Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Analyst ; 146(17): 5264-5270, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34337624

RESUMEN

Peroxynitrite (ONOO-) is a highly reactive substance, and plays an essential part in maintaining cellular homeostasis. It is crucial to monitor the ONOO- level in cells in normal and abnormal states. We introduced a p-dimethylaminophenylether-based fluorescent probe PDPE-PN, which could be synthesized readily. The new probe had prominent sensitivity and specificity, and a fast response towards ONOO-. The spectral performance of probe PDPE-PN was outstanding and the limit of detection was 69 nM. Probe PDPE-PN with low toxicity was applied to detect endogenous/exogenous ONOO- in RAW 264.7 macrophages and zebrafish. Importantly, successful application of the new receptor opens up new ideas for the design of ONOO- probes.


Asunto(s)
Colorantes Fluorescentes , Pez Cebra , Animales , Colorantes Fluorescentes/toxicidad , Macrófagos , Ácido Peroxinitroso/toxicidad
2.
Analyst ; 146(21): 6556-6565, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34585179

RESUMEN

Most of the ONOO- fluorescent probes have restricted applications because of their aggregation-caused quenching (ACQ) effect, long response time and low fluorescence enhancement. Herein, we developed a novel AIEgen fluorescent probe (PE-XY) based on a benzothiazole and quinolin scaffold with high sensitivity and selectivity for imaging of ONOO-. The results indicated that probe PE-XY exhibited fast response towards ONOO- with 2000-fold enhancement of fluorescence intensity ratio in vitro. Moreover, PE-XY exhibited a relatively high sensitivity (limit of detection: 8.58 nM), rapid response (<50 s), high fluorescence quantum yield (δ = 0.81) and excellent selectivity over other analytes towards ONOO-in vitro. Furthermore, PE-XY was successfully applied to detect endogenous ONOO- levels in living HeLa cells, C. elegans and inflammatory mice with low cytotoxicity. Overall, this work provided a novel fast-response and highly selective AIEgen fluorescent probe for real-time monitoring ONOO- fluctuations in living systems.


Asunto(s)
Colorantes Fluorescentes , Ácido Peroxinitroso , Animales , Caenorhabditis elegans , Fluorescencia , Colorantes Fluorescentes/toxicidad , Células HeLa , Humanos , Ratones , Ácido Peroxinitroso/toxicidad
3.
Angew Chem Int Ed Engl ; 60(9): 4720-4731, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33210779

RESUMEN

Photoacoustic (PA) technology can transform light energy into acoustic wave, which can be used for either imaging or therapy that depends on the power density of pulsed laser. Here, we report photosensitizer-free polymeric nanocapsules loaded with nitric oxide (NO) donors, namely NO-NCPs, formulated from NIR light-absorbable amphiphilic polymers and a NO-releasing donor, DETA NONOate. Controlled NO release and nanocapsule dissociation are achieved in acidic lysosomes of cancer cells. More importantly, upon pulsed laser irradiation, the PA cavitation can excite water to generate significant reactive oxygen species (ROS) such as superoxide radical (O2.- ), which further spontaneously reacts with the in situ released NO to burst highly cytotoxic peroxynitrite (ONOO- ) in cancer cells. The resultant ONOO- generation greatly promotes mitochondrial damage and DNA fragmentation to initiate programmed cancer cell death. Apart from PA imaging, PA cavitation can intrinsically amplify reactive species via photosensitization-free materials for promising disease theranostics.


Asunto(s)
Rayos Infrarrojos , Nanocápsulas/química , Ácido Peroxinitroso/química , Polímeros/química , Especies Reactivas de Oxígeno/metabolismo , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Clorofilidas , Daño del ADN/efectos de los fármacos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/química , Ácido Peroxinitroso/uso terapéutico , Ácido Peroxinitroso/toxicidad , Técnicas Fotoacústicas , Porfirinas/farmacología , Porfirinas/uso terapéutico , Superóxidos/metabolismo , Nanomedicina Teranóstica , Trasplante Homólogo
4.
Am J Physiol Regul Integr Comp Physiol ; 318(5): R1004-R1013, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32292063

RESUMEN

Both reactive nitrogen and oxygen species (RNS and ROS), such as nitric oxide, peroxynitrite, and hydrogen peroxide, have been implicated as mediators of pancreatic ß-cell damage during the pathogenesis of autoimmune diabetes. While ß-cells are thought to be vulnerable to oxidative damage due to reportedly low levels of antioxidant enzymes, such as catalase and glutathione peroxidase, we have shown that they use thioredoxin reductase to detoxify hydrogen peroxide. Thioredoxin reductase is an enzyme that participates in the peroxiredoxin antioxidant cycle. Peroxiredoxins are expressed in ß-cells and, when overexpressed, protect against oxidative stress, but the endogenous roles of peroxiredoxins in the protection of ß-cells from oxidative damage are unclear. Here, using either glucose oxidase or menadione to continuously deliver hydrogen peroxide, or the combination of dipropylenetriamine NONOate and menadione to continuously deliver peroxynitrite, we tested the hypothesis that ß-cells use peroxiredoxins to detoxify both of these reactive species. Either pharmacological peroxiredoxin inhibition with conoidin A or specific depletion of cytoplasmic peroxiredoxin 1 (Prdx1) using siRNAs sensitizes INS 832/13 cells and rat islets to DNA damage and death induced by hydrogen peroxide or peroxynitrite. Interestingly, depletion of peroxiredoxin 2 (Prdx2) had no effect. Together, these results suggest that ß-cells use cytoplasmic Prdx1 as a primary defense mechanism against both ROS and RNS.


Asunto(s)
Daño del ADN , Peróxido de Hidrógeno/toxicidad , Células Secretoras de Insulina/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Peroxirredoxinas/metabolismo , Ácido Peroxinitroso/toxicidad , Animales , Muerte Celular , Línea Celular Tumoral , Citoplasma/enzimología , Citoprotección , Inhibidores Enzimáticos/farmacología , Células Secretoras de Insulina/enzimología , Células Secretoras de Insulina/patología , Masculino , Peroxirredoxinas/antagonistas & inhibidores , Peroxirredoxinas/genética , Quinoxalinas/farmacología , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas Sprague-Dawley , Transducción de Señal , Tiorredoxina Reductasa 1/metabolismo
5.
Int J Mol Sci ; 20(6)2019 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-30917504

RESUMEN

Na-amino acid co-transporters (NaAAcT) are uniquely affected in rabbit intestinal villus cell brush border membrane (BBM) during chronic intestinal inflammation. Specifically, Na-alanine co-transport (ASCT1) is inhibited secondary to a reduction in the affinity of the co-transporter for alanine, whereas Na-glutamine co-transport (B0AT1) is inhibited secondary to a reduction in BBM co-transporter numbers. During chronic intestinal inflammation, there is abundant production of the potent oxidant peroxynitrite (OONO). However, whether OONO mediates the unique alteration in NaAAcT in intestinal epithelial cells during chronic intestinal inflammation is unknown. In this study, ASCT1 and B0AT1 were inhibited by OONO in vitro. The mechanism of inhibition of ASCT1 by OONO was secondary to a reduction in the affinity of the co-transporter for alanine, and secondary to a reduction in the number of co-transporters for B0AT1, which were further confirmed by Western blot analyses. In conclusion, peroxynitrite inhibited both BBM ASCT1 and B0AT1 in intestinal epithelial cells but by different mechanisms. These alterations in the villus cells are similar to those seen in the rabbit model of chronic enteritis. Therefore, this study indicates that peroxynitrite may mediate the inhibition of ASCT1 and B0AT1 during inflammation, when OONO levels are known to be elevated in the mucosa.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Enterocitos/metabolismo , Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Microvellosidades/metabolismo , Simportadores/metabolismo , Animales , Línea Celular , Enterocitos/efectos de los fármacos , Enterocitos/patología , Inflamación/metabolismo , Ácido Peroxinitroso/toxicidad , Ratas
6.
J Biol Chem ; 291(9): 4763-78, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26728460

RESUMEN

Identification of factors contributing to the development of chronic obstructive pulmonary disease (COPD) is crucial for developing new treatments. An increase in the levels of protein-disulfide isomerase (PDI), a multifaceted endoplasmic reticulum resident chaperone, has been demonstrated in human smokers, presumably as a protective adaptation to cigarette smoke (CS) exposure. We found a similar increase in the levels of PDI in the murine model of COPD. We also found abnormally high levels (4-6 times) of oxidized and sulfenilated forms of PDI in the lungs of murine smokers compared with non-smokers. PDI oxidation progressively increases with age. We begin to delineate the possible role of an increased ratio of oxidized PDI in the age-related onset of COPD by investigating the impact of exposure to CS radicals, such as acrolein (AC), hydroxyquinones (HQ), peroxynitrites (PN), and hydrogen peroxide, on their ability to induce unfolded protein response (UPR) and their effects on the structure and function of PDIs. Exposure to AC, HQ, PN, and CS resulted in cysteine and tyrosine nitrosylation leading to an altered three-dimensional structure of the PDI due to a decrease in helical content and formation of a more random coil structure, resulting in protein unfolding, inhibition of PDI reductase and isomerase activity in vitro and in vivo, and subsequent induction of endoplasmic reticulum stress response. Addition of glutathione prevented the induction of UPR, and AC and HQ induced structural changes in PDI. Exposure to PN and glutathione resulted in conjugation of PDI possibly at active site tyrosine residues. The findings presented here propose a new role of PDI in the pathogenesis of COPD and its age-dependent onset.


Asunto(s)
Radicales Libres/toxicidad , Pulmón/enzimología , Proteína Disulfuro Isomerasas/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/enzimología , Mucosa Respiratoria/enzimología , Fumar/efectos adversos , Respuesta de Proteína Desplegada/efectos de los fármacos , Acroleína/toxicidad , Animales , Cámaras de Exposición Atmosférica , Línea Celular , Supervivencia Celular , Inducción Enzimática/efectos de los fármacos , Femenino , Humanos , Peróxido de Hidrógeno/toxicidad , Hidroxilación , Pulmón/efectos de los fármacos , Pulmón/patología , Ratones Endogámicos C57BL , Oxidación-Reducción , Ácido Peroxinitroso/toxicidad , Conformación Proteica , Proteína Disulfuro Isomerasas/antagonistas & inhibidores , Proteína Disulfuro Isomerasas/química , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfermedad Pulmonar Obstructiva Crónica/patología , Quinonas/toxicidad , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/patología
7.
Andrologia ; 49(3)2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27135897

RESUMEN

The most toxic species in live systems include reactive nitrogen species such as peroxynitrite, which at high levels induces nitrosative stress. In human spermatozoa, the negative effect of peroxynitrite on motility and mitochondrial membrane potential was recently demonstrated, and the hypothesis of this work is that impairment of ATP production could be one cause of the effect on motility. Therefore, the aim here was to evaluate ATP production by both glycolysis and oxidative phosphorylation (OXPHOS) in spermatozoa exposed to peroxynitrite in vitro. Human spermatozoa were incubated with SIN-1, a molecule which generates peroxynitrite, and the ATP level was evaluated. Then, to inactivate glycolysis or OXPHOS, spermatozoa were incubated with pharmacological inhibitors of these pathways. Spermatozoa treated for inactivating one or the other pathway were exposed to SIN-1, and the ATP level was compared to the control without SIN-1 in each condition. The ATP level fell after peroxynitrite exposure. The ATP in spermatozoa treated for inactivating one or the other metabolic pathway and subsequently exposed to peroxynitrite was reduced compared with the control. These results show for the first time that an important mechanism by which peroxynitrite reduces sperm function is the inhibition of ATP production, affecting both glycolysis and OXPHOS.


Asunto(s)
Adenosina Trifosfato/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ácido Peroxinitroso/toxicidad , Motilidad Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Antimetabolitos/toxicidad , Desoxiglucosa/toxicidad , Glucólisis/efectos de los fármacos , Humanos , Masculino , Mitocondrias/efectos de los fármacos , Molsidomina/análogos & derivados , Molsidomina/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Estrés Oxidativo , Rotenona/toxicidad , Espermatozoides/metabolismo , Desacopladores/toxicidad
8.
BMC Cardiovasc Disord ; 16(1): 193, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27724862

RESUMEN

BACKGROUND: Diabetes-induced vascular dysfunction may arise from reduced nitric oxide (NO) availability, following interaction with superoxide to form peroxynitrite. Peroxynitrite can induce formation of 3-nitrotyrosine-modified proteins. RhoA/ROCK signaling is also involved in diabetes-induced vascular dysfunction. The study aimed to investigate possible links between Rho/ROCK signaling, hyperglycemia, and peroxynitrite in small coronary arteries. METHODS: Rat small coronary arteries were exposed to normal (NG; 5.5 mM) or high (HG; 23 mM) D-glucose. Vascular ring constriction to 3 mM 4-aminopyridine and dilation to 1 µM forskolin were measured. Protein expression (immunohistochemistry and western blot), mRNA expression (real-time PCR), and protein activity (luminescence-based G-LISA and kinase activity spectroscopy assays) of RhoA, ROCK1, and ROCK2 were determined. RESULTS: Vascular ring constriction and dilation were smaller in the HG group than in the NG group (P < 0.05); inhibition of RhoA or ROCK partially reversed the effects of HG. Peroxynitrite impaired vascular ring constriction/dilation; this was partially reversed by inhibition of RhoA or ROCK. Protein and mRNA expressions of RhoA, ROCK1, and ROCK2 were higher under HG than NG (P < 0.05). This HG-induced upregulation was attenuated by inhibition of RhoA or ROCK (P < 0.05). HG increased RhoA, ROCK1, and ROCK2 activity (P < 0.05). Peroxynitrite also enhanced RhoA, ROCK1, and ROCK2 activity; these actions were partially inhibited by 100 µM urate (peroxynitrite scavenger). Exogenous peroxynitrite had no effect on the expression of the voltage-dependent K+ channels 1.2 and 1.5. CONCLUSIONS: Peroxynitrite-induced coronary vascular dysfunction may be mediated, at least in part, through increased expressions and activities of RhoA, ROCK1, and ROCK2.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Vasos Coronarios/fisiopatología , Regulación de la Expresión Génica , ARN/genética , Vasoconstricción/fisiología , Quinasas Asociadas a rho/genética , Proteína de Unión al GTP rhoA/genética , Animales , Western Blotting , Células Cultivadas , Enfermedad de la Arteria Coronaria/etiología , Enfermedad de la Arteria Coronaria/metabolismo , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/metabolismo , Diabetes Mellitus Experimental/complicaciones , Modelos Animales de Enfermedad , Inmunohistoquímica , Masculino , Ácido Peroxinitroso/toxicidad , Fosforilación , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal , Quinasas Asociadas a rho/biosíntesis , Proteína de Unión al GTP rhoA/biosíntesis
9.
Clin Exp Ophthalmol ; 43(6): 568-77, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25801048

RESUMEN

BACKGROUND: Oxidative and nitrative processes have an important role in the pathogenesis of glaucomatous neurodegeneration. Oxidative stress occurs when cellular production of reactive oxygen species outweighs the protective capacity of antioxidant defences. Reactive oxygen species are generated as by-products of cellular metabolism, primarily in the mitochondria. Herein, we present a novel investigation of the effects of molecular hydrogen (H2 ) on retinal cells exposed to oxidative stress. METHODS: We cultured adult rat retinal tissues in an organotypic culture system with a nitric oxide donor, S-nitroso-N-acetylpenicillamine, in the presence or absence of H2 . Loss of mitochondrial membrane potential and apoptosis of retinal cells were analysed using a MitoTMRE detection kit and TdT-mediated dUTP nick end labeling (TUNEL) assay, respectively. Tyrosine nitration levels and oxidative stress damage in the retina were evaluated using immunohistochemical staining. Retinal damage was quantified by measuring the numbers of cells in the ganglion cell and inner nuclear layers and the thickness of the retina. RESULTS: H2 suppressed loss of mitochondrial membrane potential and apoptosis in retinal cells. Moreover, H2 decreased the tyrosine nitration level and suppressed oxidative stress damage in retinal cells. S-nitroso-N-acetylpenicillamine treatment decreased the cell numbers in the ganglion cell layer and inner nuclear layer, but the presence of H2 inhibited this reduction. These findings suggest that H2 has a neuroprotective effect against retinal cell oxidative damage, presumably by scavenging peroxynitrite. CONCLUSIONS: H2 reduces cellular peroxynitrite, a highly toxic reactive nitrogen species. Thus, H2 may be an effective and novel clinical tool for treating glaucoma and other oxidative stress-related diseases.


Asunto(s)
Hidrógeno/farmacología , Fármacos Neuroprotectores/farmacología , Óxido Nítrico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ácido Peroxinitroso/toxicidad , Retina/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular , Etiquetado Corte-Fin in Situ , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Nitrosación , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Retina/metabolismo , Retina/patología , S-Nitroso-N-Acetilpenicilamina/toxicidad , Tirosina/metabolismo
10.
Glia ; 62(9): 1463-75, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24838858

RESUMEN

Microglia activated through Toll-like receptor (TLR)-2 or -4 can cause neuronal death by phagocytosing otherwise-viable neurons-a form of cell death called "phagoptosis." UDP release from neurons has been shown to provoke microglial phagocytosis of neurons via microglial P2Y6 receptors, but whether inhibition of this process affects neuronal survival is unknown. We tested here whether inhibition of P2Y6 signaling could prevent neuronal death in inflammatory conditions, and whether UDP signaling can induce phagoptosis of stressed but viable neurons. We find that delayed neuronal loss and death in mixed neuronal/glial cultures induced by the TLR ligands lipopolysaccharide (LPS) or lipoteichoic acid was prevented by: apyrase (to degrade nucleotides), Reactive Blue 2 (to inhibit purinergic signaling), or MRS2578 (to specifically block P2Y6 receptors). In each case, inflammatory activation of microglia was not affected, and the rescued neurons remained viable for at least 7 days. Blocking P2Y6 receptors with MRS2578 also prevented phagoptosis of neurons induced by 250 nM amyloid beta 1-42, 5 µM peroxynitrite, or 50 µM 3-morpholinosydnonimine (which releases reactive oxygen and nitrogen species). Furthermore, the P2Y6 receptor agonist UDP by itself was sufficient to stimulate microglial phagocytosis and to induce rapid neuronal loss that was prevented by eliminating microglia or inhibiting phagocytosis. In vivo, injection of LPS into rat striatum induced microglial activation and delayed neuronal loss and blocking P2Y6 receptors with MRS2578 prevented this neuronal loss. Thus, blocking UDP/P2Y6 signaling is sufficient to prevent neuronal loss and death induced by a wide range of stimuli that activate microglial phagocytosis of neurons.


Asunto(s)
Microglía/fisiología , Neuronas/inmunología , Fagocitosis/fisiología , Receptores Purinérgicos P2/metabolismo , Uridina Difosfato/metabolismo , Péptidos beta-Amiloides/toxicidad , Animales , Apirasa/farmacología , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Células Cultivadas , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/inmunología , Isotiocianatos/farmacología , Lipopolisacáridos/toxicidad , Masculino , Microglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fragmentos de Péptidos/toxicidad , Ácido Peroxinitroso/toxicidad , Fagocitosis/efectos de los fármacos , Antagonistas del Receptor Purinérgico P2/farmacología , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Ácidos Teicoicos/toxicidad , Tiourea/análogos & derivados , Tiourea/farmacología , Triazinas/farmacología
11.
J Antimicrob Chemother ; 68(8): 1801-11, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23612570

RESUMEN

OBJECTIVES: Although the most accepted mechanisms of action of amphotericin B and azoles are related to ergosterol, it is possible that these drugs have other effects on the fungal cell. In the present study, the role of endogenous reactive oxygen species (ROS) and peroxynitrite produced by azoles and amphotericin B in the fungus Cryptococcus gattii were examined. METHODS: We studied distinct parameters to evaluate the effect of oxidative and nitrosative stresses induced by these drugs in C. gattii cells: lipid peroxidation, ergosterol content, ROS and peroxynitrite production, enzymatic activity of the antioxidant system and the in vitro interaction of antifungal drugs with a peroxidase inhibitor, a superoxide dismutase inhibitor and a peroxynitrite scavenger. RESULTS: The data demonstrated that itraconazole led to ROS formation and lipid peroxidation in C. gattii cells in the early stages of the treatment; this did not occur with fluconazole. This phenomenon strongly increased the activities of enzymes of the antioxidant system. These results were confirmed by synergism observed between the catalase inhibitor and itraconazole. Amphotericin B caused lipid peroxidation in C. gattii cells through a greatly enhanced production of oxidative and nitrosative radicals with increased peroxidase activity. These data were confirmed by the synergism between the catalase/superoxide dismutase inhibitors and amphotericin B. In addition, the effect of this antifungal was antagonized by the peroxynitrite scavenger. CONCLUSIONS: Oxidative and nitrosative bursts play an important role in the antifungal activity of itraconazole and amphotericin B against C. gattii.


Asunto(s)
Anfotericina B/farmacología , Antifúngicos/farmacología , Cryptococcus gattii/efectos de los fármacos , Itraconazol/farmacología , Nitrosación , Estallido Respiratorio , Cryptococcus gattii/metabolismo , Ácido Peroxinitroso/metabolismo , Ácido Peroxinitroso/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/toxicidad
12.
Chem Res Toxicol ; 26(2): 195-202, 2013 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-23140136

RESUMEN

Oxidative damage to DNA has many origins, including irradiation, inflammation, and oxidative stress, but the chemistries are not the same. The most oxidizable base in DNA is 2-deoxyguanosine (dG), and the primary oxidation products are 8-oxodG and 2-amino-imidazolone. The latter rapidly converts to 2,2-diamino-oxazolone (Ox), and 8-oxodG is further oxidized to spiroiminodihydantoin (Sp) and guanidinohydantoin (Gh). In this study, we have examined the dose-response relationship for the formation of the above four products arising in calf thymus DNA exposed to gamma irradiation, photoactivated rose bengal, and two sources of peroxynitrite. In order to carry out these experiments, we developed a chromatographic system and synthesized isotopomeric internal standards to enable accurate and precise analysis based upon selected reaction monitoring mass spectrometry. 8-OxodG was the most abundant products in all cases, but its accumulation was highly dependent on the nature of the oxidizing agent and the subsequent conversion to Sp and Gh. Among the other oxidation products, Ox was the most abundant, and Sp was formed in significantly greater yield than Gh.


Asunto(s)
ADN/química , Guanina/química , Oxidantes/química , Ácido Peroxinitroso/química , Oxígeno Singlete/química , 8-Hidroxi-2'-Desoxicoguanosina , Animales , Bovinos , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Rayos gamma , Guanidinas/química , Guanosina/análogos & derivados , Guanosina/química , Hidantoínas/química , Oxidantes/toxicidad , Oxidación-Reducción , Ácido Peroxinitroso/toxicidad , Rosa Bengala/química , Rosa Bengala/toxicidad , Oxígeno Singlete/toxicidad , Compuestos de Espiro/química
13.
Nitric Oxide ; 31: 20-30, 2013 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-23518198

RESUMEN

Excess production of superoxide (O2(-)) and nitric oxide (NO) in blood vessel walls may occur early in atherogenesis leading to the formation of peroxynitrite, a strong oxidant and nitrating agent. This study was designed to determine the effect of diphenyl diselenide (PhSe)2, a synthetic organoselenium compound, in comparison with ebselen, on peroxynitrite-mediated endothelial damage. Experimental results showed that pre-incubation of BAEC (24 h) with low concentrations of (PhSe)2 (0.5 and 1 µM) protected the cells from peroxynitrite-dependent apoptosis and protein tyrosine nitration. The intracellular levels of GSH were almost completely depleted by peroxynitrite and, although the compounds did not restore its normal levels, (PhSe)2 per se significantly increased GSH in a concentration-dependent manner. Moreover, (PhSe)2, which was about two times more active as a GPx mimic than ebselen, induced a significantly higher increase in both cellular GPx expression and activity. Taking into account the kinetics of the reaction between peroxynitrite and (PhSe)2, our data indicate that (PhSe)2 protects BAEC against peroxynitrite-mediated cell damage not by a direct reaction, but rather by increasing cellular GPx expression as a consequence of enhanced nuclear translocation of Nrf-2, which together with the increase in intracellular GSH, may work catalytically to reduce peroxynitrite to nitrite.


Asunto(s)
Apoptosis/efectos de los fármacos , Azoles/farmacología , Derivados del Benceno/farmacología , Células Endoteliales/efectos de los fármacos , Compuestos de Organoselenio/farmacología , Ácido Peroxinitroso/toxicidad , Sustancias Protectoras/farmacología , Análisis de Varianza , Animales , Aorta/citología , Aorta/efectos de los fármacos , Aorta/metabolismo , Bovinos , Supervivencia Celular/efectos de los fármacos , Células Endoteliales/citología , Células Endoteliales/metabolismo , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Isoindoles , Factor 2 Relacionado con NF-E2
14.
Exp Eye Res ; 100: 7-16, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22713178

RESUMEN

Methionine sulfoxide reductases (Msrs) in lens cells are important for the maintenance of lens cell viability and resistance to oxidative stress damage. Peroxynitrite (ONOO(-)), as a strong oxidizing and nitrating agent, occurred in diabetic retinopathy patients and diabetic model animal. In an attempt to shed light on the roles of MsrB1, known as selenoprotein R, in protecting human lens epithelial (HLE) cells against peroxynitrite damage, and contribution of loss of its normal activity to cataract, the influences of MsrB1 gene silencing on peroxynitrite-induced apoptosis in HLE cells were studied. The results showed that both exogenous peroxynitrite and MsrB1 gene silencing by short interfering RNA (siRNA) independently resulted in oxidative stress, endoplasmic reticulum (ER) stress, activation of caspase-3 as well as an increase of apoptosis in HLE cells; moreover, when MsrB1-gene-silenced cells were exposed to 300 µM peroxynitrite, these indexes were further aggravated at the same conditions and DNA strand breaks occurred. The results demonstrate that in HLE cells MsrB1 may play important roles in regulating redox balance and mitigating ER stress as induced by oxidative stress under physiological conditions; MsrB1 may also protect HLE cells against peroxynitrite-induced apoptosis by inhibiting the activation of caspase-3 and oxidative damage of DNA under pathological conditions. Our results imply that loss of its normal activity is likely to contribute to cataract.


Asunto(s)
Apoptosis/efectos de los fármacos , Células Epiteliales/enzimología , Cristalino/enzimología , Metionina Sulfóxido Reductasas/fisiología , Estrés Oxidativo , Ácido Peroxinitroso/toxicidad , Factores de Transcripción/fisiología , Western Blotting , Caspasa 3/metabolismo , Supervivencia Celular/fisiología , Células Cultivadas , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Células Epiteliales/patología , Citometría de Flujo , Silenciador del Gen/fisiología , Proteínas de Choque Térmico/metabolismo , Humanos , Cristalino/patología , Malondialdehído/metabolismo , Proteínas de Microfilamentos , Oxidación-Reducción , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Espectrometría de Fluorescencia
15.
Chem Res Toxicol ; 25(9): 1793-9, 2012 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-22731669

RESUMEN

Boronates, a group of organic compounds, are emerging as one of the most effective probes for detecting and quantifying peroxynitrite, hypochlorous acid, and hydrogen peroxide. Boronates react with peroxynitrite nearly a million times faster than with hydrogen peroxide. Boronate-containing fluorogenic compounds have been used to monitor real time generation of peroxynitrite in cells and for imaging hydrogen peroxide in living animals. This perspective highlights potential applications of boronates and other fluorescent probes to high-throughput analyses of peroxynitrite and hydroperoxides in toxicological studies.


Asunto(s)
Ácidos Borónicos/química , Colorantes Fluorescentes/química , Peróxido de Hidrógeno/análisis , Espectrometría de Masas , Ácido Peroxinitroso/análisis , Animales , Línea Celular , Cromatografía Líquida de Alta Presión , Peróxido de Hidrógeno/toxicidad , Ácido Hipocloroso/análisis , Cinética , Macrófagos/efectos de los fármacos , Ratones , Oxidación-Reducción , Ácido Peroxinitroso/toxicidad
16.
J Immunol ; 184(4): 1876-84, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-20089706

RESUMEN

Dendritic cells (DCs), essential for the initiation and regulation of adaptive immune responses, have been used as anticancer vaccines. DCs may also directly trigger tumor cell death. In the current study, we have investigated the tumoricidal and immunostimulatory activities of mouse bone marrow-derived DCs. Our results indicate that these cells acquire killing capabilities toward tumor cells only when activated with LPS or Pam3Cys-SK4. Using different transgenic mouse models including inducible NO synthase or GP91 knockout mice, we have further established that LPS- or Pam3Cys-SK4-activated DC killing activity involves peroxynitrites. Importantly, after killing of cancer cells, DCs are capable of engulfing dead tumor cell fragments and of presenting tumor Ags to specific T lymphocytes. Thus, upon specific stimulation, mouse bone marrow-derived DCs can directly kill tumor cells through a novel peroxynitrite-dependent mechanism and participate at virtually all levels of antitumor immune responses, which reinforces their interest in immunotherapy.


Asunto(s)
Presentación de Antígeno/inmunología , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/patología , Ácido Peroxinitroso/toxicidad , Animales , Muerte Celular/inmunología , Línea Celular Tumoral , Técnicas de Cocultivo , Células HeLa , Humanos , Melanoma Experimental , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neoplasias Experimentales/metabolismo
17.
Mol Cell Neurosci ; 48(1): 62-71, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21708260

RESUMEN

Peroxynitrite has been suggested to be the potent oxidant causing toxicity to neurons and oligodendrocytes (OLs). Our previous studies have illustrated that intracellular zinc liberation contributes to peroxynitrite toxicity to mature OLs. In this study, we further investigated the signaling pathways involved in this event and identified protein kinase C (PKC) as an important early signaling molecule. We found that a non-selective PKC inhibitor bisindolylmaleimide-1 blocked OL toxicity induced by a peroxynitrite generator SIN-1 and exogenous zinc. The protective effects were due to its inhibition on ERK1/2 phosphorylation and ROS generation. The same phenomenon was also observed in OLs following prolonged treatment with phorbol 12 myristate 13 acetate (PMA), which downregulates the conventional and the novel PKC isoforms (cPKCs and nPKCs). To determine the role of specific PKC isoforms, we found that a specific nPKC inhibitor rottlerin significantly reduced SIN-1- or zinc-induced toxicity, whereas Go6976, a cPKC inhibitor, reduced OL toxicity triggered by zinc, but not by SIN-1 at high concentrations. Rottlerin was more potent than Go6976 to attenuate ERK1/2 phosphorylation and ROS generation induced by SIN-1 or zinc. Surprisingly, zinc only induced phosphorylation of PKCθ, but not PKCδ. Knockdown of PKCθ using lentiviral shRNA attenuated SIN-1- or zinc-induced toxicity. These results suggest that PKCθ might be the major PKC isoform involved in peroxynitrite and zinc toxicity to mature OLs, and provide a rationale for development of specific inhibitors of PKCθ in the treatment of multiple sclerosis and other neurodegenerative diseases, in which peroxynitrite formation plays a pathogenic role.


Asunto(s)
Isoenzimas/metabolismo , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Ácido Peroxinitroso/toxicidad , Proteína Quinasa C/metabolismo , Acetofenonas/farmacología , Animales , Benzopiranos/farmacología , Carbazoles/farmacología , Células Cultivadas , Cloruros/toxicidad , Activación Enzimática , Inhibidores Enzimáticos/toxicidad , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Indoles/metabolismo , Isoenzimas/antagonistas & inhibidores , Maleimidas/metabolismo , Molsidomina/análogos & derivados , Molsidomina/toxicidad , Oligodendroglía/citología , Proteína Quinasa C/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Acetato de Tetradecanoilforbol/farmacología , Compuestos de Zinc/toxicidad
18.
J Biol Chem ; 285(27): 20724-31, 2010 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-20427277

RESUMEN

Peroxynitrite is formed in macrophages by the diffusion-limited reaction of superoxide and nitric oxide. This highly reactive species is thought to contribute to bacterial killing by interaction with diverse targets and nitration of protein tyrosines. This work presents for the first time a comprehensive analysis of transcriptional responses to peroxynitrite under tightly controlled chemostat growth conditions. Up-regulation of the cysteine biosynthesis pathway and an increase in S-nitrosothiol levels suggest S-nitrosylation to be a consequence of peroxynitrite exposure. Genes involved in the assembly/repair of iron-sulfur clusters also show enhanced transcription. Unexpectedly, arginine biosynthesis gene transcription levels were also elevated after treatment with peroxynitrite. Analysis of the negative regulator for these genes, ArgR, showed that post-translational nitration of tyrosine residues within this protein is responsible for its degradation in vitro. Further up-regulation was seen in oxidative stress response genes, including katG and ahpCF. However, genes known to be up-regulated by nitric oxide and nitrosating agents (e.g. hmp and norVW) were unaffected. Probabilistic modeling of the transcriptomic data identified five altered transcription factors in response to peroxynitrite exposure, including OxyR and ArgR. Hydrogen peroxide can be present as a contaminant in commercially available peroxynitrite preparations. Transcriptomic analysis of cells treated with hydrogen peroxide alone also revealed up-regulation of oxidative stress response genes but not of many other genes that are up-regulated by peroxynitrite. Thus, the cellular responses to peroxynitrite and hydrogen peroxide are distinct.


Asunto(s)
Escherichia coli K12/fisiología , Estrés Oxidativo/efectos de los fármacos , Ácido Peroxinitroso/toxicidad , Animales , División Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Escherichia coli K12/efectos de los fármacos , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Perfilación de la Expresión Génica , Peróxido de Hidrógeno/farmacología , Mamíferos/metabolismo , NADPH Oxidasas/metabolismo , Nitratos/metabolismo , Óxido Nítrico Sintasa/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , S-Nitrosotioles/metabolismo , Transcripción Genética/efectos de los fármacos
19.
Am J Physiol Lung Cell Mol Physiol ; 300(2): L167-75, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21075825

RESUMEN

During acute lung injury, nitric oxide (NO) exerts cytotoxic effects by reacting with superoxide radicals, yielding the reactive nitrogen species peroxynitrite (ONOO(-)). ONOO(-) exerts cytotoxic effects, among others, by nitrating/nitrosating proteins and lipids, by activating the nuclear repair enzyme poly(ADP-ribose) polymerase and inducing VEGF. Here we tested the effect of the ONOO(-) decomposition catalyst INO-4885 on the development of lung injury in chronically instrumented sheep with combined burn and smoke inhalation injury. The animals were randomized to a sham-injured group (n = 7), an injured control group [48 breaths of cotton smoke, 3rd-degree burn of 40% total body surface area (n = 7)], or an injured group treated with INO-4885 (n = 6). All sheep were mechanically ventilated and fluid-resuscitated according to the Parkland formula. The injury-related increases in the abundance of 3-nitrotyrosine, a marker of protein nitration by ONOO(-), were prevented by INO-4885, providing evidence for the neutralization of ONOO(-) action by the compound. Burn and smoke injury induced a significant drop in arterial Po(2)-to-inspired O(2) fraction ratio and significant increases in pulmonary shunt fraction, lung lymph flow, lung wet-to-dry weight ratio, and ventilatory pressures; all these changes were significantly attenuated by INO-4885 treatment. In addition, the increases in IL-8, VEGF, and poly(ADP-ribose) in lung tissue were significantly attenuated by the ONOO(-) decomposition catalyst. In conclusion, the current study suggests that ONOO(-) plays a crucial role in the pathogenesis of pulmonary microvascular hyperpermeability and pulmonary dysfunction following burn and smoke inhalation injury in sheep. Administration of an ONOO(-) decomposition catalyst may represent a potential treatment option for this injury.


Asunto(s)
Quemaduras/tratamiento farmacológico , Quemaduras/fisiopatología , Metaloporfirinas/uso terapéutico , Ácido Peroxinitroso/metabolismo , Lesión por Inhalación de Humo/tratamiento farmacológico , Lesión por Inhalación de Humo/fisiopatología , Animales , Quemaduras/complicaciones , Permeabilidad Capilar/efectos de los fármacos , Catálisis , Modelos Animales de Enfermedad , Femenino , Hemodinámica/efectos de los fármacos , Interleucina-8/metabolismo , Pulmón/efectos de los fármacos , Pulmón/fisiopatología , Peroxidasa/metabolismo , Ácido Peroxinitroso/toxicidad , Poli(ADP-Ribosa) Polimerasas/metabolismo , Circulación Pulmonar/efectos de los fármacos , Ovinos , Lesión por Inhalación de Humo/complicaciones , Tirosina/análogos & derivados , Tirosina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
20.
Mol Cell Biochem ; 347(1-2): 135-43, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20972609

RESUMEN

Oxidative/nitrosative stress plays a crucial role in Parkinson's disease (PD) by triggering mitochondrial dysfunction. Nitrosative stress is mediated by reactive species such as peroxynitrite (PN) which could damage biomolecules thereby impinging on the cellular machinery. We observed that PN (0-1000 µM) inhibited brain mitochondrial complex I (CI) activity in a dose-dependent manner with concomitant tyrosine nitration of proteins. We also observed that exposure to PN at low concentrations (62.5-125 µM) significantly decreased the mitochondrial membrane potential and affected the mitochondrial integrity at higher doses (500-750 µM) as indicated by the mitochondrial swelling experiment. Therefore, it could be surmised that compounds that prevent such mitochondrial damage might have therapeutic value in neurological conditions such as PD. We previously showed that curcumin could detoxify PN and protect against CI inhibition and protein nitration. However, the therapeutic potential of curcumin is constrained by limited bioavailability. To address this issue and obtain improved antioxidants, three bioconjugates of curcumin (Di-demethylenated piperoyl, di-valinoyl and di-glutamoyl esters) were generated and tested against PN-mediated nitrosative stress and mitochondrial damage. We found that among the bioconjugates, the glutamoyl diester of curcumin showed improved protection against PN-dependent CI inhibition and protein nitration compared to other conjugates. Di-glutamoyl curcumin protected dopaminergic neurons against 1-methyl-4-phenylpyridinium (MPP(+))-mediated neuronal death. These effects were improved compared to curcumin alone suggesting that di-glutamoyl curcumin could be a better neuroprotective agent in neurodegenerative diseases such as PD.


Asunto(s)
Encéfalo/patología , Curcumina/análogos & derivados , Curcumina/farmacología , Ésteres/farmacología , Flavonoides/farmacología , Glutamatos/farmacología , Mitocondrias/patología , Enfermedad de Parkinson/tratamiento farmacológico , Ácido Peroxinitroso/toxicidad , Fenoles/farmacología , 1-Metil-4-fenilpiridinio , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Curcumina/química , Curcumina/uso terapéutico , Dieta , Complejo I de Transporte de Electrón/metabolismo , Ésteres/química , Ésteres/uso terapéutico , Flavonoides/química , Flavonoides/uso terapéutico , Glutamatos/química , Glutamatos/uso terapéutico , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Dilatación Mitocondrial/efectos de los fármacos , Fenoles/química , Fenoles/uso terapéutico , Polifenoles , Sustancias Protectoras/farmacología , Sustancias Protectoras/uso terapéutico , Tirosina/análogos & derivados , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA