 24(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39066144

RESUMEN

In large public places such as railway stations and airports, dense pedestrian detection is important for safety and security. Deep learning methods provide relatively effective solutions but still face problems such as feature extraction difficulties, image multi-scale variations, and high leakage detection rates, which bring great challenges to the research in this field. In this paper, we propose an improved dense pedestrian detection algorithm GR-yolo based on Yolov8. GR-yolo introduces the repc3 module to optimize the backbone network, which enhances the ability of feature extraction, adopts the aggregation-distribution mechanism to reconstruct the yolov8 neck structure, fuses multi-level information, achieves a more efficient exchange of information, and enhances the detection ability of the model. Meanwhile, the Giou loss calculation is used to help GR-yolo converge better, improve the detection accuracy of the target position, and reduce missed detection. Experiments show that GR-yolo has improved detection performance over yolov8, with a 3.1% improvement in detection means accuracy on the wider people dataset, 7.2% on the crowd human dataset, and 11.7% on the people detection images dataset. Therefore, the proposed GR-yolo algorithm is suitable for dense, multi-scale, and scene-variable pedestrian detection, and the improvement also provides a new idea to solve dense pedestrian detection in real scenes.

3.
Sensors (Basel) ; 24(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39001117

RESUMEN

With the advancement in living standards, there has been a significant surge in the quantity and diversity of household waste. To safeguard the environment and optimize resource utilization, there is an urgent demand for effective and cost-efficient intelligent waste classification methodologies. This study presents MRS-YOLO (Multi-Resolution Strategy-YOLO), a waste detection and classification model. The paper introduces the SlideLoss_IOU technique for detecting small objects, integrates RepViT of the Transformer mechanism, and devises a novel feature extraction strategy by amalgamating multi-dimensional and dynamic convolution mechanisms. These enhancements not only elevate the detection accuracy and speed but also bolster the robustness of the current YOLO model. Validation conducted on a dataset comprising 12,072 samples across 10 categories, including recyclable metal and paper, reveals a 3.6% enhancement in mAP50% accuracy compared to YOLOv8, coupled with a 15.09% reduction in volume. Furthermore, the model demonstrates improved accuracy in detecting small targets and exhibits comprehensive detection capabilities across diverse scenarios. For transparency and to facilitate further research, the source code and related datasets used in this study have been made publicly available at GitHub.

4.
Sensors (Basel) ; 24(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39001189

RESUMEN

The identification of safflower filament targets and the precise localization of picking points are fundamental prerequisites for achieving automated filament retrieval. In light of challenges such as severe occlusion of targets, low recognition accuracy, and the considerable size of models in unstructured environments, this paper introduces a novel lightweight YOLO-SaFi model. The architectural design of this model features a Backbone layer incorporating the StarNet network; a Neck layer introducing a novel ELC convolution module to refine the C2f module; and a Head layer implementing a new lightweight shared convolution detection head, Detect_EL. Furthermore, the loss function is enhanced by upgrading CIoU to PIoUv2. These enhancements significantly augment the model's capability to perceive spatial information and facilitate multi-feature fusion, consequently enhancing detection performance and rendering the model more lightweight. Performance evaluations conducted via comparative experiments with the baseline model reveal that YOLO-SaFi achieved a reduction of parameters, computational load, and weight files by 50.0%, 40.7%, and 48.2%, respectively, compared to the YOLOv8 baseline model. Moreover, YOLO-SaFi demonstrated improvements in recall, mean average precision, and detection speed by 1.9%, 0.3%, and 88.4 frames per second, respectively. Finally, the deployment of the YOLO-SaFi model on the Jetson Orin Nano device corroborates the superior performance of the enhanced model, thereby establishing a robust visual detection framework for the advancement of intelligent safflower filament retrieval robots in unstructured environments.

5.
Sensors (Basel) ; 24(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38931568

RESUMEN

Accurate determination of the number and location of immature small yellow peaches is crucial for bagging, thinning, and estimating yield in modern orchards. However, traditional methods have faced challenges in accurately distinguishing immature yellow peaches due to their resemblance to leaves and susceptibility to variations in shooting angles and distance. To address these issues, we proposed an improved target-detection model (EMA-YOLO) based on YOLOv8. Firstly, the sample space was enhanced algorithmically to improve the diversity of samples. Secondly, an EMA attention-mechanism module was introduced to encode global information; this module could further aggregate pixel-level features through dimensional interaction and strengthen small-target-detection capability by incorporating a 160 × 160 detection head. Finally, EIoU was utilized as a loss function to reduce the incidence of missed detections and false detections of the target small yellow peaches under the condition of high density of yellow peaches. Experimental results show that compared with the original YOLOv8n model, the EMA-YOLO model improves mAP by 4.2%, Furthermore, compared with SDD, Objectbox, YOLOv5n, and YOLOv7n, this model's mAP was improved by 30.1%, 14.2%,15.6%, and 7.2%, respectively. In addition, the EMA-YOLO model achieved good results under different conditions of illumination and shooting distance and significantly reduced the number of missed detections. Therefore, this method can provide technical support for smart management of yellow-peach orchards.

6.
Sensors (Basel) ; 24(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38931699

RESUMEN

Aiming at real-time detection of UAVs, small UAV targets are easily missed and difficult to detect in complex backgrounds. To maintain high detection performance while reducing memory and computational costs, this paper proposes the SEB-YOLOv8s detection method. Firstly, the YOLOv8 network structure is reconstructed using SPD-Conv to reduce the computational burden and accelerate the processing speed while retaining more shallow features of small targets. Secondly, we design the AttC2f module and replace the C2f module in the backbone of YOLOv8s with it, enhancing the model's ability to obtain accurate information and enriching the extracted relevant information. Finally, Bi-Level Routing Attention is introduced to optimize the Neck part of the network, reducing the model's attention to interfering information and filtering it out. The experimental results show that the mAP50 of the proposed method reaches 90.5% and the accuracy reaches 95.9%, which are improvements of 2.2% and 1.9%, respectively, compared with the original model. The mAP50-95 is improved by 2.7%, and the model's occupied memory size only increases by 2.5 MB, effectively achieving high-accuracy real-time detection with low memory consumption.

7.
Sensors (Basel) ; 24(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38676100

RESUMEN

Anthropogenic waste deposition in aquatic environments precipitates a decline in water quality, engendering pollution that adversely impacts human health, ecological integrity, and economic endeavors. The evolution of underwater robotic technologies heralds a new era in the timely identification and extraction of submerged litter, offering a proactive measure against the scourge of water pollution. This study introduces a refined YOLOv8-based algorithm tailored for the enhanced detection of small-scale underwater debris, aiming to mitigate the prevalent challenges of high miss and false detection rates in aquatic settings. The research presents the YOLOv8-C2f-Faster-EMA algorithm, which optimizes the backbone, neck layer, and C2f module for underwater characteristics and incorporates an effective attention mechanism. This algorithm improves the accuracy of underwater litter detection while simplifying the computational model. Empirical evidence underscores the superiority of this method over the conventional YOLOv8n framework, manifesting in a significant uplift in detection performance. Notably, the proposed method realized a 6.7% increase in precision (P), a 4.1% surge in recall (R), and a 5% enhancement in mean average precision (mAP). Transcending its foundational utility in marine conservation, this methodology harbors potential for subsequent integration into remote sensing ventures. Such an adaptation could substantially enhance the precision of detection models, particularly in the realm of localized surveillance, thereby broadening the scope of its applicability and impact.

8.
Sensors (Basel) ; 24(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38732816

RESUMEN

Target detection technology based on unmanned aerial vehicle (UAV)-derived aerial imagery has been widely applied in the field of forest fire patrol and rescue. However, due to the specificity of UAV platforms, there are still significant issues to be resolved such as severe omission, low detection accuracy, and poor early warning effectiveness. In light of these issues, this paper proposes an improved YOLOX network for the rapid detection of forest fires in images captured by UAVs. Firstly, to enhance the network's feature-extraction capability in complex fire environments, a multi-level-feature-extraction structure, CSP-ML, is designed to improve the algorithm's detection accuracy for small-target fire areas. Additionally, a CBAM attention mechanism is embedded in the neck network to reduce interference caused by background noise and irrelevant information. Secondly, an adaptive-feature-extraction module is introduced in the YOLOX network's feature fusion part to prevent the loss of important feature information during the fusion process, thus enhancing the network's feature-learning capability. Lastly, the CIoU loss function is used to replace the original loss function, to address issues such as excessive optimization of negative samples and poor gradient-descent direction, thereby strengthening the network's effective recognition of positive samples. Experimental results show that the improved YOLOX network has better detection performance, with mAP@50 and mAP@50_95 increasing by 6.4% and 2.17%, respectively, compared to the traditional YOLOX network. In multi-target flame and small-target flame scenarios, the improved YOLO model achieved a mAP of 96.3%, outperforming deep learning algorithms such as FasterRCNN, SSD, and YOLOv5 by 33.5%, 7.7%, and 7%, respectively. It has a lower omission rate and higher detection accuracy, and it is capable of handling small-target detection tasks in complex fire environments. This can provide support for UAV patrol and rescue applications from a high-altitude perspective.

9.
Sensors (Basel) ; 24(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38544089

RESUMEN

This article utilizes the Canny edge extraction algorithm based on contour curvature and the cross-correlation template matching algorithm to extensively study the impact of a high-repetition-rate CO2 pulsed laser on the target extraction and tracking performance of an infrared imaging detector. It establishes a quantified dazzling pattern for lasers on infrared imaging systems. By conducting laser dazzling and damage experiments, a detailed analysis of the normalized correlation between the target and the dazzling images is performed to quantitatively describe the laser dazzling effects. Simultaneously, an evaluation system, including target distance and laser power evaluation factors, is established to determine the dazzling level and whether the target is recognizable. The research results reveal that the laser power and target position are crucial factors affecting the detection performance of infrared imaging detector systems under laser dazzling. Different laser powers are required to successfully interfere with the recognition algorithm of the infrared imaging detector at different distances. And laser dazzling produces a considerable quantity of false edge information, which seriously affects the performance of the pattern recognition algorithm. In laser damage experiments, the detector experienced functional damage, with a quarter of the image displaying as completely black. The energy density threshold required for the functional damage of the detector is approximately 3 J/cm2. The dazzling assessment conclusions also apply to the evaluation of the damage results. Finally, the proposed evaluation formula aligns with the experimental results, objectively reflecting the actual impact of laser dazzling on the target extraction and the tracking performance of infrared imaging systems. This study provides an in-depth and accurate analysis for understanding the influence of lasers on the performance of infrared imaging detectors.

10.
Sensors (Basel) ; 24(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38793891

RESUMEN

In response to the numerous challenges faced by traditional human pose recognition methods in practical applications, such as dense targets, severe edge occlusion, limited application scenarios, complex backgrounds, and poor recognition accuracy when targets are occluded, this paper proposes a YOLO-Pose algorithm for human pose estimation. The specific improvements are divided into four parts. Firstly, in the Backbone section of the YOLO-Pose model, lightweight GhostNet modules are introduced to reduce the model's parameter count and computational requirements, making it suitable for deployment on unmanned aerial vehicles (UAVs). Secondly, the ACmix attention mechanism is integrated into the Neck section to improve detection speed during object judgment and localization. Furthermore, in the Head section, key points are optimized using coordinate attention mechanisms, significantly enhancing key point localization accuracy. Lastly, the paper improves the loss function and confidence function to enhance the model's robustness. Experimental results demonstrate that the improved model achieves a 95.58% improvement in mAP50 and a 69.54% improvement in mAP50-95 compared to the original model, with a reduction of 14.6 M parameters. The model achieves a detection speed of 19.9 ms per image, optimized by 30% and 39.5% compared to the original model. Comparisons with other algorithms such as Faster R-CNN, SSD, YOLOv4, and YOLOv7 demonstrate varying degrees of performance improvement.


Asunto(s)
Algoritmos , Postura , Humanos , Postura/fisiología , Dispositivos Aéreos No Tripulados , Procesamiento de Imagen Asistido por Computador/métodos
11.
Sensors (Basel) ; 24(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38610404

RESUMEN

Due to the limited semantic information extraction with small objects and difficulty in distinguishing similar targets, it brings great challenges to target detection in remote sensing scenarios, which results in poor detection performance. This paper proposes an improved YOLOv5 remote sensing image target detection algorithm, SEB-YOLO (SPD-Conv + ECSPP + Bi-FPN + YOLOv5). Firstly, the space-to-depth (SPD) layer followed by a non-strided convolution (Conv) layer module (SPD-Conv) was used to reconstruct the backbone network, which retained the global features and reduced the feature loss. Meanwhile, the pooling module with the attention mechanism of the final layer of the backbone network was designed to help the network better identify and locate the target. Furthermore, a bidirectional feature pyramid network (Bi-FPN) with bilinear interpolation upsampling was added to improve bidirectional cross-scale connection and weighted feature fusion. Finally, the decoupled head is introduced to enhance the model convergence and solve the contradiction between the classification task and the regression task. Experimental results on NWPU VHR-10 and RSOD datasets show that the mAP of the proposed algorithm reaches 93.5% and 93.9%respectively, which is 4.0% and 5.3% higher than that of the original YOLOv5l algorithm. The proposed algorithm achieves better detection results for complex remote sensing images.

12.
Sensors (Basel) ; 24(6)2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38544042

RESUMEN

In order to effectively respond to floods and water emergencies that result in the drowning of missing persons, timely and effective search and rescue is a very critical step in underwater rescue. Due to the complex underwater environment and low visibility, unmanned underwater vehicles (UUVs) with sonar are more efficient than traditional manual search and rescue methods to conduct active searches using deep learning algorithms. In this paper, we constructed a sound-based rescue target dataset that encompasses both the source and target domains using deep transfer learning techniques. For the underwater acoustic rescue target detection of small targets, which lack image feature accuracy, this paper proposes a two-branch convolution module and improves the YOLOv5s algorithm model to design an acoustic rescue small target detection algorithm model. For an underwater rescue target dataset based on acoustic images with a small sample acoustic dataset, a direct fine-tuning using optical image pre-training lacks cross-domain adaptability due to the different statistical properties of optical and acoustic images. This paper therefore proposes a heterogeneous information hierarchical migration learning method. For the false detection of acoustic rescue targets in a complex underwater background, the network layer is frozen during the hierarchical migration of heterogeneous information to improve the detection accuracy. In addition, in order to be more applicable to the embedded devices carried by underwater UAVs, an underwater acoustic rescue target detection algorithm based on ShuffleNetv2 is proposed to improve the two-branch convolutional module and the backbone network of YOLOv5s algorithm, and to create a lightweight model based on hierarchical migration of heterogeneous information. Through extensive comparative experiments conducted on various acoustic images, we have thoroughly validated the feasibility and effectiveness of our method. Our approach has demonstrated state-of-the-art performance in underwater search and rescue target detection tasks.

13.
Sensors (Basel) ; 24(16)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39204946

RESUMEN

Foreign objects in coal flow easily cause damage to conveyor belts, and most foreign objects are often occluded, making them difficult to detect. Aiming at solving the problems of low accuracy and efficiency in the detection of occluded targets in a low-illumination and dust fog environment, an image detection method for foreign objects is proposed. Firstly, YOLOv5s back-end processing is optimized by soft non-maximum suppression to reduce the influence of dense objects. Secondly, SimOTA label allocation is used to reduce the influence of ambiguous samples under dense occlusion. Then, Slide Loss is used to excavate difficult samples, and Inner-SIoU is used to optimize the bounding box regression loss. Finally, Group-Taylor pruning is used to compress the model. The experimental results show that the proposed method has only 4.20 × 105 parameters, a computational amount of 1.00 × 109, a model size of 1.20 MB, and an mAP0.5 of up to 91.30% on the self-built dataset. The detection speed on the different computing devices is as high as 66.31, 41.90, and 33.03 FPS. This proves that the proposed method achieves fast and high-accuracy detection of multi-layer occluded coal flow foreign objects.

14.
Sensors (Basel) ; 24(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39001052

RESUMEN

With the continuous advancement of the economy and technology, the number of cars continues to increase, and the traffic congestion problem on some key roads is becoming increasingly serious. This paper proposes a new vehicle information feature map (VIFM) method and a multi-branch convolutional neural network (MBCNN) model and applies it to the problem of traffic congestion detection based on camera image data. The aim of this study is to build a deep learning model with traffic images as input and congestion detection results as output. It aims to provide a new method for automatic detection of traffic congestion. The deep learning-based method in this article can effectively utilize the existing massive camera network in the transportation system without requiring too much investment in hardware. This study first uses an object detection model to identify vehicles in images. Then, a method for extracting a VIFM is proposed. Finally, a traffic congestion detection model based on MBCNN is constructed. This paper verifies the application effect of this method in the Chinese City Traffic Image Database (CCTRIB). Compared to other convolutional neural networks, other deep learning models, and baseline models, the method proposed in this paper yields superior results. The method in this article obtained an F1 score of 98.61% and an accuracy of 98.62%. Experimental results show that this method effectively solves the problem of traffic congestion detection and provides a powerful tool for traffic management.

15.
Sensors (Basel) ; 24(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39001124

RESUMEN

The integration of visual algorithms with infrared imaging technology has become an effective tool for industrial gas leak detection. However, existing research has mostly focused on simple scenarios where a gas plume is clearly visible, with limited studies on detecting gas in complex scenes where target contours are blurred and contrast is low. This paper uses a cooled mid-wave infrared (MWIR) system to provide high sensitivity and fast response imaging and proposes the MWIRGas-YOLO network for detecting gas leaks in mid-wave infrared imaging. This network effectively detects low-contrast gas leakage and segments the gas plume within the scene. In MWIRGas-YOLO, it utilizes the global attention mechanism (GAM) to fully focus on gas plume targets during feature fusion, adds a small target detection layer to enhance information on small-sized targets, and employs transfer learning of similar features from visible light smoke to provide the model with prior knowledge of infrared gas features. Using a cooled mid-wave infrared imager to collect gas leak images, the experimental results show that the proposed algorithm significantly improves the performance over the original model. The segment mean average precision reached 96.1% (mAP50) and 47.6% (mAP50:95), respectively, outperforming the other mainstream algorithms. This can provide an effective reference for research on infrared imaging for gas leak detection.

16.
Sensors (Basel) ; 24(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38931499

RESUMEN

Aircraft failures can result in the leakage of fuel, hydraulic oil, or other lubricants onto the runway during landing or taxiing. Damage to fuel tanks or oil lines during hard landings or accidents can also contribute to these spills. Further, improper maintenance or operational errors may leave oil traces on the runway before take-off or after landing. Identifying oil spills in airport runway videos is crucial to flight safety and accident investigation. Advanced image processing techniques can overcome the limitations of conventional RGB-based detection, which struggles to differentiate between oil spills and sewage due to similar coloration; given that oil and sewage have distinct spectral absorption patterns, precise detection can be performed based on multispectral images. In this study, we developed a method for spectrally enhancing RGB images of oil spills on airport runways to generate HSI images, facilitating oil spill detection in conventional RGB imagery. To this end, we employed the MST++ spectral reconstruction network model to effectively reconstruct RGB images into multispectral images, yielding improved accuracy in oil detection compared with other models. Additionally, we utilized the Fast R-CNN oil spill detection model, resulting in a 5% increase in Intersection over Union (IOU) for HSI images. Moreover, compared with RGB images, this approach significantly enhanced detection accuracy and completeness by 25.3% and 26.5%, respectively. These findings clearly demonstrate the superior precision and accuracy of HSI images based on spectral reconstruction in oil spill detection compared with traditional RGB images. With the spectral reconstruction technique, we can effectively make use of the spectral information inherent in oil spills, thereby enhancing detection accuracy. Future research could delve deeper into optimization techniques and conduct extensive validation in real airport environments. In conclusion, this spectral reconstruction-based technique for detecting oil spills on airport runways offers a novel and efficient approach that upholds both efficacy and accuracy. Its wide-scale implementation in airport operations holds great potential for improving aviation safety and environmental protection.

17.
Sensors (Basel) ; 24(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38931669

RESUMEN

In recent years, with the rapid development of deep learning and its outstanding capabilities in target detection, innovative methods have been introduced for infrared dim small target detection. This review comprehensively summarizes public datasets, the latest networks, and evaluation metrics for infrared dim small target detection. This review mainly focuses on deep learning methods from the past three years and categorizes them based on the six key issues in this field: (1) enhancing the representation capability of small targets; (2) improving the accuracy of bounding box regression; (3) resolving the issue of target information loss in the deep network; (4) balancing missed detections and false alarms; (5) adapting for complex backgrounds; (6) lightweight design and deployment issues of the network. Additionally, this review summarizes twelve public datasets for infrared dim small targets and evaluation metrics used for detection and quantitatively compares the performance of the latest networks. Finally, this review provides insights into the future directions of this field. In conclusion, this review aims to assist researchers in gaining a comprehensive understanding of the latest developments in infrared dim small target detection networks.

18.
Sensors (Basel) ; 24(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39123850

RESUMEN

Robust object detection in complex environments, poor visual conditions, and open scenarios presents significant technical challenges in autonomous driving. These challenges necessitate the development of advanced fusion methods for millimeter-wave (mmWave) radar point cloud data and visual images. To address these issues, this paper proposes a radar-camera robust fusion network (RCRFNet), which leverages self-supervised learning and open-set recognition to effectively utilise the complementary information from both sensors. Specifically, the network uses matched radar-camera data through a frustum association approach to generate self-supervised signals, enhancing network training. The integration of global and local depth consistencies between radar point clouds and visual images, along with image features, helps construct object class confidence levels for detecting unknown targets. Additionally, these techniques are combined with a multi-layer feature extraction backbone and a multimodal feature detection head to achieve robust object detection. Experiments on the nuScenes public dataset demonstrate that RCRFNet outperforms state-of-the-art (SOTA) methods, particularly in conditions of low visual visibility and when detecting unknown class objects.

19.
Sensors (Basel) ; 24(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39124108

RESUMEN

Side-scan sonar is a principal technique for subsea target detection, where the quantity of sonar images of seabed targets significantly influences the accuracy of intelligent target recognition. To expand the number of representative side-scan sonar target image samples, a novel augmentation method employing self-training with a Disrupted Student model is designed (DS-SIAUG). The process begins by inputting a dataset of side-scan sonar target images, followed by augmenting the samples through an adversarial network consisting of the DDPM (Denoising Diffusion Probabilistic Model) and the YOLO (You Only Look Once) detection model. Subsequently, the Disrupted Student model is used to filter out representative target images. These selected images are then reused as a new dataset to repeat the adversarial filtering process. Experimental results indicate that using the Disrupted Student model for selection achieves a target recognition accuracy comparable to manual selection, improving the accuracy of intelligent target recognition by approximately 5% over direct adversarial network augmentation.

20.
Sensors (Basel) ; 24(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38400376

RESUMEN

In this paper, we address the challenge of detecting small moving targets in dynamic environments characterized by the concurrent movement of both platform and sensor. In such cases, simple image-based frame registration and optical flow analysis cannot be used to detect moving targets. To tackle this, it is necessary to use sensor and platform meta-data in addition to image analysis for temporal and spatial anomaly detection. To this end, we investigate techniques that utilize inertial data to enhance frame-to-frame registration, consistently yielding improved detection outcomes when compared against purely feature-based techniques. For cases where image registration is not possible even with metadata, we propose single-frame spatial anomaly detection and then estimate the range to the target using the platform velocity. The behavior of the estimated range over time helps us to discern targets from clutter. Finally, we show that a KNN classifier can be used to further reduce the false alarm rate without a significant reduction in detection performance. The proposed strategies offer a robust solution for the detection of moving targets in dynamically challenging settings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA