Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.520
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Biochem ; 90: 165-191, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-33792375

RESUMEN

Double-strand DNA breaks (DSBs) are the most lethal type of DNA damage, making DSB repair critical for cell survival. However, some DSB repair pathways are mutagenic and promote genome rearrangements, leading to genome destabilization. One such pathway is break-induced replication (BIR), which repairs primarily one-ended DSBs, similar to those formed by collapsed replication forks or telomere erosion. BIR is initiated by the invasion of a broken DNA end into a homologous template, synthesizes new DNA within the context of a migrating bubble, and is associated with conservative inheritance of new genetic material. This mode of synthesis is responsible for a high level of genetic instability associated with BIR. Eukaryotic BIR was initially investigated in yeast, but now it is also actively studied in mammalian systems. Additionally, a significant breakthrough has been made regarding the role of microhomology-mediated BIR in the formation of complex genomic rearrangements that underly various human pathologies.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Replicación del ADN , Mamíferos/genética , Homeostasis del Telómero/genética , Animales , Reparación del ADN por Unión de Extremidades , Humanos , Mutación , Levaduras/genética
2.
Cell ; 180(5): 928-940.e14, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32109413

RESUMEN

Covalent modifications to histones are essential for development, establishing distinct and functional chromatin domains from a common genetic sequence. Whereas repressed chromatin is robustly inherited, no mechanism that facilitates inheritance of an activated domain has been described. Here, we report that the Set3C histone deacetylase scaffold Snt1 can act as a prion that drives the emergence and transgenerational inheritance of an activated chromatin state. This prion, which we term [ESI+] for expressed sub-telomeric information, is triggered by transient Snt1 phosphorylation upon cell cycle arrest. Once engaged, the prion reshapes the activity of Snt1 and the Set3C complex, recruiting RNA pol II and interfering with Rap1 binding to activate genes in otherwise repressed sub-telomeric domains. This transcriptional state confers broad resistance to environmental stress, including antifungal drugs. Altogether, our results establish a robust means by which a prion can facilitate inheritance of an activated chromatin state to provide adaptive benefit.


Asunto(s)
Cromatina/genética , Histona Desacetilasas/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Unión a Telómeros/genética , Factores de Transcripción/genética , Puntos de Control del Ciclo Celular/genética , Código de Histonas/genética , Histonas/genética , Fosforilación/genética , Priones/genética , ARN Polimerasa II/genética , Saccharomyces cerevisiae , Complejo Shelterina , Telómero/genética , Transcripción Genética
3.
Cell ; 172(3): 439-453.e14, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29290468

RESUMEN

Telomere maintenance critically depends on the distinct activities of telomerase, which adds telomeric repeats to solve the end replication problem, and RTEL1, which dismantles DNA secondary structures at telomeres to facilitate replisome progression. Here, we establish that reversed replication forks are a pathological substrate for telomerase and the source of telomere catastrophe in Rtel1-/- cells. Inhibiting telomerase recruitment to telomeres, but not its activity, or blocking replication fork reversal through PARP1 inhibition or depleting UBC13 or ZRANB3 prevents the rapid accumulation of dysfunctional telomeres in RTEL1-deficient cells. In this context, we establish that telomerase binding to reversed replication forks inhibits telomere replication, which can be mimicked by preventing replication fork restart through depletion of RECQ1 or PARG. Our results lead us to propose that telomerase inappropriately binds to and inhibits restart of reversed replication forks within telomeres, which compromises replication and leads to critically short telomeres.


Asunto(s)
ADN Helicasas/genética , Replicación del ADN , Homeostasis del Telómero , Animales , Línea Celular , Células Cultivadas , ADN Helicasas/metabolismo , Glicósido Hidrolasas/metabolismo , Ratones , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , RecQ Helicasas/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo
4.
Mol Cell ; 84(9): 1684-1698.e9, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38593805

RESUMEN

The Bloom syndrome (BLM) helicase is critical for alternative lengthening of telomeres (ALT), a homology-directed repair (HDR)-mediated telomere maintenance mechanism that is prevalent in cancers of mesenchymal origin. The DNA substrates that BLM engages to direct telomere recombination during ALT remain unknown. Here, we determine that BLM helicase acts on lagging strand telomere intermediates that occur specifically in ALT-positive cells to assemble a replication-associated DNA damage response. Loss of ATRX was permissive for BLM localization to ALT telomeres in S and G2, commensurate with the appearance of telomere C-strand-specific single-stranded DNA (ssDNA). DNA2 nuclease deficiency increased 5'-flap formation in a BLM-dependent manner, while telomere C-strand, but not G-strand, nicks promoted ALT. These findings define the seminal events in the ALT DNA damage response, linking aberrant telomeric lagging strand DNA replication with a BLM-directed HDR mechanism that sustains telomere length in a subset of human cancers.


Asunto(s)
Daño del ADN , Replicación del ADN , RecQ Helicasas , Homeostasis del Telómero , Telómero , RecQ Helicasas/metabolismo , RecQ Helicasas/genética , Humanos , Telómero/metabolismo , Telómero/genética , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Proteína Nuclear Ligada al Cromosoma X/genética , Proteína Nuclear Ligada al Cromosoma X/metabolismo , ADN Helicasas/metabolismo , ADN Helicasas/genética , Síndrome de Bloom/genética , Síndrome de Bloom/metabolismo , Síndrome de Bloom/enzimología , Síndrome de Bloom/patología , Línea Celular Tumoral
5.
Immunity ; 55(10): 1872-1890.e9, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36130603

RESUMEN

Memory B cells (MBCs) can persist for a lifetime, but the mechanisms that allow their long-term survival remain poorly understood. Here, we isolated and analyzed human splenic smallpox/vaccinia protein B5-specific MBCs in individuals who were vaccinated more than 40 years ago. Only a handful of clones persisted over such an extended period, and they displayed limited intra-clonal diversity with signs of extensive affinity-based selection. These long-lived MBCs appeared enriched in a CD21hiCD20hi IgG+ splenic B cell subset displaying a marginal-zone-like NOTCH/MYC-driven signature, but they did not harbor a unique longevity-associated transcriptional or metabolic profile. Finally, the telomeres of B5-specific, long-lived MBCs were longer than those in patient-paired naive B cells in all the samples analyzed. Overall, these results imply that separate mechanisms such as early telomere elongation, affinity selection during the contraction phase, and access to a specific niche contribute to ensuring the functional longevity of MBCs.


Asunto(s)
Memoria Inmunológica , Células B de Memoria , Linfocitos B/metabolismo , Centro Germinal , Humanos , Inmunoglobulina G/metabolismo
6.
Cell ; 166(5): 1188-1197.e9, 2016 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-27523609

RESUMEN

Telomerase maintains genome integrity by adding repetitive DNA sequences to the chromosome ends in actively dividing cells, including 90% of all cancer cells. Recruitment of human telomerase to telomeres occurs during S-phase of the cell cycle, but the molecular mechanism of the process is only partially understood. Here, we use CRISPR genome editing and single-molecule imaging to track telomerase trafficking in nuclei of living human cells. We demonstrate that telomerase uses three-dimensional diffusion to search for telomeres, probing each telomere thousands of times each S-phase but only rarely forming a stable association. Both the transient and stable association events depend on the direct interaction of the telomerase protein TERT with the telomeric protein TPP1. Our results reveal that telomerase recruitment to telomeres is driven by dynamic interactions between the rapidly diffusing telomerase and the chromosome end.


Asunto(s)
Telomerasa/metabolismo , Telómero/enzimología , Transporte Activo de Núcleo Celular , Proteínas Bacterianas , Proteína 9 Asociada a CRISPR , Línea Celular , Núcleo Celular/enzimología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Cuerpos Enrollados/enzimología , Endonucleasas , Edición Génica , Genoma Humano , Células HeLa , Humanos , Imagenología Tridimensional , Dominios Proteicos , Fase S , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Complejo Shelterina , Telomerasa/química , Telómero/química , Homeostasis del Telómero , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/metabolismo
7.
Mol Cell ; 82(21): 3985-4000.e4, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36265486

RESUMEN

Alternative lengthening of telomeres (ALT), a telomerase-independent process maintaining telomeres, is mediated by break-induced replication (BIR). RAD52 promotes ALT by facilitating D-loop formation, but ALT also occurs through a RAD52-independent BIR pathway. Here, we show that the telomere non-coding RNA TERRA forms dynamic telomeric R-loops and contributes to ALT activity in RAD52 knockout cells. TERRA forms R-loops in vitro and at telomeres in a RAD51AP1-dependent manner. The formation of R-loops by TERRA increases G-quadruplexes (G4s) at telomeres. G4 stabilization enhances ALT even when TERRA is depleted, suggesting that G4s act downstream of R-loops to promote BIR. In vitro, the telomeric R-loops assembled by TERRA and RAD51AP1 generate G4s, which persist after R-loop resolution and allow formation of telomeric D-loops without RAD52. Thus, the dynamic telomeric R-loops formed by TERRA and RAD51AP1 enable the RAD52-independent ALT pathway, and G4s orchestrate an R- to D-loop switch at telomeres to stimulate BIR.


Asunto(s)
ARN Largo no Codificante , Telomerasa , Homeostasis del Telómero , Telómero/genética , Telómero/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Estructuras R-Loop/genética , Reparación del ADN
8.
Mol Cell ; 81(11): 2349-2360.e6, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33852895

RESUMEN

Telomere length control is critical for cellular lifespan and tumor suppression. Telomerase is transiently activated in the inner cell mass of the developing blastocyst to reset telomere reserves. Its silencing upon differentiation leads to gradual telomere shortening in somatic cells. Here, we report that transcriptional regulation through cis-regulatory elements only partially accounts for telomerase activation in pluripotent cells. Instead, developmental control of telomerase is primarily driven by an alternative splicing event, centered around hTERT exon 2. Skipping of exon 2 triggers hTERT mRNA decay in differentiated cells, and conversely, its retention promotes telomerase accumulation in pluripotent cells. We identify SON as a regulator of exon 2 alternative splicing and report a patient carrying a SON mutation and suffering from insufficient telomerase and short telomeres. In summary, our study highlights a critical role for hTERT alternative splicing in the developmental regulation of telomerase and implicates defective splicing in telomere biology disorders.


Asunto(s)
Empalme Alternativo , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos , Antígenos de Histocompatibilidad Menor/genética , Telomerasa/genética , Homeostasis del Telómero , Telómero/metabolismo , Blastocisto/metabolismo , Blastocisto/patología , Diferenciación Celular , Preescolar , Proteínas de Unión al ADN/deficiencia , Femenino , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/patología , Humanos , Linaje , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/patología , Cultivo Primario de Células , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Telomerasa/deficiencia , Telómero/patología
9.
Mol Cell ; 81(8): 1816-1829.e5, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33639094

RESUMEN

Alternative lengthening of telomeres (ALT) is a recombination process that maintains telomeres in the absence of telomerase and helps cancer cells to survive. Yeast has been used as a robust model of ALT; however, the inability to determine the frequency and structure of ALT survivors hinders understanding of the ALT mechanism. Here, using population and molecular genetics approaches, we overcome these problems and demonstrate that contrary to the current view, both RAD51-dependent and RAD51-independent mechanisms are required for a unified ALT survivor pathway. This conclusion is based on the calculation of ALT frequencies, as well as on ultra-long sequencing of ALT products that revealed hybrid sequences containing features attributed to both recombination pathways. Sequencing of ALT intermediates demonstrates that recombination begins with Rad51-mediated strand invasion to form DNA substrates that are matured by a Rad51-independent ssDNA annealing pathway. A similar unified ALT pathway may operate in other organisms, including humans.


Asunto(s)
Saccharomyces cerevisiae/genética , Homeostasis del Telómero/genética , Telómero/genética , ADN/genética , Recombinasa Rad51/genética , Recombinación Genética/genética , Telomerasa/genética
10.
Genes Dev ; 35(1-2): 1-21, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33361389

RESUMEN

In this perspective, we introduce shelterin and the mechanisms of ATM activation and NHEJ at telomeres, before discussing the following questions: How are t-loops proposed to protect chromosome ends and what is the evidence for this model? Can other models explain how TRF2 mediates end protection? Could t-loops be pathological structures? How is end protection achieved in pluripotent cells? What do the insights into telomere end protection in pluripotent cells mean for the t-loop model of end protection? Why might different cell states have evolved different mechanisms of end protection? Finally, we offer support for an updated t-loop model of end protection, suggesting that the data is supportive of a critical role for t-loops in protecting chromosome ends from NHEJ and ATM activation, but that other mechanisms are involved. Finally, we propose that t-loops are likely dynamic, rather than static, structures.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/fisiología , Telómero/metabolismo , Telómero/patología , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Inestabilidad Cromosómica , Reparación del ADN , Células Madre Embrionarias , Humanos , Modelos Biológicos , Células Madre Pluripotentes , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo
11.
Mol Cell ; 79(1): 115-126.e6, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32497497

RESUMEN

Extension of telomeres is a critical step in the immortalization of cancer cells. This complex reaction requires proper spatiotemporal coordination of telomerase and telomeres and remains poorly understood at the cellular level. To understand how cancer cells execute this process, we combine CRISPR genome editing and MS2 RNA tagging to image single molecules of telomerase RNA (hTR). Real-time dynamics and photoactivation experiments of hTR in Cajal bodies (CBs) reveal that hTERT controls the exit of hTR from CBs. Single-molecule tracking of hTR at telomeres shows that TPP1-mediated recruitment results in short telomere-telomerase scanning interactions, and then base pairing between hTR and telomere ssDNA promotes long interactions required for stable telomerase retention. Interestingly, POT1 OB-fold mutations that result in abnormally long telomeres in cancers act by enhancing this retention step. In summary, single-molecule imaging unveils the life cycle of telomerase RNA and provides a framework to reveal how cancer-associated mutations mechanistically drive defects in telomere homeostasis.


Asunto(s)
Cuerpos Enrollados/metabolismo , ADN de Cadena Simple/metabolismo , ARN/metabolismo , Imagen Individual de Molécula/métodos , Telomerasa/metabolismo , Homeostasis del Telómero , Telómero/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN de Cadena Simple/genética , Edición Génica , Células HeLa , Humanos , Mutación , ARN/genética , Complejo Shelterina , Telomerasa/genética , Telómero/genética , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo
12.
Genes Dev ; 34(23-24): 1619-1636, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33122293

RESUMEN

Mutations in the telomere-binding protein POT1 are associated with solid tumors and leukemias. POT1 alterations cause rapid telomere elongation, ATR kinase activation, telomere fragility, and accelerated tumor development. Here, we define the impact of mutant POT1 alleles through complementary genetic and proteomic approaches based on CRISPR interference and biotin-based proximity labeling, respectively. These screens reveal that replication stress is a major vulnerability in cells expressing mutant POT1, which manifests as increased telomere mitotic DNA synthesis at telomeres. Our study also unveils a role for the nuclear pore complex in resolving replication defects at telomeres. Depletion of nuclear pore complex subunits in the context of POT1 dysfunction increases DNA damage signaling, telomere fragility and sister chromatid exchanges. Furthermore, we observed telomere repositioning to the nuclear periphery driven by nuclear F-actin polymerization in cells with POT1 mutations. In conclusion, our study establishes that relocalization of dysfunctional telomeres to the nuclear periphery is critical to preserve telomere repeat integrity.


Asunto(s)
Replicación del ADN/genética , Poro Nuclear/patología , Proteínas de Unión a Telómeros/genética , Telómero/genética , Línea Celular Tumoral , Daño del ADN/genética , Humanos , Mitosis/genética , Mutación , Neoplasias/genética , Neoplasias/fisiopatología , Complejo Shelterina , Telómero/metabolismo , Proteínas de Unión a Telómeros/metabolismo
13.
Proc Natl Acad Sci U S A ; 121(16): e2316651121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38588418

RESUMEN

Protecting chromosome ends from misrecognition as double-stranded (ds) DNA breaks is fundamental to eukaryotic viability. The protein complex shelterin prevents a DNA damage response at mammalian telomeres. Mammalian shelterin proteins TRF1 and TRF2 and their homologs in yeast and protozoa protect telomeric dsDNA. N-terminal homodimerization and C-terminal Myb-domain-mediated dsDNA binding are two structural hallmarks of end protection by TRF homologs. Yet our understanding of how Caenorhabditis elegans protects its telomeric dsDNA is limited. Recently identified C. elegans proteins TEBP-1 (also called DTN-1) and TEBP-2 (also called DTN-2) are functional homologs of TRF proteins, but how they bind DNA and whether or how they dimerize is not known. TEBP-1 and TEBP-2 harbor three Myb-containing domains (MCDs) and no obvious dimerization domain. We demonstrate biochemically that only the third MCD binds DNA. We solve the X-ray crystal structure of TEBP-2 MCD3 with telomeric dsDNA to reveal the structural mechanism of telomeric dsDNA protection in C. elegans. Mutagenesis of the DNA-binding site of TEBP-1 and TEBP-2 compromises DNA binding in vitro, and increases DNA damage signaling, lengthens telomeres, and decreases brood size in vivo. Via an X-ray crystal structure, biochemical validation of the dimerization interface, and SEC-MALS analysis, we demonstrate that MCD1 and MCD2 form a composite dimerization module that facilitates not only TEBP-1 and TEBP-2 homodimerization but also heterodimerization. These findings provide fundamental insights into C. elegans telomeric dsDNA protection and highlight how different eukaryotes have evolved distinct strategies to solve the chromosome end protection problem.


Asunto(s)
Proteínas de Caenorhabditis elegans , Proteínas de Unión a Telómeros , Animales , Proteínas de Unión a Telómeros/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Dimerización , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/química , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Unión Proteica , Telómero/genética , Telómero/metabolismo , Complejo Shelterina , ADN/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas , Mamíferos/genética
14.
Trends Biochem Sci ; 47(6): 506-517, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35440402

RESUMEN

Telomeres are chromosome-capping structures that protect ends of the linear genome from DNA damage sensors. However, these structures present obstacles during DNA replication. Incomplete telomere replication accelerates telomere shortening and limits replicative lifespan. Therefore, continued proliferation under conditions of replication stress requires a means of telomere repair, particularly in the absence of telomerase. It was recently revealed that replication stress triggers break-induced replication (BIR) and mitotic DNA synthesis (MiDAS) at mammalian telomeres; however, these mechanisms are error prone and primarily utilized in tumorigenic contexts. In this review article, we discuss the consequences of replication stress at telomeres and how use of available repair pathways contributes to genomic instability. Current research suggests that fragile telomeres are ultimately tumor-suppressive and thus may be better left unrepaired.


Asunto(s)
Telomerasa , Telómero , Animales , Reparación del ADN , Replicación del ADN , Inestabilidad Genómica , Mamíferos , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismo , Homeostasis del Telómero
15.
Trends Genet ; 39(8): 593-595, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37179160

RESUMEN

Telomeres are transcribed into long noncoding telomeric repeat-containing RNA (TERRA). Or so we thought. Recently, Al-Turki and Griffith provided evidence that TERRA can code for valine-arginine (VR) or glycine-leucine (GL) dipeptide repeat proteins by undergoing repeat-associated non-ATG (RAN) translation. This finding uncovers a new mechanism by which telomeres can impact cellular function.


Asunto(s)
ARN Largo no Codificante , ARN Largo no Codificante/genética , Telómero/genética , Telómero/metabolismo
16.
EMBO J ; 41(6): e108736, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35147992

RESUMEN

As in human cells, yeast telomeres can be maintained in cells lacking telomerase activity by recombination-based mechanisms known as ALT (Alternative Lengthening of Telomeres). A hallmark of ALT human cancer cells are extrachromosomal telomeric DNA elements called C-circles, whose origin and function have remained unclear. Here, we show that extrachromosomal telomeric C-circles in yeast can be detected shortly after senescence crisis and concomitantly with the production of survivors arising from "type II" recombination events. We uncover that C-circles bind to the nuclear pore complex (NPC) and to the SAGA-TREX2 complex, similar to other non-centromeric episomal DNA. Disrupting the integrity of the SAGA/TREX2 complex affects both C-circle binding to NPCs and type II telomere recombination, suggesting that NPC tethering of C-circles facilitates formation and/or propagation of the long telomere repeats characteristic of type II survivors. Furthermore, we find that disruption of the nuclear diffusion barrier impairs type II recombination. These results support a model in which concentration of C-circles at NPCs benefits type II telomere recombination, highlighting the importance of spatial coordination in ALT-type mechanisms of telomere maintenance.


Asunto(s)
Poro Nuclear , Saccharomyces cerevisiae , Citoplasma , Humanos , Poro Nuclear/genética , Saccharomyces cerevisiae/genética , Telómero/genética
17.
RNA ; 30(8): 955-966, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38777382

RESUMEN

The long noncoding RNA TERRA is transcribed from telomeres in virtually all eukaryotes with linear chromosomes. In humans, TERRA transcription is driven in part by promoters comprising CpG dinucleotide-rich repeats of 29 bp repeats, believed to be present in half of the subtelomeres. Thus far, TERRA expression has been analyzed mainly using molecular biology-based approaches that only generate partial and somehow biased results. Here, we present a novel experimental pipeline to study human TERRA based on long-read sequencing (TERRA ONTseq). By applying TERRA ONTseq to different cell lines, we show that the vast majority of human telomeres produce TERRA and that the cellular levels of TERRA transcripts vary according to their chromosomes of origin. Using TERRA ONTseq, we also identified regions containing TERRA transcription start sites (TSSs) in more than half of human subtelomeres. TERRA TSS regions are generally found immediately downstream from 29 bp repeat-related sequences, which appear to be more widespread than previously estimated. Finally, we isolated a novel TERRA promoter from the highly expressed subtelomere of the long arm of Chromosome 7. With the development of TERRA ONTseq, we provide a refined picture of human TERRA biogenesis and expression and we equip the scientific community with an invaluable tool for future studies.


Asunto(s)
Regiones Promotoras Genéticas , ARN Largo no Codificante , Telómero , Sitio de Iniciación de la Transcripción , Transcriptoma , Humanos , Telómero/genética , Telómero/metabolismo , ARN Largo no Codificante/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos
18.
Mol Cell ; 71(4): 510-525.e6, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30033372

RESUMEN

Telomeres regulate DNA damage response (DDR) and DNA repair activity at chromosome ends. How telomere macromolecular structure contributes to ATM regulation and its potential dissociation from control over non-homologous end joining (NHEJ)-dependent telomere fusion is of central importance to telomere-dependent cell aging and tumor suppression. Using super-resolution microscopy, we identify that ATM activation at mammalian telomeres with reduced TRF2 or at human telomeres during mitotic arrest occurs specifically with a structural change from telomere loops (t-loops) to linearized telomeres. Additionally, we find the TRFH domain of TRF2 regulates t-loop formation while suppressing ATM activity. Notably, we demonstrate that ATM activation and telomere linearity occur separately from telomere fusion via NHEJ and that linear DDR-positive telomeres can remain resistant to fusion, even during an extended G1 arrest, when NHEJ is most active. Collectively, these results suggest t-loops act as conformational switches that specifically regulate ATM activation independent of telomere mechanisms to inhibit NHEJ.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Reparación del ADN por Unión de Extremidades , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular , Línea Celular Tumoral , Daño del ADN , Fibroblastos/citología , Fibroblastos/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Células HEK293 , Células HeLa , Humanos , Ratones , Mitosis , Dominios Proteicos , Telómero/ultraestructura , Proteína 2 de Unión a Repeticiones Teloméricas/química , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo
19.
Genes Dev ; 32(13-14): 965-977, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29954833

RESUMEN

R loops are an important source of genome instability, largely due to their negative impact on replication progression. Yra1/ALY is an abundant RNA-binding factor conserved from yeast to humans and required for mRNA export, but its excess causes lethality and genome instability. Here, we show that, in addition to ssDNA and ssRNA, Yra1 binds RNA-DNA hybrids in vitro and, when artificially overexpressed, can be recruited to chromatin in an RNA-DNA hybrid-dependent manner, stabilizing R loops and converting them into replication obstacles in vivo. Importantly, an excess of Yra1 increases R-loop-mediated genome instability caused by transcription-replication collisions regardless of whether they are codirectional or head-on. It also induces telomere shortening in telomerase-negative cells and accelerates senescence, consistent with a defect in telomere replication. Our results indicate that RNA-DNA hybrids form transiently in cells regardless of replication and, after stabilization by excess Yra1, compromise genome integrity, in agreement with a two-step model of R-loop-mediated genome instability. This work opens new perspectives to understand transcription-associated genome instability in repair-deficient cells, including tumoral cells.


Asunto(s)
Inestabilidad Cromosómica/genética , Replicación del ADN , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telómero/genética , Transcripción Genética , Cromatina/metabolismo , Hibridación de Ácido Nucleico , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telómero/metabolismo
20.
Genes Dev ; 32(9-10): 658-669, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29773556

RESUMEN

Telomerase counteracts telomere shortening and cellular senescence in germ, stem, and cancer cells by adding repetitive DNA sequences to the ends of chromosomes. Telomeres are susceptible to damage by reactive oxygen species (ROS), but the consequences of oxidation of telomeres on telomere length and the mechanisms that protect from ROS-mediated telomere damage are not well understood. In particular, 8-oxoguanine nucleotides at 3' ends of telomeric substrates inhibit telomerase in vitro, whereas, at internal positions, they suppress G-quadruplex formation and were therefore proposed to promote telomerase activity. Here, we disrupt the peroxiredoxin 1 (PRDX1) and 7,8-dihydro-8-oxoguanine triphosphatase (MTH1) genes in cancer cells and demonstrate that PRDX1 and MTH1 cooperate to prevent accumulation of oxidized guanine in the genome. Concomitant disruption of PRDX1 and MTH1 leads to ROS concentration-dependent continuous shortening of telomeres, which is due to efficient inhibition of telomere extension by telomerase. Our results identify antioxidant systems that are required to protect telomeres from oxidation and are necessary to allow telomere maintenance by telomerase conferring immortality to cancer cells.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Peroxirredoxinas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Telomerasa/metabolismo , Acortamiento del Telómero/genética , Daño del ADN/genética , Enzimas Reparadoras del ADN/genética , Activación Enzimática/genética , Técnicas de Inactivación de Genes , Genoma , Guanina/metabolismo , Células HCT116 , Humanos , Oxidación-Reducción , Estrés Oxidativo/genética , Monoéster Fosfórico Hidrolasas/genética , Telomerasa/antagonistas & inhibidores , Homeostasis del Telómero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA