Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 38(1): e23380, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38102980

RESUMEN

The urinary bladder is supplied by a rich network of sensory and autonomic axons, commonly visualized by immunolabeling for neural markers. This approach demonstrates overall network patterning but is less suited to understanding the structure of individual motor and sensory terminals within these complex plexuses. There is a further limitation visualizing the lightly myelinated (A-delta) class of sensory axons that provides the primary mechanosensory drive for initiation of voiding. Whereas most unmyelinated sensory axons can be revealed by immunolabeling for specific neuropeptides, to date no unique neural marker has been identified to immunohistochemically label myelinated visceral afferents. We aimed to establish a non-surgical method to visualize and map myelinated afferents in the bladder in rats. We found that in rats, the adeno-associated virus (AAV), AAV-PHP.S, which shows a high tropism for the peripheral nervous system, primarily transduced myelinated dorsal root ganglion neurons, enabling us to identify the structure and regional distribution of myelinated (mechanosensory) axon endings within the muscle and lamina propria of the bladder. We further identified the projection of myelinated afferents within the pelvic nerve and lumbosacral spinal cord. A minority of noradrenergic and cholinergic neurons in pelvic ganglia were transduced, enabling visualization and regional mapping of both autonomic and sensory axon endings within the bladder. Our study identified a sparse labeling approach for investigating myelinated sensory and autonomic axon endings within the bladder and provides new insights into the nerve-bladder interface.


Asunto(s)
Dependovirus , Vejiga Urinaria , Ratas , Animales , Dependovirus/genética , Neuronas , Axones , Médula Espinal/fisiología , Ganglios Espinales , Neuronas Aferentes
2.
Am J Physiol Gastrointest Liver Physiol ; 326(6): G712-G725, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38626403

RESUMEN

Gut physiology is the epicenter of a web of internal communication systems (i.e., neural, immune, hormonal) mediated by cell-cell contacts, soluble factors, and external influences, such as the microbiome, diet, and the physical environment. Together these provide the signals that shape enteric homeostasis and, when they go awry, lead to disease. Faced with the seemingly paradoxical tasks of nutrient uptake (digestion) and retarding pathogen invasion (host defense), the gut integrates interactions between a variety of cells and signaling molecules to keep the host nourished and protected from pathogens. When the system fails, the outcome can be acute or chronic disease, often labeled as "idiopathic" in nature (e.g., irritable bowel syndrome, inflammatory bowel disease). Here we underscore the importance of a holistic approach to gut physiology, placing an emphasis on intercellular connectedness, using enteric neuroimmunophysiology as the paradigm. The goal of this opinion piece is to acknowledge the pace of change brought to our field via single-cell and -omic methodologies and other techniques such as cell lineage tracing, transgenic animal models, methods for culturing patient tissue, and advanced imaging. We identify gaps in the field and hope to inspire and challenge colleagues to take up the mantle and advance awareness of the subtleties, intricacies, and nuances of intestinal physiology in health and disease by defining communication pathways between gut resident cells, those recruited from the circulation, and "external" influences such as the central nervous system and the gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Tracto Gastrointestinal , Humanos , Animales , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/fisiología , Tracto Gastrointestinal/microbiología , Microbioma Gastrointestinal/fisiología , Neuroinmunomodulación/fisiología , Sistema Nervioso Entérico/fisiología , Sistema Nervioso Entérico/inmunología
3.
Dev Biol ; 476: 18-32, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33744254

RESUMEN

The primary function of the urinary bladder is to store urine (continence) until a suitable time for voiding (micturition). These distinct processes are determined by the coordinated activation of sensory and motor components of the nervous system, which matures to enable voluntary control at the time of weaning. Our aim was to define the development and maturation of the nerve-organ interface of the mouse urinary bladder by mapping the organ and tissue distribution of major classes of autonomic (motor) and sensory axons. Innervation of the bladder was evident from E13 and progressed dorsoventrally. Increasing defasciculation of axon bundles to single axons within the muscle occurred through the prenatal period, and in several classes of axons underwent further maturation until P7. Urothelial innervation occurred more slowly than muscle innervation and showed a clear regional difference, from E18 the bladder neck having the highest density of urothelial nerves. These features of innervation were similar in males and females but varied in timing and tissue density between different axon classes. We also analysed the pelvic ganglion, the major source of motor axons that innervate the lower urinary tract and other pelvic organs. Cholinergic, nitrergic (subset of cholinergic) and noradrenergic neuronal cell bodies were present prior to visualization of these axon classes within the bladder. Examination of cholinergic structures within the pelvic ganglion indicated that connections from spinal preganglionic neurons to pelvic ganglion neurons were already present by E12, a time at which these autonomic ganglion neurons had not yet innervated the bladder. These putative preganglionic inputs increased in density prior to birth as axon terminal fields continued to expand within the bladder tissues. Our studies also revealed in numerous pelvic ganglion neurons an unexpected transient expression of calcitonin gene-related peptide, a peptide commonly used to visualise the peptidergic class of visceral sensory axons. Together, our outcomes enhance our understanding of neural regulatory elements in the lower urinary tract during development and provide a foundation for studies of plasticity and regenerative capacity in the adult system.


Asunto(s)
Vejiga Urinaria/embriología , Vejiga Urinaria/inervación , Animales , Axones/metabolismo , Femenino , Ganglios Parasimpáticos/fisiología , Masculino , Ratones/embriología , Ratones Endogámicos C57BL , Neuronas Motoras/metabolismo , Neuronas Motoras/fisiología , Neuronas/fisiología , Pelvis/inervación , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/fisiología , Sistema Nervioso Simpático , Vejiga Urinaria/fisiología
4.
Am J Physiol Gastrointest Liver Physiol ; 311(6): G1056-G1063, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27856418

RESUMEN

Spinal afferent neurons play a major role in detection and transduction of painful stimuli from internal (visceral) organs. Recent technical advances have made it possible to visualize the endings of spinal afferent axons in visceral organs. Although it is well known that the sensory nerve cell bodies of spinal afferents reside within dorsal root ganglia (DRG), identifying their endings in internal organs has been especially challenging because of a lack of techniques to distinguish them from endings of other extrinsic and intrinsic neurons (sympathetic, parasympathetic, and enteric). We recently developed a surgical approach in live mice that allows selective labeling of spinal afferent axons and their endings, revealing a diverse array of different types of varicose and nonvaricose terminals in visceral organs, particularly the large intestine. In total, 13 different morphological types of endings were distinguished in the mouse distal large intestine, originating from lumbosacral DRG. Interestingly, the stomach, esophagus, bladder, and uterus had less diversity in their types of spinal afferent endings. Taken together, spinal afferent endings (at least in the large intestine) appear to display greater morphological diversity than vagal afferent endings that have previously been extensively studied. We discuss some of the new insights that these findings provide.


Asunto(s)
Ganglios Espinales/fisiología , Terminaciones Nerviosas/fisiología , Aferentes Viscerales/fisiología , Animales , Ganglios Espinales/metabolismo , Intestinos/inervación , Ratones , Terminaciones Nerviosas/metabolismo , Aferentes Viscerales/metabolismo
5.
Am J Physiol Regul Integr Comp Physiol ; 308(1): R18-27, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25411361

RESUMEN

Psychological disorders are prevalent in patients with inflammatory bowel disease; the underlying mechanisms remain unknown. We tested the hypothesis that ulcerative colitis-like inflammation induced by dextran sodium sulfate (DSS) exacerbates the ongoing spontaneous activity in colon-projecting afferent neurons that induces abdominal discomfort and anxiety, and depressive-like behaviors in rats. In this study, we used the conditioned place preference and standard tests for anxiety- and depression-like behaviors. DSS rats developed anxiety- and depression-like behaviors 10 to 20 days after the start of inflammation. Single-fiber recordings showed an increase in the frequency of spontaneous activity in L6-S1 dorsal root ganglion (DRG) roots. Prolonged desensitization of transient receptor potential vanilloid 1 (TRPV1)-expressing colonic afferents by resiniferatoxin (RTX) suppressed the spontaneous activity, as well as the anxiety- and depressive-like behaviors. Reduction in spontaneous activity in colon afferents by intracolonic administration of lidocaine produced robust conditioned place preference (CPP) in DSS rats, but not in control rats. Patch-clamp studies demonstrated a significant decrease in the resting membrane potential, lower rheobase, and sensitization of colon-projecting L6-S1 DRG neurons to generate trains of action potentials in response to current injection in DSS rats. DSS inflammation upregulated the mRNA levels of transient receptor potential ankyrin 1 and TRPV1 channels and downregulated that of Kv1.1 and Kv1.4 channels. Ulcerative colitis-like inflammation in rats induces anxiety- and depression-like behaviors, as well as ongoing abdominal discomfort by exacerbating the spontaneous activity in the colon-projecting afferent neurons. Alterations in the expression of voltage- and ligand-gated channels are associated with the induction of mood disorders following colon inflammation.


Asunto(s)
Dolor Abdominal/etiología , Ansiedad/etiología , Conducta Animal , Colitis Ulcerosa/complicaciones , Colon/inervación , Depresión/etiología , Dolor Abdominal/tratamiento farmacológico , Dolor Abdominal/metabolismo , Dolor Abdominal/fisiopatología , Dolor Abdominal/psicología , Potenciales de Acción , Anestésicos Locales/farmacología , Animales , Ansiedad/metabolismo , Ansiedad/fisiopatología , Ansiedad/prevención & control , Ansiedad/psicología , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/fisiopatología , Colitis Ulcerosa/psicología , Condicionamiento Psicológico , Depresión/metabolismo , Depresión/fisiopatología , Depresión/prevención & control , Depresión/psicología , Sulfato de Dextran , Modelos Animales de Enfermedad , Diterpenos/farmacología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Ganglios Espinales/fisiopatología , Canal de Potasio Kv.1.1/genética , Canal de Potasio Kv.1.1/metabolismo , Canal de Potasio Kv1.4/genética , Canal de Potasio Kv1.4/metabolismo , Lidocaína/farmacología , ARN Mensajero/metabolismo , Ratas , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Factores de Tiempo
6.
Exp Neurol ; 348: 113927, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34798136

RESUMEN

In preclinical rodent models, spinal cord injury (SCI) manifests as gastric vagal afferent dysfunction both acutely and chronically. However, the mechanism that underlies this dysfunction remains unknown. In the current study, we examined the effect of SCI on gastric nodose ganglia (NG) neuron excitability and on voltage-gated Na+ (NaV) channels expression and function in rats after an acute (i.e. 3-days) and chronic (i.e. 3-weeks) period. Rats randomly received either T3-SCI or sham control surgery 3-days or 3-weeks prior to experimentation as well as injections of 3% DiI solution into the stomach to identify gastric NG neurons. Single cell qRT-PCR was performed on acutely dissociated DiI-labeled NG neurons to measure NaV1.7, NaV1.8 and NaV1.9 expression levels. The results indicate that all 3 channel subtypes decreased. Current- and voltage-clamp whole-cell patch-clamp recordings were performed on acutely dissociated DiI-labeled NG neurons to measure active and passive properties of C- and A-fibers as well as the biophysical characteristics of NaV1.8 channels in gastric NG neurons. Acute and chronic SCI did not demonstrate deleterious effects on either passive properties of dissociated gastric NG neurons or biophysical properties of NaV1.8. These findings suggest that although NaV gene expression levels change following SCI, NaV1.8 function is not altered. The disruption throughout the entirety of the vagal afferent neuron has yet to be investigated.


Asunto(s)
Potenciales de Acción/fisiología , Canal de Sodio Activado por Voltaje NAV1.8/fisiología , Ganglio Nudoso/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Masculino , Neuronas/fisiología , Ratas , Ratas Wistar
7.
Trends Neurosci ; 44(1): 17-28, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33378653

RESUMEN

The present paper considers recent progress in our understanding of the afferent/ascending neural pathways and neural circuits of interoception. Of particular note is the extensive role of rostral neural systems, including cortical systems, in the recognition of internal body states, and the reciprocal role of efferent/descending systems in the regulation of those states. Together these reciprocal interacting networks entail interoceptive circuits that play an important role in a broad range of functions beyond the homeostatic maintenance of physiological steady-states. These include the regulation of behavioral, cognitive, and affective processes across conscious and nonconscious levels of processing. We highlight recent advances and knowledge gaps that are important for accelerating progress in the study of interoception.


Asunto(s)
Interocepción , Concienciación , Homeostasis , Humanos , Vías Nerviosas
8.
Physiol Behav ; 240: 113553, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34375622

RESUMEN

Recent studies suggest that vagus nerve stimulation (VNS) promotes cognitive and behavioral restoration after traumatic brain injuries. As vagus nerve has wide effects over the brain and visceral organs, stimulation of the sensory/visceral afferents might have a therapeutic potential to modulate the level of consciousness. One of the most important challenges in studying consciousness is objective evaluation of the consciousness level. Brain complexity that can be measured through Lempel-Ziv complexity (LZC) index was used as a novel mathematical approach for objective measurement of consciousness. The main goal of our study was to examine the effects of VNS on LZC index of consciousness. In this study, we did VNS on the anesthetized rats, and simultaneously LFPs recording was performed in two different cortical areas of primary somatosensory (S1) or visual (V1) cortex. LZC and the amplitude of slow waves were computed during different periods of VNS. We found that the LZC index during VNS period was significantly higher in both of the cortical areas of S1 and V1. Slow-wave activity decreased during VNS in S1, while there was no significant change in V1. Our findings showed that VNS can augment the consciousness level, and LZC index is a more sensitive parameter for detecting the level of consciousness.


Asunto(s)
Estimulación del Nervio Vago , Animales , Encéfalo , Estado de Conciencia , Ratas , Nervio Vago
9.
eNeuro ; 8(6)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34772694

RESUMEN

Sensorimotor circuits of the lumbosacral spinal cord are required for lower urinary tract (LUT) regulation as well as being engaged in pelvic pain states. To date, no molecular markers have been identified to enable specific visualization of LUT afferents, which are embedded within spinal cord segments that also subserve somatic functions. Moreover, previous studies have not fully investigated the patterning within or across spinal segments, compared afferent innervation of the bladder and urethra, or explored possible structural sex differences in these pathways. We have addressed these questions in adult Sprague Dawley rats, using intramural microinjection of the tract tracer, B subunit of cholera toxin (CTB). Afferent distribution was analyzed within individual sections and 3D reconstructions from sections across four spinal cord segments (L5-S2), and in cleared intact spinal cord viewed with light sheet microscopy. Simultaneous mapping of preganglionic neurons showed their location throughout S1 but restricted to the caudal half of L6. Afferents from both LUT regions extended from L5 to S2, even where preganglionic motor pathways were absent. In L6 and S1, most afferents were associated with the sacral preganglionic nucleus (SPN) and sacral dorsal commissural nucleus (SDCom), with very few in the superficial laminae of the dorsal horn. Spinal innervation patterns by bladder and urethra afferents were remarkably similar, likewise the patterning in male and female rats. In conclusion, microscale to macroscale mapping has identified distinct features of LUT afferent projections to the lumbosacral cord and provided a new anatomic approach for future studies on plasticity, injury responses, and modeling of these pathways.


Asunto(s)
Uretra , Vejiga Urinaria , Vías Aferentes , Animales , Femenino , Interneuronas , Masculino , Ratas , Ratas Sprague-Dawley , Médula Espinal
10.
Front Neurosci ; 15: 657361, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33776645

RESUMEN

Functional understanding of visceral afferents is important for developing the new treatment to visceral hypersensitivity and pain. The sparse distribution of visceral afferents in dorsal root ganglia (DRGs) has challenged conventional electrophysiological recordings. Alternatively, Ca2+ indicators like GCaMP6f allow functional characterization by optical recordings. Here we report a turnkey microscopy system that enables simultaneous Ca2+ imaging at two parallel focal planes from intact DRG. By using consumer-grade optical components, the microscopy system is cost-effective and can be made broadly available without loss of capacity. It records low-intensity fluorescent signals at a wide field of view (1.9 × 1.3 mm) to cover a whole mouse DRG, with a high pixel resolution of 0.7 micron/pixel, a fast frame rate of 50 frames/sec, and the capability of remote focusing without perturbing the sample. The wide scanning range (100 mm) of the motorized sample stage allows convenient recordings of multiple DRGs in thoracic, lumbar, and sacral vertebrae. As a demonstration, we characterized mechanical neural encoding of visceral afferents innervating distal colon and rectum (colorectum) in GCaMP6f mice driven by VGLUT2 promotor. A post-processing routine is developed for conducting unsupervised detection of visceral afferent responses from GCaMP6f recordings, which also compensates the motion artifacts caused by mechanical stimulation of the colorectum. The reported system offers a cost-effective solution for high-throughput recordings of visceral afferent activities from a large volume of DRG tissues. We anticipate a wide application of this microscopy system to expedite our functional understanding of visceral innervations.

11.
Int J Psychophysiol ; 157: 70-81, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32976890

RESUMEN

Startle stimuli evoke lower responses when presented during the early as compared to the late cardiac cycle phase, an effect that has been called 'cardiac modulation of startle' (CMS). The CMS effect may be associated with visceral-afferent neural traffic, as it is reduced in individuals with degeneration of afferent autonomic nerves. The aim of this study was to investigate whether the CMS effect is due a modulation of only early, automatic stages of stimulus processing by baro-afferent neural traffic, or if late stages are also affected. We, therefore, investigated early and late components of auditory-evoked potentials (AEPs) to acoustic startle stimuli (105, 100, 95 dB), which were presented during the early (R-wave +230 ms) or the late cardiac cycle phase (R +530 ms) in two studies. In Study 1, participants were requested to ignore (n = 25) or to respond to the stimuli with button-presses (n = 24). In Study 2 (n = 23), participants were asked to rate the intensity of the stimuli. We found lower EMG startle response magnitudes (both studies) and slower pre-motor reaction times in the early as compared to the late cardiac cycle phase (Study 1). We also observed lower N1 negativity (both studies), but higher P2 (Study 1) and P3 positivity (both studies) in response to stimuli presented in the early cardiac cycle phase. This AEP modulation pattern appears to be specific to the CMS effect, suggesting that early stages of startle stimulus processing are attenuated, whereas late stages are enhanced by baro-afferent neural traffic.


Asunto(s)
Parpadeo , Potenciales Evocados Auditivos , Estimulación Acústica , Acústica , Electromiografía , Humanos , Tiempo de Reacción , Reflejo de Sobresalto
12.
Ann N Y Acad Sci ; 1454(1): 14-30, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31268562

RESUMEN

Brain-gut neural communications have long been considered limited because of conspicuous numerical mismatches. The vagus, the parasympathetic nerve connecting brain and gut, contains thousands of axons, whereas the gastrointestinal (GI) tract contains millions of intrinsic neurons in local plexuses. The numerical paradox was initially recognized in terms of efferent projections, but the number of afferents, which comprise the majority (≈ 80%) of neurites in the vagus, is also relatively small. The present survey of recent morphological observations suggests that vagal terminals, and more generally autonomic and visceral afferent arbors in the stomach as well as throughout the gut, elaborate arbors that are extensive, regionally specialized, polymorphic, polytopic, and polymodal, commonly with multiplicities of receptors and binding sites-smart terminals. The morphological specializations and dynamic tuning of one-to-many efferent projections and many-to-one convergences of contacts onto afferents create a complex architecture capable of extensive peripheral integration in the brain-gut connectome and offset many of the disparities between axon and target numbers. Appreciating this complex architecture can help in the design of therapies for GI disorders.


Asunto(s)
Encéfalo/fisiología , Conectoma , Estómago/inervación , Nervio Vago/fisiología , Vías Aferentes , Animales , Vías Eferentes , Músculo Liso/inervación
13.
F1000Res ; 82019.
Artículo en Inglés | MEDLINE | ID: mdl-31824648

RESUMEN

The transient receptor potential vanilloid 1 (TRPV1) is densely expressed in spinal sensory neurons as well as in cranial sensory neurons, including their central terminal endings. Recent work in the less familiar cranial sensory neurons, despite their many similarities with spinal sensory neurons, suggest that TRPV1 acts as a calcium channel to release a discrete population of synaptic vesicles. The modular and independent regulation of release offers new questions about nanodomain organization of release and selective actions of G protein-coupled receptors.


Asunto(s)
Transducción de Señal , Animales , Potenciales Postsinápticos Excitadores , Neuronas Aferentes , Núcleo Solitario , Canales Catiónicos TRPV
14.
J Comp Neurol ; 527(18): 3002-3013, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31168784

RESUMEN

That visceral sensory afferents are functionally distinct from their somatic analogues has been known for a long time but the detailed knowledge of their synaptic connections and neurotransmitters at the first relay nucleus in the spinal cord has been limited. To provide information on these topics, we investigated the synapses and neurotransmitters of identified afferents from the urinary bladder to the superficial laminae of the rat spinal dorsal horn (DH) and the spinal parasympathetic nucleus (SPN) by tracing with horseradish peroxidase, quantitative electron microscopical analysis, and immunogold staining for GABA and glycine. In the DH, most bladder afferent boutons formed synapses with 1-2 postsynaptic dendrites, whereas in the SPN, close to a half of them formed synapses with 3-8 postsynaptic dendrites. The number of postsynaptic dendrites and dendritic spines per bladder afferent bouton, both measures of synaptic divergence and of potential for synaptic plasticity at a single bouton level, were significantly higher in the SPN than in the DH. Bladder afferent boutons frequently received inhibitory axoaxonic synapses from presynaptic endings in the DH but rarely in the SPN. The presynaptic endings were GABA- and/or glycine-immunopositive. The bouton volume, mitochondrial volume, and active zone area, all determinants of synaptic strength, of the bladder afferent boutons were positively correlated with the number of postsynaptic dendrites. These findings suggest that visceral sensory information conveyed via the urinary bladder afferents is processed differently in the DH than in the SPN, and differently from the way somatosensory information is processed in the spinal cord.


Asunto(s)
Neuronas Aferentes/fisiología , Asta Dorsal de la Médula Espinal/fisiología , Sinapsis/fisiología , Vejiga Urinaria/fisiología , Animales , Masculino , Neuronas Aferentes/ultraestructura , Ratas , Ratas Sprague-Dawley , Asta Dorsal de la Médula Espinal/ultraestructura , Sinapsis/ultraestructura , Vejiga Urinaria/ultraestructura
15.
Physiol Rep ; 6(23): e13927, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30512249

RESUMEN

Previous work has shown that cannabinoids increase feeding, while cholecystokinin (CCK) has an anorexigenic effect on food intake. Receptors for these hormones are located on cell bodies of vagal afferent nerves in the nodose ganglia. An interaction between CCK and endocannabinoid receptors has been suggested. The purpose of these studies is to explore the effect of pretreatment with a cannabinoid agonist, CP 55,940, on nodose neuron activation by CCK. To determine the effect of CP 55,940 and CCK on neuron activation, rats were anesthetized and nodose ganglia were excised. The neurons were dissociated and placed in culture on coverslips. The cells were treated with media; CP 55,940; CCK; CP 55,940 followed by CCK; or AM 251, a CB1 receptor antagonist, and CP 55,940 followed by CCK. Immunohistochemistry was performed to stain the cells for cFos as a measure of cell activation. Neurons were identified using neurofilament immunoreactivity. The neurons on each slip were counted using fluorescence imaging, and the number of neurons that were cFos positive was counted in order to calculate the percentage of activated neurons per coverslip. Pretreatment with CP 55,940 decreased the percentage of neurons expressing cFos-immunoreactivity in response to CCK. This observation suggests that cannabinoids inhibit CCK activation of nodose ganglion neurons.


Asunto(s)
Agonistas de Receptores de Cannabinoides/farmacología , Colecistoquinina/farmacología , Ciclohexanoles/farmacología , Neuronas/efectos de los fármacos , Ganglio Nudoso/efectos de los fármacos , Animales , Células Cultivadas , Masculino , Neuronas/metabolismo , Ganglio Nudoso/citología , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley
16.
Hypertension ; 72(3): 667-675, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30012866

RESUMEN

Renal denervation (RDN) has been shown to restore endogenous neuronal nitric oxide synthase (nNOS) in the paraventricular nucleus (PVN) and reduce sympathetic drive during chronic heart failure (CHF). The purpose of the present study was to assess the contribution of afferent renal nerves to the nNOS-mediated sympathetic outflow within the PVN in rats with CHF. CHF was induced in rats by ligation of the left coronary artery. Four weeks after surgery, selective afferent RDN (A-RDN) was performed by bilateral perivascular application of capsaicin on the renal arteries. Seven days after intervention, nNOS protein expression, nNOS immunostaining signaling, and diaphorase-positive stained cells were significantly decreased in the PVN of CHF rats, changes that were reversed by A-RDN. A-RDN reduced basal lumbar sympathetic nerve activity in rats with CHF (8.5%±0.5% versus 17.0%±1.2% of max). Microinjection of nNOS inhibitor L-NMMA (L-NG-monomethyl arginine citrate) into the PVN produced a blunted increase in lumbar sympathetic nerve activity in rats with CHF. This response was significantly improved after A-RDN (Δ lumbar sympathetic nerve activity: 25.7%±2.4% versus 11.2%±0.9%). Resting afferent renal nerves activity was substantially increased in CHF compared with sham rats (56.3%±2.4% versus 33.0%±4.7%). These results suggest that intact afferent renal nerves contribute to the reduction of nNOS in the PVN. A-RDN restores nNOS and thus attenuates the sympathoexcitation. Also, resting afferent renal nerves activity is elevated in CHF rats, which may highlight a crucial neural mechanism arising from the kidney in the maintenance of enhanced sympathetic drive in CHF.


Asunto(s)
Desnervación/métodos , Insuficiencia Cardíaca/fisiopatología , Riñón/inervación , Óxido Nítrico Sintasa de Tipo I/metabolismo , Núcleo Hipotalámico Paraventricular/fisiopatología , Sistema Nervioso Simpático/fisiopatología , Vías Aferentes/efectos de los fármacos , Vías Aferentes/fisiología , Animales , Capsaicina/farmacología , Enfermedad Crónica , Inhibidores Enzimáticos/farmacología , Masculino , Óxido Nítrico Sintasa de Tipo I/antagonistas & inhibidores , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/enzimología , Ratas Sprague-Dawley , Fármacos del Sistema Sensorial/farmacología , Sistema Nervioso Simpático/efectos de los fármacos , omega-N-Metilarginina/farmacología
17.
Resuscitation ; 126: 7-13, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29447999

RESUMEN

RATIONALE: Cardiac arrest (CA) is a serious condition characterized by high mortality rates, even after initial successful resuscitation, mainly due to neurological damage. Whether brain-heart communication is associated with outcome after CA is unknown. Heartbeat-evoked brain potentials (HEPs) represent neurophysiological indicators of brain-heart communication. The aim of this study was to address the association between HEPs and survival after CA. METHODS: HEPs were calculated from resting EEG/ECG in 55 CA patients 24 h after resuscitation. All patients were treated with targeted temperature management and a standardized sedation protocol during assessment. We investigated the association between HEP amplitude (180-320 ms, 455-595 ms, 860-1000 ms) and 6-month survival. RESULTS: Twenty-five of 55 patients (45%) were still alive at 6-month follow-up. Survivors showed a higher HEP amplitude at frontopolar and frontal electrodes in the late HEP interval than non-survivors. This effect remained significant after controlling for between-group differences in terms of age, Fentanyl dose, and time lag between resuscitation and EEG assessment. There were no group differences in heart rate or heart rate variability. CONCLUSION: Brain-heart communication, as reflected by HEPs, is associated with survival after CA. Future studies should address the brain-heart axis in CA.


Asunto(s)
Potenciales Evocados , Paro Cardíaco/mortalidad , Paro Cardíaco/fisiopatología , Frecuencia Cardíaca , Adulto , Anciano , Electrocardiografía/métodos , Electroencefalografía/métodos , Femenino , Paro Cardíaco/terapia , Humanos , Hipotermia Inducida/métodos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Sistema de Registros , Estudios Retrospectivos
18.
Neuroscience ; 379: 219-227, 2018 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-29604384

RESUMEN

During pregnancy, the progesterone metabolite, allopregnanolone (ALLO), becomes elevated and has been associated with altered levels within the CNS and resulting changes in GABAA receptor function. Pregnant animals poorly compensate reflexes for a decrease in blood pressure during hemorrhage. Previous works suggested that ALLO decreases baroreflex responses by central actions, however, the underlying mechanisms are poorly understood. In this study, we tested ALLO actions on visceral afferent synaptic transmission at second-order neurons within medial portions of the nucleus tractus solitarius (NTS) using hindbrain slices from non-pregnant female rats. Solitary tract (ST) stimulation-evoked excitatory postsynaptic currents (ST-eEPSCs) in NTS neurons directly connected to vagal afferents within the ST. ST-eEPSCs were functionally identified as monosynaptic by the latency characteristics (low jitter = standard deviation of latency, ≤200 µs) to ST stimulation. Such second-order neurons all displayed spontaneous inhibitory postsynaptic currents (sIPSCs), and low micromolar concentrations of ALLO increased frequency and decay time. At submicromolar concentrations, ALLO induced a tonic, GABAergic inhibitory current and suppressed ST-eEPSCs' amplitude. While GABAA receptor antagonist, bicuculline, blocked all ALLO effects, gabazine only blocked sIPSC actions. In current-clamp mode, ALLO perfusion increased failure of ST stimulation to trigger action potentials in most neurons. Thus, our results indicate that ALLO acts to suppress visceral afferent ST synaptic transmission at first synapses by activating pharmacologically distinct GABAA subtypes at different concentration ranges. This ALLO-mediated attenuated visceral afferent signal integration in NTS may underlie reflex changes in blood pressure during gestation.


Asunto(s)
Fármacos del Sistema Nervioso Central/farmacología , Neuronas Aferentes/efectos de los fármacos , Pregnanolona/farmacología , Núcleo Solitario/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Animales , Bicuculina/farmacología , Femenino , Neuronas Aferentes/fisiología , Técnicas de Placa-Clamp , Piridazinas/farmacología , Ratas Sprague-Dawley , Receptores de GABA-A/metabolismo , Núcleo Solitario/fisiología , Transmisión Sináptica/fisiología , Técnicas de Cultivo de Tejidos , Ácido gamma-Aminobutírico/metabolismo
19.
J Comp Neurol ; 526(4): 707-720, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29178500

RESUMEN

Spinal afferent neurons are responsible for the transduction and transmission of noxious (painful) stimuli and innocuous stimuli that do not reach conscious sensations from visceral organs to the central nervous system. Although the location of the nerve cell bodies of spinal afferents is well known to reside in dorsal root ganglia (DRG), the morphology and location of peripheral nerve endings of spinal afferents that transduce sensory stimuli into action potentials is poorly understood. The individual nerve endings of spinal afferents that innervate the urinary bladder have never been unequivocally identified in any species. We used an anterograde tracing technique developed in our laboratory to selectively label only spinal afferents. Mice were anesthetized and unilateral injections of dextran-amine made into lumbosacral DRGs (L5-S2). Seven to nine days postsurgery, mice were euthanized, the urinary bladder removed, then fresh-fixed and stained for immunoreactivity to calcitonin-gene-related-peptide (CGRP). Four distinct morphological types of spinal afferent ending in the bladder were identified. Three types existed in the detrusor muscle and one major type in the sub-urothelium and urothelium. Most nerve endings were located in detrusor muscle where the three types could be identified as having: "branching", "simple", or "complex" morphology. The majority of spinal afferent nerve endings were CGRP-immunoreactive. Single spinal afferent axons bifurcated many times upon entering the bladder and developed varicosities along their axon terminal endings. We present the first morphological identification of spinal afferent nerve endings in the mammalian urinary bladder.


Asunto(s)
Ganglios Espinales/citología , Neuronas Aferentes/citología , Vejiga Urinaria/inervación , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Femenino , Ganglios Espinales/metabolismo , Vértebras Lumbares , Masculino , Ratones Endogámicos C57BL , Técnicas de Trazados de Vías Neuroanatómicas , Neuronas Aferentes/metabolismo , Sacro , Vejiga Urinaria/citología
20.
IEEE J Transl Eng Health Med ; 4: 2000108, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27551646

RESUMEN

Mapping the brain centers that mediate the sensory-perceptual processing of visceral afferent signals arising from the body (i.e., interoception) is useful both for characterizing normal brain activity and for understanding clinical disorders related to abnormal processing of visceral sensation. Here, we report a novel closed-system, electrohydrostatically driven master-slave device that was designed and constructed for delivering controlled fluidic stimulations of visceral organs and inner cavities of the human body within the confines of a 3T magnetic resonance imaging (MRI) scanner. The design concept and performance of the device in the MRI environment are described. In addition, the device was applied during a functional MRI (fMRI) investigation of visceral stimulation related to detrusor distention in two representative subjects to verify its feasibility in humans. System evaluation tests demonstrate that the device is MR-compatible with negligible impact on imaging quality [static signal-to-noise ratio (SNR) loss <2.5% and temporal SNR loss <3.5%], and has an accuracy of 99.68% for flow rate and 99.27% for volume delivery. A precise synchronization of the stimulus delivery with fMRI slice acquisition was achieved by programming the proposed device to detect the 5 V transistor-transistor logic (TTL) trigger signals generated by the MRI scanner. The fMRI data analysis using the general linear model analysis with the standard hemodynamic response function showed increased activations in the network of brain regions that included the insula, anterior and mid-cingulate and lateral prefrontal cortices, and thalamus in response to increased distension pressure on viscera. The translation from manually operated devices to an MR-compatible and MR-synchronized device under automatic control represents a useful innovation for clinical neuroimaging studies of human interoception.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA