Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Respir Crit Care Med ; 209(12): 1486-1496, 2024 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-38647526

RESUMEN

Rationale: Standardized dosing of antitubercular drugs leads to variable plasma drug levels, which are associated with adverse drug reactions, delayed treatment response, and relapse. Mutations in genes affecting drug metabolism explain considerable interindividual pharmacokinetic variability; however, pharmacogenomic assays that predict metabolism of antitubercular drugs have been lacking. Objectives: We sought to develop a Nanopore sequencing panel and validate its performance in patients with active tuberculosis (TB) to personalize treatment dosing. Methods: We developed a Nanopore sequencing panel targeting 15 SNPs in five genes affecting the metabolism of antitubercular drugs. For validation, we sequenced DNA samples (n = 48) from the 1,000 Genomes Project and compared the variant calling accuracy with that of Illumina genome sequencing. We then sequenced DNA samples from patients with active TB (n = 100) from South Africa on a MinION Mk1C and evaluated the relationship between genotypes and pharmacokinetic parameters for isoniazid (INH) and rifampin (RIF). Measurements and Main Results: The pharmacogenomic panel achieved 100% concordance with Illumina sequencing in variant identification for the samples from the 1,000 Genomes Project. In the clinical cohort, coverage was more than 100× for 1,498 of 1,500 (99.8%) amplicons across the 100 samples. Thirty-three percent, 47%, and 20% of participants were identified as slow, intermediate, and rapid INH acetylators, respectively. INH clearance was 2.2 times higher among intermediate acetylators and 3.8 times higher among rapid acetylators, compared with slow acetylators (P < 0.0001). RIF clearance was 17.3% (2.50-29.9) lower in individuals with homozygous AADAC rs1803155 G→A substitutions (P = 0.0015). Conclusions: Targeted sequencing can enable the detection of polymorphisms that influence TB drug metabolism on a low-cost, portable instrument to personalize dosing for TB treatment or prevention.


Asunto(s)
Antituberculosos , Secuenciación de Nanoporos , Polimorfismo de Nucleótido Simple , Tuberculosis , Humanos , Antituberculosos/uso terapéutico , Antituberculosos/farmacocinética , Femenino , Masculino , Adulto , Tuberculosis/tratamiento farmacológico , Tuberculosis/genética , Secuenciación de Nanoporos/métodos , Polimorfismo de Nucleótido Simple/genética , Persona de Mediana Edad , Medicina de Precisión/métodos , Isoniazida/uso terapéutico , Isoniazida/farmacocinética , Rifampin , Pruebas de Farmacogenómica/métodos , Farmacogenética/métodos , Sudáfrica , Adulto Joven
2.
Curr Issues Mol Biol ; 46(2): 1281-1290, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38392199

RESUMEN

Heterogeneity of gastric cancer (GC) is the main trigger of the disease's relapse. The aim of this study was to investigate the connections between targeted genes, cancer clinical features, and the effectiveness of FLOT chemotherapy. Twenty-one patients with gastric cancers (GCs) were included in this study. Tumor-targeted sequencing was conducted, and real-time PCR was used to assess the expression of molecular markers in tumors. Seven patients with stabilization had mutations that were related to their response to therapy and were relevant to the tumor phenotype. Two patients had two mutations. The number of patients with TP53 mutations increased in HER2-positive tumor status. PD-L1-positive cancers had mutations in KRAS, TP53, PIK3CA, PTEN, and ERBB, which resulted in an increase in PD-1 expression. TP53 mutation and PTEN mutation are associated with changes in factors associated with neoangiogenesis. In concusion, patients who did not have aggressive growth markers that were verified by molecular features had the best response to treatment, including complete morphologic regression.

3.
Clin Genet ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38837338

RESUMEN

In the last decade, an incredible improvement has been made in elucidating the genetic bases of cardiomyopathies. Here we report the impact of either the European Society of Cardiology (ESC) guidelines or the use of whole exome sequencing (WES) in terms of a number of variants of uncertain significance (VUS) and missed diagnoses in a series of 260 patients affected by inherited cardiac disorders. Samples were analyzed using a targeted gene panel of 128 cardiac-related genes and/or WES in a subset of patients, with a three-tier approach. Analyzing (i) only a subset of genes related to the clinical presentation, strictly following the ESC guidelines, 20.77% positive test were assessed. The incremental diagnostic rate for (ii) the whole gene panel, and (iii) the WES was 4.71% and 11.67%, respectively. The diverse analytical approaches increased the number of VUSs and incidental findings. Indeed, the use of WES highlights that there is a small percentage of syndromic conditions that standard analysis would not have detected. Moreover, the use of targeted sequencing coupled with "narrow" analytical approach prevents the detection of variants in actionable genes that could allow for preventive treatment. Our data suggest that genetic testing might aid clinicians in the diagnosis of inheritable cardiac disorders.

4.
BMC Cancer ; 24(1): 673, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38825709

RESUMEN

Hepatocellular carcinoma (HCC) genomic research has discovered actionable genetic changes that might guide treatment decisions and clinical trials. Nonetheless, due to a lack of large-scale multicenter clinical validation, these putative targets have not been converted into patient survival advantages. So, it's crucial to ascertain whether genetic analysis is clinically feasible, useful, and whether it can be advantageous for patients. We sequenced tumour tissue and blood samples (as normal controls) from 111 Chinese HCC patients at Qingdao University Hospital using the 508-gene panel and the 688-gene panel, respectively. Approximately 95% of patients had gene variations related to targeted treatment, with 50% having clinically actionable mutations that offered significant information for targeted therapy. Immune cell infiltration was enhanced in individuals with TP53 mutations but decreased in patients with CTNNB1 and KMT2D mutations. More notably, we discovered that SPEN, EPPK1, and BRCA2 mutations were related to decreased median overall survival, although MUC16 mutations were not. Furthermore, we found mutant MUC16 as an independent protective factor for the prognosis of HCC patients after curative hepatectomy. In conclusion, this study connects genetic abnormalities to clinical practice and potentially identifies individuals with poor prognoses who may benefit from targeted treatment or immunotherapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Mutación , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Masculino , Femenino , Pronóstico , Persona de Mediana Edad , Anciano , Adulto , Biomarcadores de Tumor/genética , Genómica/métodos , Proteína BRCA2/genética , Terapia Molecular Dirigida , Hepatectomía , Perfilación de la Expresión Génica , Proteína p53 Supresora de Tumor/genética , Proteínas de Unión al ADN , Proteínas de Neoplasias , beta Catenina
5.
Malar J ; 23(1): 149, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38750583

RESUMEN

BACKGROUND: Malaria elimination in Senegal requires accurate diagnosis of all Plasmodium species. Plasmodium falciparum is the most prevalent species in Senegal, although Plasmodium malariae, Plasmodium ovale, and recently Plasmodium vivax have also been reported. Nonetheless, most malaria control tools, such as Histidine Rich Protein 2 rapid diagnosis test (PfHRP2-RDT,) can only diagnose P. falciparum. Thus, PfHRP2-RDT misses non-falciparum species and P. falciparum infections that fall below the limit of detection. These limitations can be addressed using highly sensitive Next Generation Sequencing (NGS). This study assesses the burden of the four different Plasmodium species in western and eastern regions of Senegal using targeted PCR amplicon sequencing. METHODS: Three thousand samples from symptomatic and asymptomatic individuals in 2021 from three sites in Senegal (Sessene, Diourbel region; Parcelles Assainies, Kaolack region; Gabou, Tambacounda region) were collected. All samples were tested using PfHRP2-RDT and photoinduced electron transfer polymerase chain reaction (PET-PCR), which detects all Plasmodium species. Targeted sequencing of the nuclear 18S rRNA and the mitochondrial cytochrome B genes was performed on PET-PCR positive samples. RESULTS: Malaria prevalence by PfHRP2-RDT showed 9.4% (94/1000) and 0.2% (2/1000) in Diourbel (DBL) and Kaolack (KL), respectively. In Tambacounda (TAM) patients who had malaria symptoms and had a negative PfHRP2-RDT were enrolled. The PET-PCR had a positivity rate of 23.5% (295/1255) overall. The PET-PCR positivity rate was 37.6%, 12.3%, and 22.8% in Diourbel, Kaolack, and Tambacounda, respectively. Successful sequencing of 121/295 positive samples detected P. falciparum (93%), P. vivax (2.6%), P. malariae (4.4%), and P. ovale wallikeri (0.9%). Plasmodium vivax was co-identified with P. falciparum in thirteen samples. Sequencing also detected two PfHRP2-RDT-negative mono-infections of P. vivax in Tambacounda and Kaolack. CONCLUSION: The findings demonstrate the circulation of P. vivax in western and eastern Senegal, highlighting the need for improved malaria control strategies and accurate diagnostic tools to better understand the prevalence of non-falciparum species countrywide.


Asunto(s)
Malaria Vivax , Plasmodium vivax , Senegal/epidemiología , Humanos , Adolescente , Adulto , Adulto Joven , Niño , Persona de Mediana Edad , Masculino , Femenino , Plasmodium vivax/genética , Plasmodium vivax/aislamiento & purificación , Preescolar , Malaria Vivax/epidemiología , Malaria Vivax/parasitología , Prevalencia , Anciano , Lactante , Reacción en Cadena de la Polimerasa , Plasmodium ovale/genética , Plasmodium ovale/aislamiento & purificación
6.
Environ Sci Technol ; 58(19): 8239-8250, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38690747

RESUMEN

Sequencing human viruses in wastewater is challenging due to their low abundance compared to the total microbial background. This study compared the impact of four virus concentration/extraction methods (Innovaprep, Nanotrap, Promega, and Solids extraction) on probe-capture enrichment for human viruses followed by sequencing. Different concentration/extraction methods yielded distinct virus profiles. Innovaprep ultrafiltration (following solids removal) had the highest sequencing sensitivity and richness, resulting in the successful assembly of several near-complete human virus genomes. However, it was less sensitive in detecting SARS-CoV-2 by digital polymerase chain reaction (dPCR) compared to Promega and Nanotrap. Across all preparation methods, astroviruses and polyomaviruses were the most highly abundant human viruses, and SARS-CoV-2 was rare. These findings suggest that sequencing success can be increased using methods that reduce nontarget nucleic acids in the extract, though the absolute concentration of total extracted nucleic acid, as indicated by Qubit, and targeted viruses, as indicated by dPCR, may not be directly related to targeted sequencing performance. Further, using broadly targeted sequencing panels may capture viral diversity but risks losing signals for specific low-abundance viruses. Overall, this study highlights the importance of aligning wet lab and bioinformatic methods with specific goals when employing probe-capture enrichment for human virus sequencing from wastewater.


Asunto(s)
Aguas Residuales , Aguas Residuales/virología , Humanos , Virus/aislamiento & purificación , SARS-CoV-2 , Genoma Viral
7.
BMC Cardiovasc Disord ; 24(1): 97, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336686

RESUMEN

BACKGROUND: Coronary artery disease (CAD) is a complex disease that is influenced by environmental and genetic factors. In this study, we aimed to investigate the relationship between coding variants in lipid metabolism-related genes and CAD in a Chinese Han population. METHODS: A total of 252 individuals were recruited for this study, including 120 CAD patients and 132 healthy control individuals. Rare and common coding variants in 12 lipid metabolism-related genes (ANGPTL3, ANGPTL4, APOA1, APOA5, APOC1, APOC3, CETP, LDLR, LIPC, LPL, PCSK9 and SCARB1) were detected via next-generation sequencing (NGS)-based targeted sequencing. Associations between common variants and CAD were evaluated by Fisher's exact test. A gene-based association test of rare variants was performed by the sequence kernel association test-optimal (SKAT-O test). RESULTS: We found 51 rare variants and 17 common variants in this study. One common missense variant, LIPC rs6083, was significantly associated with CAD after Bonferroni correction (OR = 0.47, 95% CI = 0.29-0.76, p = 1.9 × 10- 3). Thirty-three nonsynonymous rare variants were identified, including two novel variants located in the ANGPTL4 (p.Gly47Glu) and SCARB1 (p.Leu233Phe) genes. We did not find a significant association between rare variants and CAD via gene-based analysis via the SKAT-O test. CONCLUSIONS: Targeted sequencing is a powerful tool for identifying rare and common variants in CAD. The common missense variant LIPC rs6083 confers protection against CAD. The clinical relevance of rare variants in CAD aetiology needs to be investigated in larger sample sizes in the future.


Asunto(s)
Enfermedad de la Arteria Coronaria , Humanos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/genética , Proproteína Convertasa 9/genética , Metabolismo de los Lípidos/genética , Polimorfismo de Nucleótido Simple , Proteína 3 Similar a la Angiopoyetina
8.
Ann Clin Microbiol Antimicrob ; 23(1): 22, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424544

RESUMEN

BACKGROUND: Early and accurate etiological diagnosis is very important for improving the prognosis of central nervous system (CNS) infections in human immunodeficiency virus (HIV)-infected patients. The goal is not easily achieved by conventional microbiological tests. We developed a nanopore targeted sequencing (NTS) platform and evaluated the diagnostic performance for CNS infections in HIV-infected patients, with special focus on cryptococcal meningitis (CM). We compared the CM diagnostic performance of NTS with conventional methods and cryptococcal polymerase chain reaction (PCR). METHODS: This study included 57 hospitalized HIV-infected patients with suspected CNS infections from September 2018 to March 2022. The diagnosis established during hospitalization includes 27 cases of CM, 13 CNS tuberculosis, 5 toxoplasma encephalitis, 2 cytomegalovirus (CMV) encephalitis and 1 Varicella-zoster virus (VZV) encephalitis. The 2 cases of CMV encephalitis also have co-existing CM. Target-specific PCR amplification was used to enrich pathogen sequences before nanopore sequencing. NTS was performed on stored cerebrospinal fluid (CSF) samples and the results were compared with the diagnosis during hospitalization. RESULTS: 53 (93.0%) of the patients were male. The median CD4 cell count was 25.0 (IQR: 14.0-63.0) cells/uL. The sensitivities of CSF culture, India ink staining, cryptococcal PCR and NTS for CM were 70.4% (95%CI: 51.5 - 84.1%), 76.0% (95%CI: 56.6 - 88.5%), 77.8% (59.2 - 89.4%) and 85.2% (95%CI: 67.5 - 94.1%), respectively. All those methods had 100% specificity for CM. Our NTS platform could identify Cryptococcus at species level. Moreover, NTS was also able to identify all the 5 cases of toxoplasma encephalitis, 2 cases of CMV encephalitis and 1 VZV encephalitis. However, only 1 of 13 CNS tuberculosis cases was diagnosed by NTS, and so did Xpert MTB/RIF assay. CONCLUSIONS: NTS has a good diagnostic performance for CM in HIV-infected patients and may have the ability of simultaneously detecting other pathogens, including mixed infections. With continuing improving of the NTS platform, it may be a promising alterative microbiological test for assisting with the diagnosis of CNS infections.


Asunto(s)
Infecciones del Sistema Nervioso Central , Infecciones por Citomegalovirus , Encefalitis , Infecciones por VIH , Secuenciación de Nanoporos , Nanoporos , Tuberculosis , Humanos , Masculino , Femenino , VIH , ADN Viral , Herpesvirus Humano 3/genética , Infecciones del Sistema Nervioso Central/diagnóstico , Infecciones del Sistema Nervioso Central/complicaciones , Infecciones por Citomegalovirus/diagnóstico , Infecciones por VIH/complicaciones , Tuberculosis/complicaciones
9.
Breast Cancer Res ; 25(1): 152, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38098088

RESUMEN

BACKGROUND: The homologous recombination (HR) repair pathway for DNA damage, particularly the BRCA1 and BRCA2 genes, has become a target for cancer therapy, with poly ADP-ribose polymerase (PARP) inhibitors showing significant outcomes in treating germline BRCA1/2 (gBRCA1/2) mutated breast cancer. Recent studies suggest that some patients with somatic BRCA1/2 (sBRCA1/2) mutation or mutations in HR-related genes other than BRCA1/2 may benefit from PARP inhibitors as well, particularly those with PALB2 mutations. The current analysis aims to evaluate the prevalence of genetic alterations specific to BRCA1, BRCA2, and PALB2 in a large cohort of Taiwanese breast cancer patients through tumor-targeted sequencing. METHODS: A total of 924 consecutive assays from 879 Taiwanese breast cancer patients underwent tumor-targeted sequencing (Thermo Fisher Oncomine Comprehensive Assay v3). We evaluated BRCA1, BRCA2, and PALB2 mutational profiles, with variants annotated and curated by the ClinVAR, the Oncomine™ Knowledgebase Reporter, and the OncoKB™. We also conducted reflex germline testing using either whole exome sequencing (WES) or whole genome sequencing (WGS), which is ongoing. RESULTS: Among the 879 patients analyzed (924 assays), 130 had positive mutations in BRCA1 (3.1%), BRCA2 (8.6%), and PALB2 (5.2%), with a total of 14.8% having genetic alterations. Co-occurrence was noted between BRCA1/BRCA2, BRCA1/PALB2, and BRCA2/PALB2 mutations. In BRCA1-mutated samples, only p.K654fs was observed in three patients, while other variants were observed no more than twice. For BRCA2, p.N372H was the most common (26 patients), followed by p.S2186fs, p.V2466A, and p.X159_splice (5 times each). For PALB2, p.I887fs was the most common mutation (30 patients). This study identified 176 amino acid changes; 60.2% (106) were not documented in either ClinVAR or the Oncomine™ Knowledgebase Reporter. Using the OncoKB™ for annotation, 171 (97.2%) were found to have clinical implications. For the result of reflex germline testing, three variants (BRCA1 c.1969_1970del, BRCA1 c.3629_3630del, BRCA2 c.8755-1G > C) were annotated as Pathogenic/Likely pathogenic (P/LP) variants by ClinVar and as likely loss-of-function or likely oncogenic by OncoKB; while one variant (PALB2 c.448C > T) was not found in ClinVar but was annotated as likely loss-of-function or likely oncogenic by OncoKB. CONCLUSION: Our study depicted the mutational patterns of BRCA1, BRCA2, and PALB2 in Taiwanese breast cancer patients through tumor-only sequencing. This highlights the growing importance of BRCA1/2 and PALB2 alterations in breast cancer susceptibility risk and the treatment of index patients. We also emphasized the need to meticulously annotate variants in cancer-driver genes as well as actionable mutations across multiple databases.


Asunto(s)
Proteína BRCA1 , Neoplasias de la Mama , Humanos , Femenino , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Genes BRCA2 , Prevalencia , Mutación de Línea Germinal , Predisposición Genética a la Enfermedad , Proteína del Grupo de Complementación N de la Anemia de Fanconi/genética , Genómica
11.
Microbiol Spectr ; 12(3): e0331723, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38294222

RESUMEN

Central nervous system (CNS) infections are a leading cause of death in patients. Nanopore-targeted sequencing (NTS) has begun to be used for pathogenic microbial detection. This study aims to evaluate the ability of NTS in the detection of pathogens in cerebrospinal fluid (CSF) through a prospective study. Fifty CSF specimens collected from 50 patients with suspected CNS infections went through three methods including NTS, metagenomic next-generation sequencing (mNGS), and microbial culture in parallel. When there was an inconsistency between NTS results and the results of the mNGS, the 16S rDNA gene was amplified followed by Sanger sequencing to further verify pathogens detected by NTS. Among 50 CSF specimens, 76% were NTS-positive, which is lower than mNGS (94.0%), yet higher than microbial culture (16.0%). The overall validation rate, diagnostic accordance rate (DAR), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of NTS were 86.7%, 50.0%, 71.0%, 15.8%, 57.9%, and 25.0%, respectively. In the CSF total nucleated cell (TNC) number ≤10 cells/µL, DAR, specificity, and PPV were 20%, 11.1%, and 11.1%, whereas in that with CSF TNC number >10 cells/µL, DAR, sensitivity, specificity, PPV, and NPV were 57.5%, 70.0%, 20.0%, 72.4%, and 18.2%, respectively. Although NTS has a higher microbial detection rate than microbial culture, it should combine CSF TNC result to evaluate the value of NTS for the diagnosis of CNS infections. IMPORTANCE: This study aims to prospectively evaluate the ability of nanopore-targeted sequencing (NTS) in the detection of pathogens in cerebrospinal fluid (CSF). It was the first time combining mNGS and microbial culture to verify the NTS-positive results also using 16S rDNA amplification with Sanger sequencing. Although microbial culture was thought to be the gold standard for pathogens detection and diagnosis of infectious diseases, this study suggested that microbial culture of CSF is not the most appropriate way for diagnosing central nervous system (CNS) infection. NTS should be recommended to be used in CSF for diagnosing CNS infection. When evaluating the value of NTS for diagnosis of CNS infections, the results of CSF TNC should be combined, and NTS-positive result is observed to be more reliable in patients with CSF TNC level >10 cells/µL.


Asunto(s)
Infecciones del Sistema Nervioso Central , Nanoporos , Humanos , Estudios Prospectivos , Infecciones del Sistema Nervioso Central/diagnóstico , Valor Predictivo de las Pruebas , Secuenciación de Nucleótidos de Alto Rendimiento , ADN Ribosómico/genética , Metagenómica/métodos
12.
Cancer Med ; 13(7): e7043, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572921

RESUMEN

BACKGROUND: As an indicator of tumor invasiveness, microvascular invasion (MVI) is a crucial risk factor for postoperative relapse, metastasis, and unfavorable prognosis in hepatocellular carcinoma (HCC). Nevertheless, the genetic mechanisms underlying MVI, particularly for Chinese patients, remain mostly uncharted. METHODS: We applied deep targeted sequencing on 66 Chinese HCC samples. Focusing on the telomerase reverse transcriptase (TERT) promoter (TERTp) and TP53 co-mutation (TERTp+/TP53+) group, gene set enrichment analysis (GSEA) was used to explore the potential molecular mechanisms of the TERTp+/TP53+ group on tumor progression and metastasis. Additionally, we evaluated the tumor immune microenvironment of the TERTp+/TP53+ group in HCC using multiplex immunofluorescence (mIF) staining. RESULTS: Among the 66 HCC samples, the mutated genes that mostly appeared were TERT, TP53, and CTNNB1. Of note, we found 10 cases with TERTp+/TP53+, of which nine were MVI-positive and one was MVI-negative, and there was a co-occurrence of TERTp and TP53 (p < 0.05). Survival analysis demonstrated that patients with the TERTp+/TP53+ group had lower the disease-free survival (DFS) (p = 0.028). GSEA results indicated that telomere organization, telomere maintenance, DNA replication, positive regulation of cell cycle, and negative regulation of immune response were significantly enriched in the TERTp+/TP53+ group (all adjusted p-values (p.adj) < 0.05). mIF revealed that the TERTp+/TP53+ group decreased CD8+ T cells infiltration (p = 0.25) and enhanced PDL1 expression (p = 0.55). CONCLUSIONS: TERTp+/TP53+ was significantly enriched in MVI-positive patients, leading to poor prognosis for HCC patients by promoting proliferation of HCC cell and inhibiting infiltration of immune cell surrounding HCC. TERTp+/TP53+ can be utilized as a potential indicator for predicting MVI-positive patients and poor prognosis, laying a preliminary foundation for further exploration of co-mutation in HCC with MVI and clinical treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Linfocitos T CD8-positivos/patología , Recurrencia Local de Neoplasia/genética , Pronóstico , Invasividad Neoplásica/patología , Estudios Retrospectivos , Microambiente Tumoral/genética
13.
J Clin Virol ; 171: 105652, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38364704

RESUMEN

BACKGROUND: JC polyomavirus (JCPyV) persists asymptomatic in more than half of the human population. Immunocompromising conditions may cause reactivation and acquisition of neurotropic rearrangements in the viral genome, especially in the non-coding control region (NCCR). Such rearranged JCPyV strains are strongly associated with the development of progressive multifocal leukoencephalopathy (PML). METHODS: Using next-generation sequencing (NGS) and bioinformatics tools, the NCCR was characterized in cerebrospinal fluid (CSF; N = 21) and brain tissue (N = 16) samples from PML patients (N = 25), urine specimens from systemic lupus erythematosus patients (N = 2), brain tissue samples from control individuals (N = 2) and waste-water samples (N = 5). Quantitative PCR was run in parallel for diagnostic PML samples. RESULTS: Archetype NCCR (i.e. ABCDEF block structure) and archetype-like NCCR harboring minor mutations were detected in two CSF samples and in one CSF sample and in one tissue sample, respectively. Among samples from PML patients, rearranged NCCRs were found in 8 out of 21 CSF samples and in 14 out of 16 brain tissue samples. Complete or partial deletion of the C and D blocks was characteristic of most rearranged JCPyV strains. From ten CSF samples and one tissue sample NCCR could not be amplified. CONCLUSIONS: Rearranged NCCRs are predominant in brain tissue and common in CSF from PML patients. Extremely sensitive detection and identification of neurotropic viral populations in CSF or brain tissue by NGS may contribute to early and accurate diagnosis, timely intervention and improved patient care.


Asunto(s)
Virus JC , Leucoencefalopatía Multifocal Progresiva , Humanos , Virus JC/genética , Secuenciación de Nucleótidos de Alto Rendimiento , ADN Viral/genética , ADN Viral/líquido cefalorraquídeo , Leucoencefalopatía Multifocal Progresiva/diagnóstico , Mutación
14.
Virchows Arch ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733380

RESUMEN

Carcinosarcoma (CS) is an uncommon and clinically aggressive malignancy. The objective of the present study was to characterize the molecular features of CS at various anatomic locations, including serous effusions. Specimens (n = 32) consisted of 25 biopsies/surgical resection specimens and 7 serous effusions (6 peritoneal, 1 pleural) from 25 patients. Fresh-frozen cell pellets and surgical specimens underwent targeted next-generation sequencing covering 50 unique genes. A total of 31 mutations were found in 25 of the 32 tumors studied, of which 1 had 3 mutations, 4 had 2 different mutations, and 20 had a single mutation. The most common mutations were in TP53 (n = 25 in 24 tumors; 1 tumor with 2 different mutations), with less common mutations found in RB1 (n = 2), MET (n = 1), KRAS (n = 1), PTEN (n = 1), and KIT (n = 1). Patient-matched specimens harbored the same TP53 mutation. Tumors with no detected mutations were more common in serous effusion specimens (3/7; 43%) compared with surgical specimens (4/25; 16%). In conclusion, the molecular landscape of CS is dominated by TP53 mutations, reinforcing the observation that the majority of these tumors develop from high-grade serous carcinoma. Whether CS cells in serous effusions differ from their counterparts in solid lesions remains uncertain.

15.
BMC Genom Data ; 25(1): 44, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714950

RESUMEN

BACKGROUND: China has thousands years of goat breeding and abundant goat genetic resources. Additionally, the Hainan black goat is one of the high-quality local goat breeds in China. In order to conserve the germplasm resources of the Hainan black goat, facilitate its genetic improvement and further protect the genetic diversity of goats, it is urgent to develop a single nucleotide polymorphism (SNP) chip for Hainan black goat. RESULTS: In this study, we aimed to design a 10K liquid chip for Hainan black goat based on genotyping by pinpoint sequencing of liquid captured targets (cGPS). A total of 45,588 candidate SNP sites were obtained, 10,677 of which representative SNP sites were selected to design probes, which finally covered 9,993 intervals and formed a 10K cGPS liquid chip for Hainan black goat. To verify the 10K cGPS liquid chip, some southern Chinese goat breeds and a sheep breed with similar phenotype to the Hainan black goat were selected. A total of 104 samples were used to verify the clustering ability of the 10K cGPS liquid chip for Hainan black goat. The results showed that the detection rate of sites was 97.34% -99.93%. 84.5% of SNP sites were polymorphic. The heterozygosity rate was 3.08%-36.80%. The depth of more than 99.4% sites was above 10X. The repetition rate was 99.66%-99.82%. The average consistency between cGPS liquid chip results and resequencing results was 85.58%. In addition, the phylogenetic tree clustering analysis verified that the SNP sites on the chip had better clustering ability. CONCLUSION: These results indicate that we have successfully realized the development and verification of the 10K cGPS liquid chip for Hainan black goat, which provides a useful tool for the genome analysis of Hainan black goat. Moreover, the 10K cGPS liquid chip is conducive to the research and protection of Hainan black goat germplasm resources and lays a solid foundation for its subsequent breeding work.


Asunto(s)
Cabras , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple , Animales , Cabras/genética , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , China , Técnicas de Genotipaje/métodos , Genotipo , Análisis de Secuencia de ADN/métodos , Cruzamiento/métodos
16.
Front Neurol ; 15: 1344018, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38882696

RESUMEN

Ataxia-telangiectasia (A-T) is an autosomal recessive primary immunodeficiency disorder (PID) caused by biallelic mutations occurring in the serine/threonine protein kinase (ATM) gene. The major role of nuclear ATM is the coordination of cell signaling pathways in response to DNA double-strand breaks, oxidative stress, and cell cycle checkpoints. Defects in ATM functions lead to A-T syndrome with phenotypic heterogeneity. Our study reports the case of a Tunisian girl with A-T syndrome carrying a compound heterozygous mutation c.[3894dupT]; p.(Ala1299Cysfs3;rs587781823), with a splice acceptor variant: c.[5763-2A>C;rs876659489] in the ATM gene that was identified by next-generation sequencing (NGS). Further genetic analysis of the family showed that the mother carried the c.[5763-2A>C] splice acceptor variant, while the father harbored the c.[3894dupT] variant in the heterozygous state. Molecular analysis provides the opportunity for accurate diagnosis and timely management in A-T patients with chronic progressive disease, especially infections and the risk of malignancies. This study characterizes for the first time the identification of compound heterozygous ATM pathogenic variants by NGS in a Tunisian A-T patient. Our study outlines the importance of molecular genetic testing for A-T patients, which is required for earlier detection and reducing the burden of disease in the future, using the patients' families.

17.
Methods Mol Biol ; 2732: 165-177, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38060125

RESUMEN

Diseases caused by Capripoxviruses (CaPVs) are of great economic importance in sheep, goats, and cattle. Since CaPV strains are serologically indistinguishable and genetically highly homologous, typing of closely related strains can only be achieved by whole-genome sequencing. In this chapter, we describe a robust, cost-effective, and widely applicable protocol for reconstructing (nearly) complete CaPV genomes directly from clinical samples or commercial vaccine batches in less than a week. Taking advantage of the genetic similarity of CaPVs, a set of pan-CaPVs long-range PCRs was developed that covers the entire genome with only a limited number of tiled amplicons. The resulting amplicons can be sequenced on all currently available high-throughput sequencing platforms. As an example, we have included a detailed protocol for performing nanopore sequencing and a pipeline for assembling the resulting tiled amplicon data.


Asunto(s)
Capripoxvirus , Infecciones por Poxviridae , Enfermedades de las Ovejas , Vacunas Virales , Animales , Ovinos , Bovinos , Capripoxvirus/genética , Reacción en Cadena de la Polimerasa/métodos , Vacunas Virales/genética , Secuenciación Completa del Genoma , Cabras/genética
18.
Diagnostics (Basel) ; 14(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38535029

RESUMEN

Liquid biopsies are revolutionizing the detection and management of malignant diseases. While repetitive DNA sequences, such as LINE-1 and ALU are established in cell-free DNA (cfDNA) research, their clinical applications remain limited. In this study, we explore human satellite 2 (HSATII), a prevalent repeat DNA sequence in plasma that exhibits increased levels in cancer patients, thereby positioning it as a potential pan-cancer biomarker. We employed targeted sequencing and copy number variation (CNV) analysis using two primer pairs to assess the differential abundance of HSATII sequences in the plasma of breast cancer patients compared to healthy individuals. PCR amplicons of HSATII from 10 patients and 10 control subjects were sequenced, generating 151 bp paired-end reads. By constructing a pooled reference dataset, HSATII copy ratios were estimated in the patients. Our analysis revealed several significant CNVs in HSATII, with certain sequences displaying notable gains and losses across all breast cancer patients, suggesting their potential as biomarkers. However, we observed pronounced fragmentation of cfDNA in cancer, leading to the loss of longer PCR amplicons (>180 bp). While not all observed losses can be attributed to fragmentation artifacts, this phenomenon does introduce complexity in interpreting CNV data. Notably, this research marks the first instance of targeted HSATII sequencing in a liquid biopsy context. Our findings lay the groundwork for developing sequencing-based assays to detect differentially represented HSATII sequences, potentially advancing the field of minimally-invasive cancer screening.

19.
Eur J Surg Oncol ; 50(4): 108242, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460248

RESUMEN

BACKGROUND: Preoperative neoadjuvant chemoradiotherapy (nCRT) followed by total mesorectal excision (TME) is a common approach for treating patients with locally advanced rectal cancer. Nevertheless, the mutational profile and its prognostic impact in surgically resected tumor specimens after nCRT remains to be clarified. METHODS: The comprehensive analysis of mutational landscape was retrospectively conducted by target regions sequencing approach that covered 150 tumor-related genes. Univariate and multivariate logistic regression and Cox regression was used to examine the association of mutation status in genes and pathways with pathological response and prognosis. Data from Memorial Sloan Kettering Cancer Center (MSK) cohort was used for comparison with our results. RESULTS: The top five commonly mutated genes in resected rectal tumor tissue samples following nCRT were TP53 (42%), APC (31%), KRAS (27%), PIK3CA (14%) and FBXW7 (11%). Mutations in the WNT pathway, which was mainly represented by APC mutation, were found to be significantly associated with tumor regression grade (TRG) 3. In our cohort, co-mutations in the receptor tyrosine kinase (RTK)/RAS and WNT pathways were found to be independently associated with reduced risk of recurrent and significantly associated with longer disease-free survival (DFS). In both our cohort and the MSK cohort, co-mutations in the TGF-ß and TP53 pathways were significantly associated with worse DFS. CONCLUSIONS: Resected rectal tumor samples from patients without complete pathological response can be appropriately used to detect mutations. Co-mutations in the TGF-ß and TP53 pathways may provide more prognostic information beyond commonly used clinical factors.


Asunto(s)
Terapia Neoadyuvante , Neoplasias del Recto , Humanos , Pronóstico , Estudios Retrospectivos , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Quimioradioterapia , Neoplasias del Recto/genética , Neoplasias del Recto/terapia , Mutación , Estadificación de Neoplasias , Resultado del Tratamiento , Proteína p53 Supresora de Tumor/genética
20.
Int J Dev Neurosci ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984718

RESUMEN

INTRODUCTION: Epilepsy is a common multifactorial neurological disease usually diagnosed during childhood. In this study, we present the contribution of consecutive genetic testing to the genetic diagnostic yield of childhood epilepsy. METHODS: In 100 children (53 female, 47 male) with epilepsy, targeted sequencing (TS) and clinical exome sequencing (CES) were performed. All cases (n = 100) included in the study were epilepsy patients. In addition, we investigated the genetic diagnosis rates according to the associated co-occurring findings (including developmental delay/intellectual disability, brain malformations, macro-/microcephaly, and dysmorphic features). RESULTS: The overall diagnostic rate in this study was 33% (n = 33 patients). We identified 11 novel variants in WDR45, ARX, PCDH19, SCN1A, CACNA1A, LGI1, ASPM, MECP2, NF1, TSC2, and CDK13. Genetic diagnosis rates were as follows: cases with developmental delay/intellectual disability 38.7% (24/62) and without developmental delay/intellectual disability 23.6% (9/38); cases with brain malformations 46.8% (15/32) and without brain malformations 25% (16/64); cases with macro-/microcephaly 50% (6/12) and without macro-/microcephaly 28.4% (25/88); and cases with dysmorphic features 48.2% (14/29) and without dysmorphic features 23.9% (17/71). CONCLUSION: Genotype-phenotype correlation is even more important in diseases such as epilepsy, which include many genes and variants of these genes in etiopathogenesis. We presented the clinical findings of the cases carrying 11 novel variants in detail, including dysmorphic features, accompanying neurodevelopmental disorders, EEG results, and brain MRI results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA