Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.170
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 42(1): 489-519, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38941607

RESUMEN

Recent advances have contributed to a mechanistic understanding of neuroimmune interactions in the intestine and revealed an essential role of this cross talk for gut homeostasis and modulation of inflammatory and infectious intestinal diseases. In this review, we describe the innervation of the intestine by intrinsic and extrinsic neurons and then focus on the bidirectional communication between neurons and immune cells. First, we highlight the contribution of neuronal subtypes to the development of colitis and discuss the different immune and epithelial cell types that are regulated by neurons via the release of neuropeptides and neurotransmitters. Next, we review the role of intestinal inflammation in the development of visceral hypersensitivity and summarize how inflammatory mediators induce peripheral and central sensitization of gut-innervating sensory neurons. Finally, we outline the importance of immune cells and gut microbiota for the survival and function of different neuronal populations at homeostasis and during bacterial and helminth infection.


Asunto(s)
Neuroinmunomodulación , Humanos , Animales , Intestinos/inmunología , Homeostasis , Microbioma Gastrointestinal/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Neuronas/metabolismo , Neuronas/inmunología , Neuropéptidos/metabolismo , Sistema Nervioso Entérico/inmunología , Sistema Nervioso Entérico/metabolismo
2.
Cell ; 170(1): 185-198.e16, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28648659

RESUMEN

Dietary, microbial, and inflammatory factors modulate the gut-brain axis and influence physiological processes ranging from metabolism to cognition. The gut epithelium is a principal site for detecting such agents, but precisely how it communicates with neural elements is poorly understood. Serotonergic enterochromaffin (EC) cells are proposed to fulfill this role by acting as chemosensors, but understanding how these rare and unique cell types transduce chemosensory information to the nervous system has been hampered by their paucity and inaccessibility to single-cell measurements. Here, we circumvent this limitation by exploiting cultured intestinal organoids together with single-cell measurements to elucidate intrinsic biophysical, pharmacological, and genetic properties of EC cells. We show that EC cells express specific chemosensory receptors, are electrically excitable, and modulate serotonin-sensitive primary afferent nerve fibers via synaptic connections, enabling them to detect and transduce environmental, metabolic, and homeostatic information from the gut directly to the nervous system.


Asunto(s)
Células Quimiorreceptoras/metabolismo , Células Enterocromafines/metabolismo , Tracto Gastrointestinal/citología , Vías Nerviosas , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Canales de Calcio/metabolismo , Catecolaminas/metabolismo , Perfilación de la Expresión Génica , Humanos , Síndrome del Colon Irritable/patología , Ratones , Fibras Nerviosas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores Odorantes/metabolismo , Receptores de Serotonina 5-HT3/metabolismo , Serotonina/metabolismo , Transducción de Señal , Sinapsis/metabolismo , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio/metabolismo
3.
Immunol Rev ; 324(1): 52-67, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38666618

RESUMEN

Regulatory T cells (Tregs) within the visceral adipose tissue (VAT) play a crucial role in controlling tissue inflammation and maintaining metabolic health. VAT Tregs display a unique transcriptional profile and T cell receptor (TCR) repertoire, and closely interact with adipocytes, stromal cells, and other immune components within the local VAT microenvironment. However, in the context of obesity, there is a notable decline in VAT Tregs, resulting in heightened VAT inflammation and insulin resistance. A comprehensive understanding of the biology of VAT Tregs is essential for the development of Treg-based therapies for mitigating obesity-associated metabolic diseases. Recent advancements in lineage tracing tools, genetic mouse models, and various single cell "omics" techniques have significantly progressed our understandings of the origin, differentiation, and regulation of this unique VAT Treg population at steady state and during obesity. The identification of VAT-Treg precursor cells in the secondary lymphoid organs has also provided important insights into the timing, location, and mechanisms through which VAT Tregs acquire their distinctive phenotype that enables them to function within a lipid-rich microenvironment. In this review, we highlight key recent breakthroughs in the VAT-Treg field while discussing pivotal questions that remain unanswered.


Asunto(s)
Grasa Intraabdominal , Obesidad , Linfocitos T Reguladores , Animales , Linfocitos T Reguladores/inmunología , Humanos , Grasa Intraabdominal/metabolismo , Grasa Intraabdominal/inmunología , Obesidad/inmunología , Obesidad/metabolismo , Diferenciación Celular
4.
Immunol Rev ; 326(1): 102-116, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39037230

RESUMEN

Irritable bowel syndrome (IBS) is a chronic gastrointestinal condition associated with altered bowel habits and recurrent abdominal pain, often triggered by food intake. Current treatments focus on improving stool pattern, but effective treatments for pain in IBS are still lacking due to our limited understanding of pathophysiological mechanisms. Visceral hypersensitivity (VHS), or abnormal visceral pain perception, underlies abdominal pain development in IBS, and mast cell activation has been shown to play an important role in the development of VHS. Our work recently revealed that abdominal pain in response to food intake is induced by the sensitization of colonic pain-sensing neurons by histamine produced by activated mast cells following a local IgE response to food. In this review, we summarize the current knowledge on abdominal pain and VHS pathophysiology in IBS, we outline the work leading to the discovery of the role of histamine in abdominal pain, and we introduce antihistamines as a novel treatment option to manage chronic abdominal pain in patients with IBS.


Asunto(s)
Dolor Abdominal , Histamina , Síndrome del Colon Irritable , Mastocitos , Dolor Visceral , Síndrome del Colon Irritable/inmunología , Síndrome del Colon Irritable/metabolismo , Síndrome del Colon Irritable/etiología , Síndrome del Colon Irritable/terapia , Humanos , Animales , Histamina/metabolismo , Mastocitos/inmunología , Mastocitos/metabolismo , Dolor Abdominal/etiología , Dolor Abdominal/inmunología , Dolor Visceral/etiología , Dolor Visceral/metabolismo , Antagonistas de los Receptores Histamínicos/uso terapéutico , Hipersensibilidad a los Alimentos/inmunología , Alimentos
5.
Immunol Rev ; 324(1): 95-103, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38747455

RESUMEN

Fat is stored in distinct depots with unique features in both mice and humans and B cells reside in all adipose depots. We have shown that B cells modulate cardiometabolic disease through activities in two of these key adipose depots: visceral adipose tissue (VAT) and perivascular adipose tissue (PVAT). VAT refers to the adipose tissue surrounding organs, within the abdomen and thorax, and is comprised predominantly of white adipocytes. This depot has been implicated in mediating obesity-related dysmetabolism. PVAT refers to adipose tissue surrounding major arteries. It had long been thought to exist to provide protection and insulation for the vessel, yet recent work demonstrates an important role for PVAT in harboring immune cells, promoting their function and regulating the biology of the underlying vessel. The role of B-2 cells and adaptive immunity in adipose tissue biology has been nicely reviewed elsewhere. Given that, the predominance of B-1 cells in adipose tissue at homeostasis, and the emerging role of B-1 cells in a variety of disease states, we will focus this review on how B-1 cells function in VAT and PVAT depots to promote homeostasis and limit inflammation linked to cardiometabolic disease and factors that regulate this function.


Asunto(s)
Tejido Adiposo , Inmunidad Innata , Inflamación , Humanos , Animales , Inflamación/inmunología , Inflamación/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/inmunología , Enfermedades Cardiovasculares/inmunología , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Obesidad/inmunología , Obesidad/metabolismo , Grasa Intraabdominal/metabolismo , Grasa Intraabdominal/inmunología , Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/metabolismo , Enfermedades Metabólicas/inmunología , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/etiología , Inmunomodulación
6.
Development ; 151(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38646822

RESUMEN

The precise assembly of tissues and organs relies on spatiotemporal regulation of gene expression to coordinate the collective behavior of cells. In Drosophila embryos, the midgut musculature is formed through collective migration of caudal visceral mesoderm (CVM) cells, but how gene expression changes as cells migrate is not well understood. Here, we have focused on ten genes expressed in the CVM and the cis-regulatory sequences controlling their expression. Although some genes are continuously expressed, others are expressed only early or late during migration. Late expression relates to cell cycle progression, as driving string/Cdc25 causes earlier division of CVM cells and accelerates the transition to late gene expression. In particular, we found that the cell cycle effector transcription factor E2F1 is a required input for the late gene CG5080. Furthermore, whereas late genes are broadly expressed in all CVM cells, early gene transcripts are polarized to the anterior or posterior ends of the migrating collective. We show this polarization requires transcription factors Snail, Zfh1 and Dorsocross. Collectively, these results identify two sequential gene expression programs bridged by cell division that support long-distance directional migration of CVM cells.


Asunto(s)
División Celular , Movimiento Celular , Proteínas de Drosophila , Regulación del Desarrollo de la Expresión Génica , Animales , Movimiento Celular/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , División Celular/genética , Mesodermo/metabolismo , Mesodermo/citología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/embriología , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F1/genética , Embrión no Mamífero/metabolismo , Embrión no Mamífero/citología , Drosophila/genética , Drosophila/metabolismo , Drosophila/embriología , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética
7.
Proc Natl Acad Sci U S A ; 121(11): e2316365121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38451949

RESUMEN

Visceral signals are constantly processed by our central nervous system, enable homeostatic regulation, and influence perception, emotion, and cognition. While visceral processes at the cortical level have been extensively studied using non-invasive imaging techniques, very few studies have investigated how this information is processed at the single neuron level, both in humans and animals. Subcortical regions, relaying signals from peripheral interoceptors to cortical structures, are particularly understudied and how visceral information is processed in thalamic and subthalamic structures remains largely unknown. Here, we took advantage of intraoperative microelectrode recordings in patients undergoing surgery for deep brain stimulation (DBS) to investigate the activity of single neurons related to cardiac and respiratory functions in three subcortical regions: ventral intermedius nucleus (Vim) and ventral caudalis nucleus (Vc) of the thalamus, and subthalamic nucleus (STN). We report that the activity of a large portion of the recorded neurons (about 70%) was modulated by either the heartbeat, the cardiac inter-beat interval, or the respiration. These cardiac and respiratory response patterns varied largely across neurons both in terms of timing and their kind of modulation. A substantial proportion of these visceral neurons (30%) was responsive to more than one of the tested signals, underlining specialization and integration of cardiac and respiratory signals in STN and thalamic neurons. By extensively describing single unit activity related to cardiorespiratory function in thalamic and subthalamic neurons, our results highlight the major role of these subcortical regions in the processing of visceral signals.


Asunto(s)
Estimulación Encefálica Profunda , Núcleo Subtalámico , Animales , Humanos , Tálamo/fisiología , Neuronas/fisiología , Microelectrodos
8.
Development ; 150(18)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37642089

RESUMEN

Development of the visceral musculature of the Drosophila midgut encompasses a closely coordinated sequence of migration events of cells from the trunk and caudal visceral mesoderm that underlies the formation of the stereotypic orthogonal pattern of circular and longitudinal midgut muscles. Our study focuses on the last step of migration and morphogenesis of longitudinal visceral muscle precursors and shows that these multinucleated precursors utilize dynamic filopodial extensions to migrate in dorsal and ventral directions over the forming midgut tube. The establishment of maximal dorsoventral distances from one another, and anteroposterior alignments, lead to the equidistant coverage of the midgut with longitudinal muscle fibers. We identify Teyrha-Meyhra (Tey), a tissue-specific nuclear factor related to the RNF220 domain protein family, as a crucial regulator of this process of muscle migration and morphogenesis that is further required for proper differentiation of longitudinal visceral muscles. In addition, Tey is expressed in a single somatic muscle founder cell in each hemisegment, regulates the migration of this founder cell, and is required for proper pathfinding of its developing myotube to specific myotendinous attachment sites.


Asunto(s)
Drosophila , Fibras Musculares Esqueléticas , Animales , Diferenciación Celular/genética , Endodermo , Mesodermo
9.
Development ; 150(14)2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37390294

RESUMEN

Caudal developmental defects, including caudal regression, caudal dysgenesis and sirenomelia, are devastating conditions affecting the skeletal, nervous, digestive, reproductive and excretory systems. Defects in mesodermal migration and blood supply to the caudal region have been identified as possible causes of caudal developmental defects, but neither satisfactorily explains the structural malformations in all three germ layers. Here, we describe caudal developmental defects in transmembrane protein 132a (Tmem132a) mutant mice, including skeletal, posterior neural tube closure, genitourinary tract and hindgut defects. We show that, in Tmem132a mutant embryos, visceral endoderm fails to be excluded from the medial region of early hindgut, leading directly to the loss or malformation of cloaca-derived genitourinary and gastrointestinal structures, and indirectly to the neural tube and kidney/ureter defects. We find that TMEM132A mediates intercellular interaction, and physically interacts with planar cell polarity (PCP) regulators CELSR1 and FZD6. Genetically, Tmem132a regulates neural tube closure synergistically with another PCP regulator Vangl2. In summary, we have identified Tmem132a as a new regulator of PCP, and hindgut malformation as the underlying cause of developmental defects in multiple caudal structures.


Asunto(s)
Defectos del Tubo Neural , Ratones , Animales , Defectos del Tubo Neural/metabolismo , Tubo Neural/metabolismo , Neurulación , Estratos Germinativos/metabolismo , Polaridad Celular/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
10.
Gastroenterology ; 166(6): 976-994, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38325759

RESUMEN

Chronic visceral pain is one of the most common reasons for patients with gastrointestinal disorders, such as inflammatory bowel disease or disorders of brain-gut interaction, to seek medical attention. It represents a substantial burden to patients and is associated with anxiety, depression, reductions in quality of life, and impaired social functioning, as well as increased direct and indirect health care costs to society. Unfortunately, the diagnosis and treatment of chronic visceral pain is difficult, in part because our understanding of the underlying pathophysiologic basis is incomplete. In this review, we highlight recent advances in peripheral pain signaling and specific physiologic and pathophysiologic preclinical mechanisms that result in the sensitization of peripheral pain pathways. We focus on preclinical mechanisms that have been translated into treatment approaches and summarize the current evidence base for directing treatment toward these mechanisms of chronic visceral pain derived from clinical trials. The effective management of chronic visceral pain remains of critical importance for the quality of life of suffers. A deeper understanding of peripheral pain mechanisms is necessary and may provide the basis for novel therapeutic interventions.


Asunto(s)
Dolor Crónico , Dolor Visceral , Humanos , Dolor Visceral/fisiopatología , Dolor Visceral/terapia , Dolor Visceral/diagnóstico , Dolor Visceral/etiología , Dolor Crónico/terapia , Dolor Crónico/fisiopatología , Dolor Crónico/diagnóstico , Dolor Crónico/psicología , Animales , Calidad de Vida , Transducción de Señal
11.
Genes Cells ; 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39278976

RESUMEN

Brain-derived neurotrophic factor (BDNF) is expressed in the white adipose tissues (WATs), and the expression increases during high-fat diet (HFD) feeding, implicating its role in obesity. Here, we focused on BDNF expression in epididymal WAT (eWAT), a visceral adipose tissue, in mice. During 2 weeks of HFD feeding, Bdnf mRNA expression in eWAT slightly increased, but a robust increase was observed after 8 weeks of HFD feeding. This upregulation of Bdnf mRNA was correlated with significant induction of hypoxia-inducible factor 1α (Hif1α) and platelet-derived growth factor subunit B (Pdgfb) mRNA in eWAT following 8 weeks of HFD feeding. Furthermore, the increased expression of the M1 macrophage markers was strongly correlated with the elevation of Bdnf mRNA in the eWAT. Notably, 8 weeks of HFD feeding significantly elevated Tnfα mRNA expression in eWAT, while no such induction was observed in inguinal WAT (iWAT). In contrast, the expression of Adipoq (adiponectin), implicated in improved insulin sensitivity and anti-inflammatory effects, was significantly upregulated in iWAT, but not in eWAT. Thus, our study may show the role of BDNF in eWAT in obesity models, potentially contributing to the pathological state of visceral adipose tissues.

12.
FASEB J ; 38(1): e23380, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38102980

RESUMEN

The urinary bladder is supplied by a rich network of sensory and autonomic axons, commonly visualized by immunolabeling for neural markers. This approach demonstrates overall network patterning but is less suited to understanding the structure of individual motor and sensory terminals within these complex plexuses. There is a further limitation visualizing the lightly myelinated (A-delta) class of sensory axons that provides the primary mechanosensory drive for initiation of voiding. Whereas most unmyelinated sensory axons can be revealed by immunolabeling for specific neuropeptides, to date no unique neural marker has been identified to immunohistochemically label myelinated visceral afferents. We aimed to establish a non-surgical method to visualize and map myelinated afferents in the bladder in rats. We found that in rats, the adeno-associated virus (AAV), AAV-PHP.S, which shows a high tropism for the peripheral nervous system, primarily transduced myelinated dorsal root ganglion neurons, enabling us to identify the structure and regional distribution of myelinated (mechanosensory) axon endings within the muscle and lamina propria of the bladder. We further identified the projection of myelinated afferents within the pelvic nerve and lumbosacral spinal cord. A minority of noradrenergic and cholinergic neurons in pelvic ganglia were transduced, enabling visualization and regional mapping of both autonomic and sensory axon endings within the bladder. Our study identified a sparse labeling approach for investigating myelinated sensory and autonomic axon endings within the bladder and provides new insights into the nerve-bladder interface.


Asunto(s)
Dependovirus , Vejiga Urinaria , Ratas , Animales , Dependovirus/genética , Neuronas , Axones , Médula Espinal/fisiología , Ganglios Espinales , Neuronas Aferentes
13.
FASEB J ; 38(16): e23893, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39177943

RESUMEN

Visceral leishmaniasis (VL) is characterized by an uncontrolled infection of internal organs such as the spleen, liver and bone marrow (BM) and can be lethal when left untreated. No effective vaccination is currently available for humans. The importance of B cells in infection and VL protective immunity has been controversial, with both detrimental and protective effects described. VL infection was found in this study to increase not only all analyzed B cell subsets in the spleen but also the B cell progenitors in the BM. The enhanced B lymphopoiesis aligns with the clinical manifestation of polyclonal hypergammaglobulinemia and the occurrence of autoantibodies. In line with earlier reports, flow cytometric and microscopic examination identified parasite attachment to B cells of the BM and spleen without internalization, and transformation of promastigotes into amastigote morphotypes. The interaction appears independent of IgM expression and is associated with an increased detection of activated lysosomes. Furthermore, the extracellularly attached amastigotes could be efficiently transferred to infect macrophages. The observed interaction underscores the potentially crucial role of B cells during VL infection. Additionally, using immunization against a fluorescent heterologous antigen, it was shown that the infection does not impair immune memory, which is reassuring for vaccination campaigns in VL endemic areas.


Asunto(s)
Linfocitos B , Médula Ósea , Memoria Inmunológica , Leishmania infantum , Leishmaniasis Visceral , Linfopoyesis , Bazo , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/parasitología , Animales , Bazo/inmunología , Bazo/parasitología , Leishmania infantum/inmunología , Leishmania infantum/fisiología , Ratones , Médula Ósea/parasitología , Médula Ósea/inmunología , Linfocitos B/inmunología , Femenino , Ratones Endogámicos BALB C
14.
Dev Dyn ; 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39377464

RESUMEN

Breaking radial symmetry for anterior-posterior axis formation is one of the key developmental steps of vertebrate gastrulation and is established through a succession of transient domains defined by morphology or gene expression. Three such domains were interpreted recently in the rabbit to be part of a "three-anchor-point model" for axis formation. To answer the question as to whether the model is generally applicable to mammals, the dynamic expression patterns of four marker genes were analyzed in the pig, where gastrulating epiblast forms from half the inner cell mass: EOMES and PKDCC transcripts display decreasing expression intensities in the anterior hypoblast and-together with WNT3-increasing intensity in the anterior streak domain and the node; TBX6 expression changes from an initial central expression to exclusive expression in the posterior extremity of the primitive streak. The anterior streak domain has thus a molecular footprint similar to the one in the rabbit, the end node shares TBX6 between the species, while the anterior hypoblast-mirroring specific porcine epiblast derivation and fate-is marked by PKDCC instead of WNT3. The molecular similarities in transient domains point to conserved mechanisms for establishing the mammalian anterior-posterior axis and, possibly, breaking radial symmetry.

15.
J Infect Dis ; 229(6): 1909-1912, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38713583

RESUMEN

In an area endemic with Indian visceral leishmaniasis (VL), we performed direct xenodiagnosis to evaluate the transmission of Leishmania donovani from patients with VL-human immunodeficiency virus (HIV) coinfection to the vector sandflies, Phlebotomus argentipes. Fourteen patients with confirmed VL-HIV coinfection, with a median parasitemia of 42 205 parasite genome/mL of blood, were exposed to 732 laboratory-reared pathogen-free female P argentipes sandflies on their lower arms and legs. Microscopy revealed that 16.66% (122/732) of blood-fed flies were xenodiagnosis positive. Notably, 93% (13/14) of the VL-HIV group infected the flies, as confirmed by quantitative polymerase chain reaction and/or microscopy, and were 3 times more infectious than those who had VL without HIV.


Asunto(s)
Coinfección , Infecciones por VIH , Leishmania donovani , Leishmaniasis Visceral , Leishmaniasis Visceral/epidemiología , Leishmaniasis Visceral/complicaciones , Animales , Humanos , India/epidemiología , Infecciones por VIH/complicaciones , Infecciones por VIH/epidemiología , Femenino , Adulto , Coinfección/virología , Coinfección/epidemiología , Coinfección/parasitología , Leishmania donovani/aislamiento & purificación , Masculino , Phlebotomus/parasitología , Phlebotomus/virología , Enfermedades Endémicas , Persona de Mediana Edad , Adulto Joven , Xenodiagnóstico , Insectos Vectores/parasitología , Insectos Vectores/virología , Adolescente
16.
J Infect Dis ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39166299

RESUMEN

Treatment regimens for post-kala-azar dermal leishmaniasis (PKDL) are usually extrapolated from those for visceral leishmaniasis (VL), but drug pharmacokinetics (PK) can differ due to disease-specific variations in absorption, distribution, and elimination. This study characterized PK differences in paromomycin and miltefosine between 109 PKDL and 264 VL patients from eastern Africa. VL patients showed 0.55-fold (95%CI: 0.41-0.74) lower capacity for paromomycin saturable reabsorption in renal tubules, and required a 1.44-fold (1.23-1.71) adjustment when relating renal clearance to creatinine-based eGFR. Miltefosine bioavailability in VL patients was lowered by 69% (62-76) at treatment start. Comparing PKDL to VL patients on the same regimen, paromomycin plasma exposures were 0.74-0.87-fold, while miltefosine exposure until the end of treatment day was 1.4-fold. These pronounced PK differences between PKDL and VL patients in eastern Africa highlight the challenges of directly extrapolating dosing regimens from one leishmaniasis presentation to another.

17.
Gut ; 73(3): 459-469, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38191268

RESUMEN

OBJECTIVE: We evaluated the histamine 1 receptor antagonist ebastine as a potential treatment for patients with non-constipated irritable bowel syndrome (IBS) in a randomised, placebo-controlled phase 2 study. METHODS: Non-constipated patients with IBS fulfilling the Rome III criteria were randomly assigned to 20 mg ebastine or placebo for 12 weeks. Subjects scored global relief of symptoms (GRS) and abdominal pain intensity (API). A subject was considered a weekly responder for GRS if total or obvious relief was reported and a responder for API if the weekly average pain score was reduced by at least 30% vs baseline. The primary endpoints were the proportion of subjects who were weekly responders for at least 6 out of the 12 treatment weeks for both GRS and API ('GRS+API', composite endpoint) and for GRS and API separately. RESULTS: 202 participants (32±11 years, 68% female) were randomly allocated to receive ebastine (n=101) or placebo (n=101). Treatment with ebastine resulted in significantly more responders (12%, 12/92) for GRS+API compared with placebo (4%, 4/87, p=0.047) while the proportion of responders for GRS and API separately was higher for ebastine compared with placebo, although not statistically significant (placebo vs ebastine, GRS: 7% (6/87) vs 15% (14/91), p=0.072; API: 25% (20/85) vs 37% (34/92), p=0.081). CONCLUSIONS: Our study shows that ebastine is superior to placebo and should be further evaluated as novel treatment for patients with non-constipated IBS. TRIAL REGISTRATION NUMBER: The study protocol was approved by the local ethics committee of each study site (EudraCT number: 2013-001199-39; ClinicalTrials.gov identifier: NCT01908465).


Asunto(s)
Síndrome del Colon Irritable , Piperidinas , Humanos , Femenino , Masculino , Síndrome del Colon Irritable/terapia , Histamina/uso terapéutico , Resultado del Tratamiento , Butirofenonas/efectos adversos , Método Doble Ciego , Dolor Abdominal/tratamiento farmacológico
18.
Semin Cancer Biol ; 92: 16-27, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36965839

RESUMEN

Excess body weight is a global health problem due to sedentary lifestyle and unhealthy diet, affecting 2 billion population worldwide. Obesity is a major risk factor for metabolic diseases. Notably, the metabolic risk of obesity largely depends on body weight distribution, of which visceral adipose tissues but not subcutaneous fats are closely associated with obesity comorbidities, including type 2 diabetes, non-alcoholic fatty liver disease, cardiovascular disease and certain types of cancer. Latest multi-omics and mechanistical studies reported the crucial involvement of genetic and epigenetic alterations, adipokines dysregulation, immunity changes, imbalance of white and brown adipose tissues, and gut microbial dysbiosis in mediating the pathogenic association between visceral adipose tissues and comorbidities. In this review, we explore the epidemiology of excess body weight and the up-to-date mechanism of how excess body weight and obesity lead to chronic complications. We also examine the utilization of visceral fat measurement as an accurate clinical parameter for risk assessment in healthy individuals and clinical outcome prediction in obese subjects. In addition, current approaches for the prevention and treatment of excess body weight and its related metabolic comorbidities are further discussed.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Obesidad/complicaciones , Obesidad/epidemiología , Obesidad/metabolismo , Comorbilidad , Factores de Riesgo , Dieta
19.
J Lipid Res ; 65(7): 100580, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38901559

RESUMEN

This study aimed to determine whether obese men with nonalcoholic fatty liver disease (NAFLD) display differences between those with simple steatosis versus steatohepatitis (NASH) in splanchnic and hepatic FFA and VLDL-triglycerides (VLDL-TG) balances. The study involved 17 obese men with biopsy-proven NAFLD (9 with NASH and 8 with simple steatosis). We used hepatic vein catheterization in combination with [3H]palmitate and [14C]VLDL-TG tracers to measure splanchnic palmitate and VLDL-TG uptake and release rates during basal and hyperinsulinemic conditions. Indocyanine green was used to measure splanchnic plasma flow. Splanchnic palmitate uptake was similar in the two groups and significantly reduced during hyperinsulinemia (NASH: 62 (48-77) versus 38 (18-58) µmol/min; simple steatosis: 62 (46-78) versus 45 (25-65) µmol/min, mean (95% CI), basal versus clamp periods, respectively, P = 0.02 time-effect). Splanchnic palmitate release was also comparable between groups and nonsignificantly diminished during hyperinsulinemia. The percent palmitate delivered to the liver originating from visceral adipose tissue lipolysis was similar and unchanged by hyperinsulinemia. Splanchnic uptake and release of VLDL-TG were similar between groups. Hyperinsulinemia suppressed VLDL-TG release (P <0.05 time-effect) in both groups. Insulin-mediated glucose disposal was similar in the two groups (P = 0.54). Obese men with NASH and simple steatosis have similar splanchnic uptake and release of FFA and VLDL-TG and a similar proportion of FFA from visceral adipose tissue lipolysis delivered to the liver. These results demonstrate that the splanchnic balances of FFA and VLDL-TG do not differ between obese men with NASH and those with simple steatosis.


Asunto(s)
Insulina , Lipoproteínas VLDL , Enfermedad del Hígado Graso no Alcohólico , Triglicéridos , Humanos , Masculino , Lipoproteínas VLDL/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Persona de Mediana Edad , Triglicéridos/metabolismo , Triglicéridos/sangre , Insulina/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Ácidos Grasos no Esterificados/sangre , Adulto , Hígado Graso/metabolismo , Hígado Graso/patología , Hígado/metabolismo , Obesidad/metabolismo , Obesidad/complicaciones
20.
J Cell Mol Med ; 28(3): e18093, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38149798

RESUMEN

Antisense Noncoding RNA in the INK4 Locus (ANRIL) is the prime candidate gene at Chr9p21, the well-defined genetic risk locus associated with coronary artery disease (CAD). ANRIL and its transcript variants were investigated for the susceptibility to CAD in adipose tissues (AT) and peripheral blood mononuclear cells (PBMCs) of the study group and the impact of 9p21.3 locus mutations was further analysed. Expressions of ANRIL, circANRIL (hsa_circ_0008574), NR003529, EU741058 and DQ485454 were detected in epicardial AT (EAT) mediastinal AT (MAT), subcutaneous AT (SAT) and PBMCs of CAD patients undergoing coronary artery bypass grafting and non-CAD patients undergoing heart valve surgery. ANRIL expression was significantly upregulated, while the expression of circANRIL was significantly downregulated in CAD patients. Decreased circANRIL levels were significantly associated with the severity of CAD and correlated with aggressive clinical characteristics. rs10757278 and rs10811656 were significantly associated with ANRIL and circANRIL expressions in AT and PBMCs. The ROC-curve analysis suggested that circANRIL has high diagnostic accuracy (AUC: 0.9808, cut-off: 0.33, sensitivity: 1.0, specificity: 0.88). circANRIL has high diagnostic accuracy (AUC: 0.9808, cut-off: 0.33, sensitivity: 1.0, specificity: 0.88). We report the first data demonstrating the presence of ANRIL and its transcript variants expressions in the AT and PBMCs of CAD patients. circANRIL having a synergetic effect with ANRIL plays a protective role in CAD pathogenesis. Therefore, altered circANRIL expression may become a potential diagnostic transcriptional biomarker for early CAD diagnosis.


Asunto(s)
Enfermedad de la Arteria Coronaria , ARN Largo no Codificante , Humanos , Enfermedad de la Arteria Coronaria/genética , Leucocitos Mononucleares/patología , Biomarcadores , Factores de Riesgo , Puente de Arteria Coronaria , ARN Largo no Codificante/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA