Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38894185

RESUMEN

Tool wear prediction is of great significance in industrial production. Current tool wear prediction methods mainly rely on the indirect estimation of machine learning, which focuses more on estimating the current tool wear state and lacks effective quantification of random uncertainty factors. To overcome these shortcomings, this paper proposes a novel method for predicting cutting tool wear. In the offline phase, the multiple degradation features were modeled using the Brownian motion stochastic process and a SVR model was trained for mapping the features and the tool wear values. In the online phase, the Bayesian inference was used to update the random parameters of the feature degradation model, and the future trend of the features was estimated using simulation samples. The estimation results were input into the SVR model to achieve in-advance prediction of the cutting tool wear in the form of distribution densities. An experimental tool wear dataset was used to verify the effectiveness of the proposed method. The results demonstrate that the method shows superiority in prediction accuracy and stability.

2.
Sensors (Basel) ; 24(8)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38676269

RESUMEN

The intelligent monitoring of cutting tools used in the manufacturing industry is steadily becoming more convenient. To accurately predict the state of tools and tool breakages, this study proposes a tool wear prediction technique based on multi-sensor information fusion. First, the vibrational, current, and cutting force signals transmitted during the machining process were collected, and the features were extracted. Next, the Kalman filtering algorithm was used for feature fusion, and a predictive model for tool wear was constructed by combining the ResNet and long short-term memory (LSTM) models (called ResNet-LSTM). Experimental data for thin-walled parts obtained under various machining conditions were utilized to monitor the changes in tool conditions. A comparison between the ResNet and LSTM tool wear prediction models indicated that the proposed ResNet-LSTM model significantly improved the prediction accuracy compared to the individual LSTM and ResNet models. Moreover, ResNet-LSTM exhibited adaptive noise reduction capabilities at the front end of the network for signal feature extraction, thereby enhancing the signal feature extraction capability. The ResNet-LSTM model yielded an average prediction error of 0.0085 mm and a tool wear prediction accuracy of 98.25%. These results validate the feasibility of the tool wear prediction method proposed in this study.

3.
Sensors (Basel) ; 23(3)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36772279

RESUMEN

Tool wear is a key factor in the machining process, which affects the tool life and quality of the machined work piece. Therefore, it is crucial to monitor and diagnose the tool condition. An improved CaAt-ResNet-1d model for multi-sensor tool wear diagnosis was proposed. The ResNet18 structure based on a one-dimensional convolutional neural network is adopted to make the basic model architecture. The one-dimensional convolutional neural network is more suitable for feature extraction of time series data. Add the channel attention mechanism of CaAt1 to the residual network block and the channel attention mechanism of CaAt5 automatically learns the features of different channels. The proposed method is validated on the PHM2010 dataset. Validation results show that CaAt-ResNet-1d can reach 89.27% accuracy, improving by about 7% compared to Gated-Transformer and 3% compared to Resnet18. The experimental results demonstrate the capacity and effectiveness of the proposed method for tool wear monitor.

4.
Sensors (Basel) ; 23(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37430508

RESUMEN

Tool wear condition monitoring is an important component of mechanical processing automation, and accurately identifying the wear status of tools can improve processing quality and production efficiency. This paper studied a new deep learning model, to identify the wear status of tools. The force signal was transformed into a two-dimensional image using continuous wavelet transform (CWT), short-time Fourier transform (STFT), and Gramian angular summation field (GASF) methods. The generated images were then fed into the proposed convolutional neural network (CNN) model for further analysis. The calculation results show that the accuracy of tool wear state recognition proposed in this paper was above 90%, which was higher than the accuracy of AlexNet, ResNet, and other models. The accuracy of the images generated using the CWT method and identified with the CNN model was the highest, which is attributed to the fact that the CWT method can extract local features of an image and is less affected by noise. Comparing the precision and recall values of the model, it was verified that the image obtained by the CWT method had the highest accuracy in identifying tool wear state. These results demonstrate the potential advantages of using a force signal transformed into a two-dimensional image for tool wear state recognition and of applying CNN models in this area. They also indicate the wide application prospects of this method in industrial production.

5.
Sensors (Basel) ; 23(8)2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37112174

RESUMEN

Tool wear is an important concern in the manufacturing sector that leads to quality loss, lower productivity, and increased downtime. In recent years, there has been a rise in the popularity of implementing TCM systems using various signal processing methods and machine learning algorithms. In the present paper, the authors propose a TCM system that incorporates the Walsh-Hadamard transform for signal processing, DCGAN aims to circumvent the issue of the availability of limited experimental dataset, and the exploration of three machine learning models: support vector regression, gradient boosting regression, and recurrent neural network for tool wear prediction. The mean absolute error, mean square error and root mean square error are used to assess the prediction errors from three machine learning models. To identify these relevant features, three metaheuristic optimization feature selection algorithms, Dragonfly, Harris hawk, and Genetic algorithms, were explored, and prediction results were compared. The results show that the feature selected through Dragonfly algorithms exhibited the least MSE (0.03), RMSE (0.17), and MAE (0.14) with a recurrent neural network model. By identifying the tool wear patterns and predicting when maintenance is required, the proposed methodology could help manufacturing companies save money on repairs and replacements, as well as reduce overall production costs by minimizing downtime.

6.
Sensors (Basel) ; 23(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36772248

RESUMEN

A novel method for tool wear estimation in milling using infrared (IR) laser vision and a deep-learning algorithm is proposed and demonstrated. The measurement device employs an IR line laser to irradiate the tool focal point at angles of -7.5°, 0.0°, and +7.5° to the vertical plane, and three cameras are placed at 45° intervals around the tool to collect the reflected IR light at different locations. For the processing materials and methods, a dry processing method was applied to a 100 mm × 100 mm × 40 mm SDK-11 workpiece through end milling and downward cutting using a TH308 insert. This device uses the diffused light reflected off the surface of a rotating tool roughened by flank wear, and a polarization filter is considered. As the measured tool wear images exhibit a low dynamic range of exposure, high dynamic range (HDR) images are obtained using an exposure fusion method. Finally, tool wear is estimated from the images using a multi-view convolutional neural network. As shown in the results of the estimated tool wear, a mean absolute error (MAE) of prediction error calculated was to be 9.5~35.21 µm. The proposed method can improve machining efficiency by reducing the downtime for tool wear measurement and by increasing tool life utilization.

7.
Sensors (Basel) ; 23(12)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37420825

RESUMEN

The milling machine serves an important role in manufacturing because of its versatility in machining. The cutting tool is a critical component of machining because it is responsible for machining accuracy and surface finishing, impacting industrial productivity. Monitoring the cutting tool's life is essential to avoid machining downtime caused due to tool wear. To prevent the unplanned downtime of the machine and to utilize the maximum life of the cutting tool, the accurate prediction of the remaining useful life (RUL) cutting tool is essential. Different artificial intelligence (AI) techniques estimate the RUL of cutting tools in milling operations with improved prediction accuracy. The IEEE NUAA Ideahouse dataset has been used in this paper for the RUL estimation of the milling cutter. The accuracy of the prediction is based on the quality of feature engineering performed on the unprocessed data. Feature extraction is a crucial phase in RUL prediction. In this work, the authors considers the time-frequency domain (TFD) features such as short-time Fourier-transform (STFT) and different wavelet transforms (WT) along with deep learning (DL) models such as long short-term memory (LSTM), different variants of LSTN, convolutional neural network (CNN), and hybrid models that are a combination of CCN with LSTM variants for RUL estimation. The TFD feature extraction with LSTM variants and hybrid models performs well for the milling cutting tool RUL estimation.


Asunto(s)
Aprendizaje Profundo , Comportamiento del Uso de la Herramienta , Inteligencia Artificial , Comercio , Ingeniería
8.
Sensors (Basel) ; 23(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37896684

RESUMEN

Tool wear condition significantly influences equipment downtime and machining precision, necessitating the exploration of a more accurate tool wear state identification technique. In this paper, the wavelet packet thresholding denoising method is used to process the acquired multi-source signals and extract several signal features. The set of features most relevant to the tool wear state is screened out by the support vector machine recursive feature elimination (SVM-RFE). Utilizing these selected features, we propose a tool wear state identification model, which utilizes an improved northern goshawk optimization (INGO) algorithm to optimize the support vector machine (SVM), hereby referred to as INGO-SVM. The simulation tests reveal that INGO demonstrates superior convergence efficacy and stability. Furthermore, a milling wear experiment confirms that this approach outperforms five other methods in terms of recognition accuracy, achieving a remarkable accuracy rate of 97.9%.

9.
Sensors (Basel) ; 22(5)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35271142

RESUMEN

Monitoring surface quality during machining has considerable practical significance for the performance of high-value products, particularly for their assembly interfaces. Surface roughness is the most important metric of surface quality. Currently, the research on online surface roughness prediction has several limitations. The effect of tool wear variation on surface roughness is seldom considered in machining. In addition, the deterioration trend of surface roughness and tool wear differs under variable cutting parameters. The prediction models trained under one set of cutting parameters fail when cutting parameters change. Accordingly, to timely monitor the surface quality of assembly interfaces of high-value products, this paper proposes a surface roughness prediction method that considers the tool wear variation under variable cutting parameters. In this method, a stacked autoencoder and long short-term memory network (SAE-LSTM) is designed as the fundamental surface roughness prediction model using tool wear conditions and sensor signals as inputs. The transfer learning strategy is applied to the SAE-LSTM such that the surface roughness online prediction under variable cutting parameters can be realized. Machining experiments for the assembly interface (using Ti6Al4V as material) of an aircraft's vertical tail are conducted, and monitoring data are used to validate the proposed method. Ablation studies are implemented to evaluate the key modules of the proposed model. The experimental results show that the proposed method outperforms other models and is capable of tracking the true surface roughness with time. Specifically, the minimum values of the root mean square error and mean absolute percentage error of the prediction results after transfer learning are 0.027 µm and 1.56%, respectively.

10.
Sensors (Basel) ; 22(21)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36366041

RESUMEN

Tool wear condition monitoring during the machining process is one of the most important considerations in precision manufacturing. Cutting force is one of the signals that has been widely used for tool wear condition monitoring, which contains the dynamical information of tool wear conditions. This paper proposes a novel multivariate cutting force-based tool wear monitoring method using one-dimensional convolutional neural network (1D CNN). Firstly, multivariate variational mode decomposition (MVMD) is used to process the multivariate cutting force signals. The multivariate band-limited intrinsic mode functions (BLIMFs) are obtained, which contain a large number of nonlinear and nonstationary tool wear characteristics. Afterwards, the proposed modified multiscale permutation entropy (MMPE) is used to measure the complexity of multivariate BLIMFs. The entropy values on multiple scales are calculated as condition indicators in tool wear condition monitoring. Finally, the one-dimensional feature vectors are constructed and employed as the input of 1D CNN to achieve accurate and stable tool wear condition monitoring. The results of the research in this paper demonstrate that the proposed approach has broad prospects in tool wear condition monitoring.


Asunto(s)
Algoritmos , Electroencefalografía , Electroencefalografía/métodos , Redes Neurales de la Computación , Entropía , Fenómenos Mecánicos
11.
Sensors (Basel) ; 22(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35808436

RESUMEN

For data-driven intelligent manufacturing, many important in-process parameters should be estimated simultaneously to control the machining precision of the parts. However, as two of the most important in-process parameters, there is a lack of multi-task learning (MTL) model for simultaneous estimation of surface roughness and tool wear. To address the problem, a new MTL model with shared layers and two task-specific layers was proposed. A novel parallel-stacked auto-encoder (PSAE) network based on stacked denoising auto-encoder (SDAE) and stacked contractive auto-encoder (SCAE) was designed as the shared layers to learn deep features from cutting force signals. To enhance the performance of the MTL model, the scaled exponential linear unit (SELU) was introduced as the activation function of SDAE. Moreover, a dynamic weight averaging (DWA) strategy was implemented to dynamically adjust the learning rate of different tasks. Then, the time-domain features were extracted from raw cutting signals and low-frequency reconstructed wavelet packet coefficients. Frequency-domain features were extracted from the power spectrum obtained by the Fourier transform. After that, all features were combined as the input vectors of the proposed MTL model. Finally, surface roughness and tool wear were simultaneously predicted by the trained MTL model. To verify the superiority and effectiveness of the proposed MTL model, nickel-based superalloy Haynes 230 was machined under different cutting parameter combinations and tool wear levels. Some other intelligent algorithms were also implemented to predict surface roughness and tool wear. The results showed that compared with the support vector regression (SVR), kernel extreme learning machine (KELM), MTL with SDAE (MTL_SDAE), MTL with SCAE (MTL_SCAE), and single-task learning with PSAE (STL_PSAE), the estimation accuracy of surface roughness was improved by 30.82%, 16.67%, 14.06%, 26.17%, and 16.67%, respectively. Meanwhile, the prediction accuracy of tool wear was improved by 46.74%, 39.57%, 41.51%, 38.68%, and 39.57%, respectively. For practical engineering application, the dimensional deviation and surface quality of the machined parts can be controlled through the established MTL model.

12.
Sensors (Basel) ; 22(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36366114

RESUMEN

Cutting tool wear state assessment during the manufacturing process is extremely significant. The primary purpose of this study is to monitor tool wear to ensure timely tool change and avoid excessive tool wear or sudden tool breakage, which causes workpiece waste and could even damage the machine. Therefore, an intelligent system, that is efficient and precise, needs to be designed for addressing these problems. In our study, an end-to-end improved fine-grained image classification method is employed for workpiece surface-based tool wear monitoring, which is named efficient channel attention destruction and construction learning (ECADCL). The proposed method uses a feature extraction module to extract features from the input image and its corrupted images, and adversarial learning is used to avoid learning noise from corrupted images while extracting semantic features by reconstructing the corrupted images. Finally, a decision module predicts the label based on the learned features. Moreover, the feature extraction module combines a local cross-channel interaction attention mechanism without dimensionality reduction to characterize representative information. A milling dataset is conducted based on the machined surface images for monitoring tool wear conditions. The experimental results indicated that the proposed system can effectively assess the wear state of the tool.

13.
Entropy (Basel) ; 24(12)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36554138

RESUMEN

The intelligent monitoring of tool wear status and wear prediction are important factors affecting the intelligent development of the modern machinery industry. Many scholars have used deep learning methods to achieve certain results in tool wear prediction. However, due to the instability and variability of the signal data, some neural network models may have gradient decay between layers. Most methods mainly focus on feature selection of the input data but ignore the influence degree of different features to tool wear. In order to solve these problems, this paper proposes a dual-stage attention model for tool wear prediction. A CNN-BiGRU-attention network model is designed, which introduces the self-attention to extract deep features and embody more important features. The IndyLSTM is used to construct a stable network to solve the gradient decay problem between layers. Moreover, the attention mechanism is added to the network to obtain the important information of output sequence, which can improve the accuracy of the prediction. Experimental study is carried out for tool wear prediction in a dry milling operation to demonstrate the viability of this method. Through the experimental comparison and analysis with regression prediction evaluation indexes, it proves the proposed method can effectively characterize the degree of tool wear, reduce the prediction errors, and achieve good prediction results.

14.
Sensors (Basel) ; 21(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923630

RESUMEN

In this paper, a novel drill bit breakage prediction method featuring a low-cost commercial infrared sensor to monitor drill bit corner wear is proposed. In the proposed method, the drill bit outer corner wear state can be monitored by measuring reflected infrared light because the reflection phenomenon is influenced by wear, edge shape, and surface roughness of the drill bit. In the experiments, a titanium workpiece was drilled without using cutting fluid to accelerate drill bit fracture. After drilling a hole in the workpiece, reflected infrared light was measured for the drill bit rotating at 100 rpm. Collected data on intensity of infrared light reflected from the circumferential surface of the drill bit versus the rotation angle of the drill bit were considered to predict tool breakage; two significant positions to predict tool breakage were found from the reflected infrared light graphs. By defining gradient vectors from the slopes of the reflected infrared light curves, a reliable criterion for determining drill bit breakage could be established. The proposed method offers possibilities for new measurement and analysis methods that have not been used in conventional tool wear and damage studies. The advantage of the proposed method is that the measurement device is easy to install and the measured signal is resistant to electromagnetic noise and ambient temperature because optical fiber is used as the signal transmission medium. It also eliminates the need for complex analysis of the measured signal, eliminating the need for a high-performance analyzer and reducing analysis time.

15.
Sensors (Basel) ; 21(5)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803442

RESUMEN

This article presents a control system for a cutting tool condition supervision, which recognises tool wear automatically during turning. We used an infrared camera for process control, which-unlike common cameras-captures the thermographic state, in addition to the visual state of the process. Despite challenging environmental conditions (e.g., hot chips) we protected the camera and placed it right up to the cutting knife, so that machining could be observed closely. During the experiment constant cutting conditions were set for the dry machining of workpiece (low alloy carbon steel 1.7225 or 42CrMo4). To build a dataset of over 9000 images, we machined on a lathe with tool inserts of different wear levels. Using a convolutional neural network (CNN), we developed a model for tool wear and tool damage prediction. It determines the state of a cutting tool automatically (none, low, medium, high wear level), based on thermographic process data. The accuracy of classification was 99.55%, which affirms the adequacy of the proposed method. Such a system enables immediate action in the case of cutting tool wear or breakage, regardless of the operator's knowledge and competence.

16.
Sensors (Basel) ; 21(16)2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34450780

RESUMEN

This paper proposes an estimation approach for tool wear and surface roughness using deep learning and sensor fusion. The one-dimensional convolutional neural network (1D-CNN) is utilized as the estimation model with X- and Y-coordinate vibration signals and sound signal fusion using sensor influence analysis. First, machining experiments with computer numerical control (CNC) parameters are designed using a uniform experimental design (UED) method to guarantee the variety of collected data. The vibration, sound, and spindle current signals are collected and labeled according to the machining parameters. To speed up the degree of tool wear, an accelerated experiment is designed, and the corresponding tool wear and surface roughness are measured. An influential sensor selection analysis is proposed to preserve the estimation accuracy and to minimize the number of sensors. After sensor selection analysis, the sensor signals with better estimation capability are selected and combined using the sensor fusion method. The proposed estimation system combined with sensor selection analysis performs well in terms of accuracy and computational effort. Finally, the proposed approach is applied for on-line monitoring of tool wear with an alarm, which demonstrates the effectiveness of our approach.


Asunto(s)
Aprendizaje Profundo , Redes Neurales de la Computación , Vibración
17.
Sensors (Basel) ; 21(24)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34960525

RESUMEN

The computer numerical control (CNC) machine has recently taken a fundamental role in the manufacturing industry, which is essential for the economic development of many countries. Current high quality production standards, along with the requirement for maximum economic benefits, demand the use of tool condition monitoring (TCM) systems able to monitor and diagnose cutting tool wear. Current TCM methodologies mainly rely on vibration signals, cutting force signals, and acoustic emission (AE) signals, which have the common drawback of requiring the installation of sensors near the working area, a factor that limits their application in practical terms. Moreover, as machining processes require the optimal tuning of cutting parameters, novel methodologies must be able to perform the diagnosis under a variety of cutting parameters. This paper proposes a novel non-invasive method capable of automatically diagnosing cutting tool wear in CNC machines under the variation of cutting speed and feed rate cutting parameters. The proposal relies on the sensor information fusion of spindle-motor stray flux and current signals by means of statistical and non-statistical time-domain parameters, which are then reduced by means of a linear discriminant analysis (LDA); a feed-forward neural network is then used to automatically classify the level of wear on the cutting tool. The proposal is validated with a Fanuc Oi mate Computer Numeric Control (CNC) turning machine for three different cutting tool wear levels and different cutting speed and feed rate values.


Asunto(s)
Fenómenos Mecánicos , Redes Neurales de la Computación , Acústica
18.
Sensors (Basel) ; 21(17)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34502874

RESUMEN

There is an increasing trend in the industry of knowing in real-time the condition of their assets. In particular, tool wear is a critical aspect, which requires real-time monitoring to reduce costs and scrap in machining processes. Traditionally, for the purpose of predicting tool wear conditions in machining, mathematical models have been developed to extract the information from the signal of sensors attached to the machines. To reduce the complexity of developing physical models, where an in-depth knowledge of the system being modelled is required, the current trend is to use machine-learning (ML) models based on data from the tool wear. The acoustic emission (AE) technique has been widely used to capture data from and understand the real-time condition of industrial assets such as cutting tools. However, AE signal interpretation and processing is rather complex. One of the most common features extracted from AE signals to predict the tool wear is the counts parameter, defined as the number of times that the amplitude of the signal exceeds a predefined threshold. A recurrent problem of this feature is to define the adequate threshold to obtain consistent wear prediction. Additionally, AE signal bandwidth is rather wide, and the selection of the optimum frequencies band for feature extraction has been pointed out as critical and complex by many authors. To overcome these problems, this paper proposes a methodology that applies multi-threshold count feature extraction at multiresolution level using wavelet packet transform, which extracts a redundant and non-optimal feature map from the AE signal. Next, recursive feature elimination is performed to reduce and optimize the vast number of predicting features generated in the previous step, and random forests regression provides the estimated tool wear. The methodology presented was tested using data captured when turning 19NiMoCr6 steel under pre-established cutting conditions. The results obtained were compared with several ML algorithms such as k-nearest neighbors, support vector machines, artificial neural networks and decision trees. Experimental results show that the proposed method can reduce the predicted root mean squared error by 36.53%.


Asunto(s)
Aprendizaje Automático , Redes Neurales de la Computación , Acústica , Algoritmos , Análisis de Ondículas
19.
Sensors (Basel) ; 21(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34372330

RESUMEN

In this paper, we describe the needs and specific requirements of the aerospace industry in the field of metal machining; specifically, the concept of an edge-computing-based production supervision system for the aerospace industry using a tool and cutting process condition monitoring system. The new concept was developed based on experience gained during the implementation of research projects in Poland's Aviation Valley at aerospace plants such as Pratt & Whitney and Lockheed Martin. Commercial tool condition monitoring (TCM) and production monitoring systems do not effectively meet the requirements and specificity of the aerospace industry. The main objective of the system is real-time diagnostics and sharing of data, knowledge, and system configurations among technologists, line bosses, machine tool operators, and quality control. The concept presented in this paper is a special tool condition monitoring system comprising a three-stage (natural wear, accelerated wear, and catastrophic tool failure) set of diagnostic algorithms designed for short-run machining and aimed at protecting the workpiece from damage by a damaged or worn tool.


Asunto(s)
Aviación , Industrias , Control de Calidad
20.
Sensors (Basel) ; 21(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34641006

RESUMEN

In turning, the wear control of a cutting tool benefits product quality enhancement, tool-related costs' optimisation, and assists in avoiding undesired events. In small series and individual production, the machine operator is the one who determines when to change a cutting tool, based upon their experience. Bad decisions can often lead to greater costs, production downtime, and scrap. In this paper, a Tool Condition Monitoring (TCM) system is presented that automatically classifies tool wear of turning tools into four classes (no, low, medium, high wear). A cutting tool was monitored with infrared (IR) camera immediately after the cut and in the following 60 s. The Convolutional Neural Network Inception V3 was used to analyse and classify the thermographic images, which were divided into different groups depending on the time of acquisition. Based on classification result, one gets information about the cutting capability of the tool for further machining. The proposed model, combining Infrared Thermography, Computer Vision, and Deep Learning, proved to be a suitable method with results of more than 96% accuracy. The most appropriate time of image acquisition is 6-12 s after the cut is finished. While existing temperature based TCM systems focus on measuring a cutting tool absolute temperature, the proposed system analyses a temperature distribution (relative temperatures) on the whole image based on image features.


Asunto(s)
Redes Neurales de la Computación , Termografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA