Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 28(20)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37894491

RESUMEN

Staphylococcus aureus is a common human pathogen. Methicillin-resistant Staphylococcus aureus (MRSA) infections pose significant and challenging therapeutic difficulties. MRSA often acquires the non-native gene PBP2a, which results in reduced susceptibility to ß-lactam antibiotics, thus conferring resistance. PBP2a has a lower affinity for methicillin, allowing bacteria to maintain peptidoglycan biosynthesis, a core component of the bacterial cell wall. Consequently, even in the presence of methicillin or other antibiotics, bacteria can develop resistance. Due to genes responsible for resistance, S. aureus becomes MRSA. The fundamental premise of this resistance mechanism is well-understood. Given the therapeutic concerns posed by resistant microorganisms, there is a legitimate demand for novel antibiotics. This review primarily focuses on PBP2a scaffolds and the various screening approaches used to identify PBP2a inhibitors. The following classes of compounds and their biological activities are discussed: Penicillin, Cephalosporins, Pyrazole-Benzimidazole-based derivatives, Oxadiazole-containing derivatives, non-ß-lactam allosteric inhibitors, 4-(3H)-Quinazolinones, Pyrrolylated chalcone, Bis-2-Oxoazetidinyl macrocycles (ß-lactam antibiotics with 1,3-Bridges), Macrocycle-embedded ß-lactams as novel inhibitors, Pyridine-Coupled Pyrimidinones, novel Naphthalimide corbelled aminothiazoximes, non-covalent inhibitors, Investigational-ß-lactam antibiotics, Carbapenem, novel Benzoxazole derivatives, Pyrazolylpyridine analogues, and other miscellaneous classes of scaffolds for PBP2a. Additionally, we discuss the penicillin-binding protein, a crucial target in the MRSA cell wall. Various aspects of PBP2a, bacterial cell walls, peptidoglycans, different crystal structures of PBP2a, synthetic routes for PBP2a inhibitors, and future perspectives on MRSA inhibitors are also explored.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Humanos , Proteínas de Unión a las Penicilinas/química , Staphylococcus aureus Resistente a Meticilina/metabolismo , Meticilina/metabolismo , Meticilina/farmacología , Staphylococcus aureus/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Monobactamas/metabolismo , Proteínas Bacterianas/química , Pruebas de Sensibilidad Microbiana
2.
Molecules ; 28(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37446606

RESUMEN

As a group of naturally occurring peptides in various foods, γ-glutamyl peptides possess a unique Kokumi taste and health benefits. However, few studies have focused on the functionality of γ-glutamyl peptides. In this study, the γ-[glutamyl] (n=1, 2, 3)-tryptophan peptides were synthesized from a solution of glutamine (Gln) and tryptophan (Trp) employing L-glutaminase from Bacillus amyloliquefaciens. Four different γ-glutamyl peptides were identified from the reaction mixture by UPLC-Q-TOF-MS/MS. Under optimal conditions of pH 10, 37 °C, 3 h, 0.1 mol/L Gln: 0.1 mol/L Trp = 1:3, and glutaminase at 0.1% (m/v), the yields of γ-l-glutamyl-l-tryptophan (γ-EW), γ-l-glutamyl-γ-l-glutamyl-l-tryptophan (γ-EEW) and γ-l-glutamyl-γ-l-glutamyl-γ-l-glutamyl-l-tryptophan (γ-EEEW) were 51.02%, 26.12% and 1.91% respectively. The antioxidant properties of the reaction mixture and the two peptides (γ-EW, γ-EEW) identified from the reaction media were further compared. Results showed that γ-EW exhibited the highest DPPH•, ABTS•+ and O2•--scavenging activity (EC50 = 0.2999 mg/mL, 67.6597 µg/mL and 5.99 mg/mL, respectively) and reducing power (EC50 = 4.61 mg/mL), while γ-EEW demonstrated the highest iron-chelating activity (76.22%). Thus, the synthesized mixture may be used as a potential source of antioxidant peptides for food and nutraceutical applications.


Asunto(s)
Bacillus amyloliquefaciens , Antioxidantes/farmacología , Triptófano , Glutaminasa , Espectrometría de Masas en Tándem , Péptidos/farmacología , Glutamina
3.
J Biol Chem ; 295(37): 13047-13064, 2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32719006

RESUMEN

The vacuolar cysteine protease legumain plays important functions in seed maturation and plant programmed cell death. Because of their dual protease and ligase activity, plant legumains have become of particular biotechnological interest, e.g. for the synthesis of cyclic peptides for drug design or for protein engineering. However, the molecular mechanisms behind their dual protease and ligase activities are still poorly understood, limiting their applications. Here, we present the crystal structure of Arabidopsis thaliana legumain isoform ß (AtLEGß) in its zymogen state. Combining structural and biochemical experiments, we show for the first time that plant legumains encode distinct, isoform-specific activation mechanisms. Whereas the autocatalytic activation of isoform γ (AtLEGγ) is controlled by the latency-conferring dimer state, the activation of the monomeric AtLEGß is concentration independent. Additionally, in AtLEGß the plant-characteristic two-chain intermediate state is stabilized by hydrophobic rather than ionic interactions, as in AtLEGγ, resulting in significantly different pH stability profiles. The crystal structure of AtLEGß revealed unrestricted nonprime substrate binding pockets, consistent with the broad substrate specificity, as determined by degradomic assays. Further to its protease activity, we show that AtLEGß exhibits a true peptide ligase activity. Whereas cleavage-dependent transpeptidase activity has been reported for other plant legumains, AtLEGß is the first example of a plant legumain capable of linking free termini. The discovery of these isoform-specific differences will allow us to identify and rationally design efficient ligases with application in biotechnology and drug development.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Cisteína Endopeptidasas/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo
4.
Bioorg Chem ; 115: 105217, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34364051

RESUMEN

γ-Glutamyl derivatives of proteinogenic or modified amino acids raise considerable interest as flavor enhancers or biologically active compounds. However, their supply, on a large scale and at reasonable costs, remains challenging. Enzymatic synthesis has been recognized as a possible affordable alternative with respect to both isolation procedures from natural sources, burdened by low-yield and by the requirement of massive amount of starting material, and chemical synthesis, inconvenient because of the need of protection/deprotection steps. The E. coli γ-glutamyltransferase (Ec-GGT) has already been proposed as a biocatalyst for the synthesis of various γ-glutamyl derivatives. However, enzymatic syntheses using this enzyme usually provide the desired products in limited yield. Hydrolysis and autotranspeptidation of the donor substrate have been identified as the side reactions affecting the final yield of the catalytic process. In addition, experimental conditions need to be specifically adjusted for each acceptor substrate. Substrate specificity and the fine characterization of the activities exerted by the enzyme over time has so far escaped rationalization. In this work, reactions catalyzed by Ec-GGT between the γ-glutamyl donor glutamine and several representative acceptor amino acids have been finely analyzed with the identification of single reaction products over time. This approach allowed to rationalize the effect of donor/acceptor molar ratio on the outcome of the transpeptidation reaction and on the distribution of the different byproducts, inferring a general scheme for Ec-GGT-catalyzed reactions. The propensity to react of the different acceptor substrates is in agreement with recent findings obtained using model substrates and further supported by x-ray crystallography and will contribute to characterize the still elusive acceptor binding site of the enzyme.


Asunto(s)
Escherichia coli/enzimología , Péptidos/metabolismo , gamma-Glutamiltransferasa/metabolismo , Biocatálisis , Relación Dosis-Respuesta a Droga , Estructura Molecular , Péptidos/química , Relación Estructura-Actividad
5.
Proc Natl Acad Sci U S A ; 115(24): E5477-E5486, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29844180

RESUMEN

Covalently cross-linked pilus polymers displayed on the cell surface of Gram-positive bacteria are assembled by class C sortase enzymes. These pilus-specific transpeptidases located on the bacterial membrane catalyze a two-step protein ligation reaction, first cleaving the LPXTG motif of one pilin protomer to form an acyl-enzyme intermediate and then joining the terminal Thr to the nucleophilic Lys residue residing within the pilin motif of another pilin protomer. To date, the determinants of class C enzymes that uniquely enable them to construct pili remain unknown. Here, informed by high-resolution crystal structures of corynebacterial pilus-specific sortase (SrtA) and utilizing a structural variant of the enzyme (SrtA2M), whose catalytic pocket has been unmasked by activating mutations, we successfully reconstituted in vitro polymerization of the cognate major pilin (SpaA). Mass spectrometry, electron microscopy, and biochemical experiments authenticated that SrtA2M synthesizes pilus fibers with correct Lys-Thr isopeptide bonds linking individual pilins via a thioacyl intermediate. Structural modeling of the SpaA-SrtA-SpaA polymerization intermediate depicts SrtA2M sandwiched between the N- and C-terminal domains of SpaA harboring the reactive pilin and LPXTG motifs, respectively. Remarkably, the model uncovered a conserved TP(Y/L)XIN(S/T)H signature sequence following the catalytic Cys, in which the alanine substitutions abrogated cross-linking activity but not cleavage of LPXTG. These insights and our evidence that SrtA2M can terminate pilus polymerization by joining the terminal pilin SpaB to SpaA and catalyze ligation of isolated SpaA domains in vitro provide a facile and versatile platform for protein engineering and bio-conjugation that has major implications for biotechnology.


Asunto(s)
Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Corynebacterium/metabolismo , Cisteína Endopeptidasas/metabolismo , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/metabolismo , Catálisis , Pared Celular/metabolismo , Cristalografía por Rayos X/métodos , Peptidil Transferasas/metabolismo , Polimerizacion
6.
Microb Cell Fact ; 19(1): 170, 2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32854709

RESUMEN

BACKGROUND: Miniaturization of biochemical reaction volumes within artificial microcompartments has been the key driver for directed evolution of several catalysts in the past two decades. Typically, single cells are co-compartmentalized within water-in-oil emulsion droplets with a fluorogenic substrate whose conversion allows identification of catalysts with improved performance. However, emulsion droplet-based technologies prevent cell proliferation to high density and preclude the feasibility of biochemical reactions that require the exchange of small molecule substrates. Here, we report on the development of a high-throughput screening method that addresses these shortcomings and that relies on a novel selective permeable polymer hydrogel microcapsule. RESULTS: Hollow-core polyelectrolyte-coated chitosan alginate microcapsules (HC-PCAMs) with selective permeability were successfully constructed by jet break-up and layer-by-layer (LBL) technology. We showed that HC-PCAMs serve as miniaturized vessels for single cell encapsulation, enabling cell growth to high density and cell lysis to generate monoclonal cell lysate compartments suitable for high-throughput analysis using a large particle sorter (COPAS). The feasibility of using HC-PCAMs as reaction compartments which exchange small molecule substrates was demonstrated using the transpeptidation reaction catalyzed by the bond-forming enzyme sortase F from P. acnes. The polyelectrolyte shell surrounding microcapsules allowed a fluorescently labelled peptide substrate to enter the microcapsule and take part in the transpeptidation reaction catalyzed by the intracellularly expressed sortase enzyme retained within the capsule upon cell lysis. The specific retention of fluorescent transpeptidation products inside microcapsules enabled the sortase activity to be linked with a fluorescent readout and allowed clear separation of microcapsules expressing the wild type SrtF from those expressing the inactive variant. CONCLUSION: A novel polymer hydrogel microcapsule-based method, which allows for high-throughput analysis based on encapsulation of single cells has been developed. The method has been validated for the transpeptidation activity of sortase enzymes and represents a powerful tool for screening of libraries of sortases, other bond-forming enzymes, as well as of binding affinities in directed evolution experiments. Moreover, selective permeable microcapsules encapsulating microcolonies provide a new and efficient means for preparing novel caged biocatalyst and biosensor agents.


Asunto(s)
Alginatos/química , Cápsulas/química , Quitosano/química , Escherichia coli/enzimología , Ensayos Analíticos de Alto Rendimiento/métodos , Miniaturización/métodos , Aminoaciltransferasas/química , Catálisis , Materiales Biocompatibles Revestidos/química , Cisteína Endopeptidasas/química , Proteínas de Escherichia coli/química , Hidrogeles/química , Permeabilidad , Plásmidos , Polielectrolitos/química , Polímeros/química
7.
Biochem J ; 476(4): 665-682, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30670573

RESUMEN

Sortase enzymes play an important role in Gram-positive bacteria. They are responsible for the covalent attachment of proteins to the surface of the bacteria and perform this task via a highly sequence-specific transpeptidation reaction. Since these immobilized proteins are often involved in pathogenicity of Gram-positive bacteria, characterization of this type of enzyme is also of medical relevance. Different classes of sortases (A-F) have been found, which recognize characteristic recognition sequences present in substrate proteins. Up to date, sortase A from Staphylococcus aureus, a housekeeping class A sortase, is the most thoroughly studied representative of the sortase family of enzymes. Here we report the in-depth characterization of the class F sortase from Propionibacterium acnes, a class of sortases that has not been investigated before. As Sortase F is the only transpeptidase found in the P. acnes genome, it is the housekeeping sortase of this organism. Sortase F from P. acnes shows a behavior similar to sortases from class A in terms of pH dependence, recognition sequence and catalytic activity; furthermore, its activity is independent of bivalent ions, which contrasts to sortase A from S. aureus We demonstrate that sortase F is useful for protein engineering applications, by producing a site-specifically conjugated homogenous antibody-drug conjugate with a potency similar to that of a conjugate prepared with sortase A. Thus, the detailed characterization presented here will not only enable the development of anti-virulence agents targeting P. acnes but also provides a powerful alternative to sortase A for protein engineering applications.


Asunto(s)
Aminoaciltransferasas , Proteínas Bacterianas , Cisteína Endopeptidasas , Genoma Bacteriano , Propionibacterium acnes , Aminoaciltransferasas/química , Aminoaciltransferasas/genética , Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Propionibacterium acnes/enzimología , Propionibacterium acnes/genética , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética
8.
J Biol Chem ; 293(23): 8934-8946, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29628443

RESUMEN

Legumain is a dual-function protease-peptide ligase whose activities are of great interest to researchers studying plant physiology and to biotechnological applications. However, the molecular mechanisms determining the specificities for proteolysis and ligation are unclear because structural information on the substrate recognition by a fully activated plant legumain is unavailable. Here, we present the X-ray structure of Arabidopsis thaliana legumain isoform γ (AtLEGγ) in complex with the covalent peptidic Ac-YVAD chloromethyl ketone (CMK) inhibitor targeting the catalytic cysteine. Mapping of the specificity pockets preceding the substrate-cleavage site explained the known substrate preference. The comparison of inhibited and free AtLEGγ structures disclosed a substrate-induced disorder-order transition with synergistic rearrangements in the substrate-recognition sites. Docking and in vitro studies with an AtLEGγ ligase substrate, sunflower trypsin inhibitor (SFTI), revealed a canonical, protease substrate-like binding to the active site-binding pockets preceding and following the cleavage site. We found the interaction of the second residue after the scissile bond, P2'-S2', to be critical for deciding on proteolysis versus cyclization. cis-trans-Isomerization of the cyclic peptide product triggered its release from the AtLEGγ active site and prevented inadvertent cleavage. The presented integrative mechanisms of proteolysis and ligation (transpeptidation) explain the interdependence of legumain and its preferred substrates and provide a rational framework for engineering optimized proteases, ligases, and substrates.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cisteína Endopeptidasas/metabolismo , Arabidopsis/química , Proteínas de Arabidopsis/química , Dominio Catalítico , Cristalografía por Rayos X , Cisteína Endopeptidasas/química , Modelos Moleculares , Conformación Proteica , Proteolisis , Especificidad por Sustrato
9.
Biosci Biotechnol Biochem ; 83(2): 262-269, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30507352

RESUMEN

Theanine (γ-glutamylethylamide) is an amino acid analog that reduces blood pressure and improves immune responses. The ϒ-glutamyltranspeptidase (GGT) from Pseudomonas nitroreducens IFO12694 (PnGGT) has a unique preference for primary amines as ϒ-glutamyl acceptors over standard L-amino acids and peptides. This characteristic is useful for the synthesis of theanine. We used X-ray crystallographic analysis to understand the structural basis of PnGGT's hydrolysis and transpeptidation reactions and to characterize its previously unidentified acceptor site. Structural studies of PnGGT have shown that key interactions between three residues (Trp385, Phe417, and Trp525) distinguish PnGGT from other GGTs. We studied the roles of these residues in the distinct biochemical properties of PnGGT using site-directed mutagenesis. All mutants showed a significant decrease in hydrolysis activity and an increase in transpeptidase activity, suggesting that the aromatic side chains of Trp385, Phe417, and Trp525 were involved in the recognition of acceptor substrates. Abbreviations: ϒ-glutamyl peptide, theanine, X-ray crystallography.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X/métodos , Pseudomonas/enzimología , gamma-Glutamiltransferasa/química , gamma-Glutamiltransferasa/metabolismo , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Proteínas Bacterianas/genética , Dominio Catalítico , Hidrólisis , Mutagénesis Sitio-Dirigida , Conformación Proteica , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , gamma-Glutamiltransferasa/genética
10.
J Proteome Res ; 17(8): 2803-2818, 2018 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-29984580

RESUMEN

Porphyromonas gingivalis is a keystone periodontal pathogen that has been associated with autoimmune disorders. The cell surface proteases Lys-gingipain (Kgp) and Arg-gingipains (RgpA and RgpB) are major virulence factors, and their proteolytic activity is enhanced by small peptides such as glycylglycine (GlyGly). The reaction kinetics suggested that GlyGly may function as an acceptor molecule for gingipain-catalyzed transpeptidation. Purified gingipains and P. gingivalis whole cells were used to digest selected substrates including human hemoglobin in the presence or absence of peptide acceptors. Mass spectrometric analysis of the substrates digested with gingipains in the presence of GlyGly showed that transpeptidation outcompeted hydrolysis, whereas the trypsin-digested controls exhibited predominantly hydrolysis activity. The transpeptidation levels increased with increasing concentration of GlyGly. Purified gingipains and whole cells exhibited extensive transpeptidation activities on human hemoglobin. All hemoglobin cleavage sites were found to be suitable for GlyGly transpeptidation, and this transpeptidation enhanced hemoglobin digestion. The transpeptidation products were often more abundant than the corresponding hydrolysis products. In the absence of GlyGly, hemoglobin peptides produced during digestion were utilized as acceptors leading to the detection of up to 116 different transpeptidation products in a single reaction. P. gingivalis cells were able to digest hemoglobin faster when acceptor peptides derived from human serum albumin were included in the reaction, suggesting that gingipain-catalyzed transpeptidation may be relevant for substrates encountered in vivo. The transpeptidation of host proteins in vivo may potentially lead to the breakdown of immunological tolerance, culminating in autoimmune reactions.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Peptidil Transferasas/metabolismo , Porphyromonas gingivalis/enzimología , Autoinmunidad , Cisteína-Endopeptidasas Gingipaínas , Hemoglobinas/metabolismo , Humanos , Proteolisis , Factores de Virulencia/metabolismo
11.
J Biol Chem ; 292(3): 979-993, 2017 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-27899450

RESUMEN

In Escherichia coli, the peptidoglycan cell wall is synthesized by bifunctional penicillin-binding proteins such as PBP1b that have both transpeptidase and transglycosylase activities. The PBP1b transpeptidase domain is a major target of ß-lactams, and therefore it is important to attain a detailed understanding of its inhibition. The peptidoglycan glycosyltransferase domain of PBP1b is also considered an excellent antibiotic target yet is not exploited by any clinically approved antibacterials. Herein, we adapt a pyrophosphate sensor assay to monitor PBP1b-catalyzed glycosyltransfer and present an improved crystallographic model for inhibition of the PBP1b glycosyltransferase domain by the potent substrate analog moenomycin. We elucidate the structure of a previously disordered region in the glycosyltransferase active site and discuss its implications with regards to peptidoglycan polymerization. Furthermore, we solve the crystal structures of E. coli PBP1b bound to multiple different ß-lactams in the transpeptidase active site and complement these data with gel-based competition assays to provide a detailed structural understanding of its inhibition. Taken together, these biochemical and structural data allow us to propose new insights into inhibition of both enzymatic domains in PBP1b.


Asunto(s)
Escherichia coli K12/química , Proteínas de Escherichia coli/química , Proteínas de Unión a las Penicilinas/química , Peptidoglicano Glicosiltransferasa/química , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/química , beta-Lactamas/química , Cristalografía por Rayos X , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Proteínas de Unión a las Penicilinas/genética , Peptidoglicano Glicosiltransferasa/genética , Dominios Proteicos , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/genética
12.
Immunol Cell Biol ; 96(1): 34-40, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29359347

RESUMEN

For a long time, immunologists have believed that classical CD4+ and CD8+ T cells recognize peptides (referred to as epitopes), derived from protein antigens presented by MHC/HLA class I or II. Over the past 10-15 years, it has become clear that epitopes recognized by CD8+, and more recently CD4+ T cells, can be formed by protein splicing. Here, we review the discovery of spliced epitopes recognized by tumor-specific human CD8+ T cells. We discuss how these epitopes are formed and some of the unusual variants that have been reported. Now, over a decade since the first report, evidence is emerging that spliced CD8+ T-cell epitopes are much more common, and potentially much more important, than previously imagined. Recent work has shown that epitopes recognized by CD4+ T cells can also be formed by protein splicing. We discuss the recent discovery of spliced CD4+ T-cell epitopes and their potential role as targets of autoimmune T-cell responses. Finally, we highlight some of the new questions raised from our growing appreciation of T-cell epitopes formed by peptide splicing.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/metabolismo , Fragmentos de Péptidos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Vacunas de Subunidad/inmunología , Animales , Presentación de Antígeno , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidad/metabolismo , Humanos , Sistema Inmunológico , Inmunomodulación , Activación de Linfocitos
13.
New Phytol ; 218(3): 923-928, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28322452

RESUMEN

Contents Summary 923 I. Introduction 923 II. Plant AEPs with macrocyclizing ability 924 III. Mechanism of macrocyclization by AEPs 925 IV. Conclusions 927 Acknowledgements 927 References 927 SUMMARY: Plant asparaginyl endopeptidases (AEPs) are important for the post-translational processing of seed storage proteins via cleavage of precursor proteins. Some AEPs also function as peptide bond-makers during the biosynthesis of several unrelated classes of cyclic peptides, namely the kalata-type cyclic peptides, PawS-Derived Peptides and cyclic knottins. These three families of gene-encoded peptides have different evolutionary origins, but all have recruited AEPs for their maturation. In the last few years, the field has advanced rapidly, with the biochemical characterization of three plant AEPs capable of peptide macrocyclization, and insights have been gained from the first AEP crystal structures, albeit mammalian ones. Although the biochemical studies have improved our understanding of the mechanism of action, the focus now is to understand what changes in AEP sequence and structure enable some plant AEPs to perform macrocyclization reactions.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Secuencia de Aminoácidos , Ciclización , Cisteína Endopeptidasas/química , Modelos Moleculares , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Especificidad por Sustrato
14.
Proc Natl Acad Sci U S A ; 112(43): 13318-23, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26453556

RESUMEN

Chromogranin A (ChgA) is an autoantigen for CD4(+) T cells in the nonobese diabetic (NOD) mouse model of type 1 diabetes (T1D). The natural ChgA-processed peptide, WE14, is a weak agonist for the prototypical T cell, BDC-2.5, and other ChgA-specific T-cell clones. Mimotope peptides with much higher activity share a C-terminal motif, WXRM(D/E), that is predicted to lie in the p5 to p9 position in the mouse MHC class II, IA(g7) binding groove. This motif is also present in WE14 (WSRMD), but at its N terminus. Therefore, to place the WE14 motif into the same position as seen in the mimotopes, we added the amino acids RLGL to its N terminus. Like the other mimotopes, RLGL-WE14, is much more potent than WE14 in T-cell stimulation and activates a diverse population of CD4(+) T cells, which also respond to WE14 as well as islets from WT, but not ChgA(-/-) mice. The crystal structure of the IA(g7)-RLGL-WE14 complex confirmed the predicted placement of the peptide within the IA(g7) groove. Fluorescent IA(g7)-RLGL-WE14 tetramers bind to ChgA-specific T-cell clones and easily detect ChgA-specific T cells in the pancreas and pancreatic lymph nodes of NOD mice. The prediction that many different N-terminal amino acid extensions to the WXRM(D/E) motif are sufficient to greatly improve T-cell stimulation leads us to propose that such a posttranslational modification may occur uniquely in the pancreas or pancreatic lymph nodes, perhaps via the mechanism of transpeptidation. This modification could account for the escape of these T cells from thymic negative selection.


Asunto(s)
Autoantígenos/inmunología , Cromogranina A/química , Cromogranina A/inmunología , Diabetes Mellitus Tipo 1/inmunología , Epítopos/inmunología , Modelos Moleculares , Fragmentos de Péptidos/inmunología , Secuencia de Aminoácidos , Animales , Baculoviridae/genética , Secuencia de Bases , Cromogranina A/genética , Cristalización , Epítopos/genética , Citometría de Flujo , Hibridomas/inmunología , Interleucina-2/inmunología , Ratones , Ratones Endogámicos NOD , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Procesamiento Proteico-Postraduccional/genética
15.
Molecules ; 23(9)2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-30131476

RESUMEN

Proteases have evolved to mediate the hydrolysis of peptide bonds but may perform transpeptidation in the presence of a proper nucleophilic molecule that can effectively compete with water to react with the acyl-enzyme intermediate. There have been several examples of protease-mediated transpeptidation, but they are generally inefficient, and little effort has been made to systematically control the transpeptidation activity of other proteases with good nucleophiles. Here, we developed an on-bead screening approach to find a probe that functions efficiently as a nucleophile in the protease-mediated transpeptidation reaction, and we identified good probes for a model protease DegP. These probes were covalently linked to the C-termini of the cleaved peptides in a mild condition and made the selective enrichment of ligated peptides possible. We suggest that good nucleophilic probes can be found for many other proteases that act via acyl-enzyme intermediates, and these probes will help characterize their substrates.


Asunto(s)
Péptido Hidrolasas/química , Péptidos/química , Biotina/química , Proteínas de Choque Térmico/química , Hidrólisis , Sondas Moleculares , Muramidasa/química , Muramidasa/metabolismo , Péptido Hidrolasas/metabolismo , Péptidos/metabolismo , Proteínas Periplasmáticas/química , Proteolisis , Serina Endopeptidasas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Especificidad por Sustrato
16.
Mol Biol (Mosk) ; 52(6): 921-934, 2018.
Artículo en Ruso | MEDLINE | ID: mdl-30633236

RESUMEN

Ribosomes are ribonucleoprotein nanoparticles synthesizing all proteins in living cells. The function of the ribosome is to translate the genetic information encoded in a nucleotide sequence of mRNA into the amino acid sequence of a protein. Each translation step (occurring after the codon-dependent binding of the aminoacyl-tRNA with the ribosome and mRNA) includes (i) the transpeptidation reaction and (ii) the translocation that unidirectionally drives the mRNA chain and mRNA-bound tRNA molecules through the ribosomal intersubunit space; the latter process is driven by the free energy of the chemical reaction of transpeptidation. Thus, the translating ribosome can be considered a conveying protein-synthesizing molecular machine. In this review we analyze the role of ribosomal intersubunit mobility in the process of translocation.


Asunto(s)
Biosíntesis de Proteínas , ARN Mensajero/genética , Aminoacil-ARN de Transferencia/genética , Ribosomas/genética , Codón
17.
Chembiochem ; 18(24): 2390-2394, 2017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-28994180

RESUMEN

Overexpression of (mutated) receptor tyrosine kinases is a characteristic of many aggressive tumors, and induction of receptor uptake has long been recognized as a therapeutic modality. A conjugate of a synthetically produced cell-penetrating peptide (CPP), corresponding to amino acids 38-59 of human lactoferrin, and the recombinant llama single-domain antibody (VHH) 7D12, which binds the human epidermal growth factor receptor (EGFR), was generated by sortase A mediated transpeptidation. The conjugate blocks EGF-mediated EGFR activation with higher efficacy than that of both modalities alone; a phenomenon that is caused by both effective receptor blockade and internalization. Thus, the VHH-CPP conjugate shows a combination of activities that implement a highly powerful new design principle to block receptor activation by its clearance from the cell surface.


Asunto(s)
Péptidos de Penetración Celular/farmacología , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/inmunología , Inmunoconjugados/farmacología , Péptidos de Penetración Celular/inmunología , Endocitosis , Humanos , Inmunoconjugados/uso terapéutico , Lactoferrina/inmunología , Fragmentos de Péptidos/inmunología
18.
FASEB J ; 27(8): 3144-54, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23631841

RESUMEN

Gram-positive bacteria build pili on their cell surface via a class C sortase-catalyzed transpeptidation mechanism from pilin protein substrates. Despite the availability of several crystal structures, pilus-related C sortases remain poorly characterized to date, and their mechanisms of transpeptidation and regulation need to be further investigated. The available 3-dimensional structures of these enzymes reveal a typical sortase fold, except for the presence of a unique feature represented by an N-terminal highly flexible loop known as the "lid." This region interacts with the residues composing the catalytic triad and covers the active site, thus maintaining the enzyme in an autoinhibited state and preventing the accessibility to the substrate. It is believed that enzyme activation may occur only after lid displacement from the catalytic domain. In this work, we provide the first direct evidence of the regulatory role of the lid, demonstrating that it is possible to obtain in vitro an efficient polymerization of pilin subunits using an active C sortase lid mutant carrying a single residue mutation in the lid region. Moreover, biochemical analyses of this recombinant mutant reveal that the lid confers thermodynamic and proteolytic stability to the enzyme.


Asunto(s)
Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Fimbrias Bacterianas/enzimología , Streptococcus agalactiae/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Aminoaciltransferasas/química , Aminoaciltransferasas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Western Blotting , Dominio Catalítico , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fluorometría , Cinética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Mutación , Filogenia , Polimerizacion , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteolisis , Streptococcus agalactiae/genética
19.
Int J Biol Macromol ; 271(Pt 1): 132505, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38768911

RESUMEN

Proteases, essential regulators of plant stress responses, remain enigmatic in their precise functional roles. By employing activity-based probes for real-time monitoring, this study aimed to delve into protease activities in Chlamydomonas reinhardtii exposed to oxidative stress induced by hydrogen peroxide. However, our work revealed that the activity-based probes strongly labelled three non-proteolytic proteins-PsbO, PsbP, and PsbQ-integral components of photosystem II's oxygen-evolving complex. Subsequent biochemical assays and mass spectrometry experiments revealed the involvement of CrCEP1, a previously uncharacterized papain-like cysteine protease, as the catalyst of this labelling reaction. Further experiments with recombinant CrCEP1 and PsbO proteins replicated the reaction in vitro. Our data unveiled that endopeptidase CrCEP1 also has transpeptidase activity, ligating probes and peptides to the N-termini of Psb proteins, thereby expanding the repertoire of its enzymatic activities. The hitherto unknown transpeptidase activity of CrCEP1, working in conjunction with its proteolytic activity, unveils putative complex and versatile roles for proteases in cellular processes during stress responses.


Asunto(s)
Chlamydomonas reinhardtii , Proteasas de Cisteína , Proteasas de Cisteína/metabolismo , Proteasas de Cisteína/química , Chlamydomonas reinhardtii/enzimología , Estrés Oxidativo , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Peróxido de Hidrógeno/metabolismo , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/química
20.
ACS Nano ; 18(11): 8017-8028, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38456817

RESUMEN

d-Amino acids are signals for biofilm disassembly. However, unexpected metabolic pathways severely attenuate the utilization of d-amino acids in biofilm disassembly, resulting in unsatisfactory efficiency. Herein, three-dimensional poly(d-amino acid) nanoparticles (NPs), which possess the ability to block intracellular metabolism, are constructed with the aim of disassembling the biofilms. The obtained poly(α-N-acryloyl-d-phenylalanine)-block-poly(ß-N-acryloyl-d-aminoalanine NPs (denoted as FA NPs) present α-amino groups and α-carboxyl groups of d-aminoalanine on their surface, which guarantees that FA NPs can effectively insert into bacterial peptidoglycan (PG) via the mediation of PG binding protein 4 (PBP4). Subsequently, the FA NPs trigger the detachment of amyloid-like fibers that connect to the PG and reduce the number of polysaccharides and proteins in extracellular polymeric substances (EPS). Finally, FA NPs damage the structural stability of EPS and lead to the disassembly of the biofilm. Based on this feature, FA NPs significantly enhance the killing efficacy of encapsulated sitafloxacin sesquihydrate (Sita) by facilitating the penetration of Sita within the biofilm, achieving complete elimination of Staphylococcal biofilm in mice. Therefore, this study strongly demonstrates that FA NPs can effectively improve biofilm disassembly efficacy and provide great potential for bacterial biofilm infection treatment.


Asunto(s)
Aminoácidos , Nanopartículas , Animales , Ratones , Aminoácidos/química , Peptidoglicano , Biopelículas , Polisacáridos , Nanopartículas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA