Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Brain Behav Immun ; 115: 667-679, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37989444

RESUMEN

Ischemic stroke has been demonstrated to cause an imbalance of gut microbiota. However, the change in gut microbiota-mediated bile acids (BAs) metabolites remains unclear. Here, we observed a decrease in gut microbiota-mediated BAs, especially ursodeoxycholic acid (UDCA), in the serum of stroke patients as well as in the intestine, serum and brain of stroke mice. Restoration of UDCA could decrease the area of infarction and improve the neurological function and cognitive function in mice in association with inhibition of NLRP3-related pro-inflammatory cytokines through TGR5/PKA pathway. Furthermore, knocking out TGR5 and inhibiting PKA activity reduce the protective effect of UDCA. Taken together, our results suggest that microbiota-mediated UDCA plays an important role in alleviating inflammatory responses and might be a promising therapeutic target in ischemic stroke.


Asunto(s)
Microbioma Gastrointestinal , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Humanos , Ratones , Ácidos y Sales Biliares , Inflamación , Microglía/metabolismo , Ácido Ursodesoxicólico/metabolismo
2.
Pediatr Res ; 93(6): 1582-1590, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36151295

RESUMEN

BACKGROUND: Cyp2c70-/- mice with a human-like bile acid (BA) composition display features of neonatal cholestasis. We assessed whether perinatal ursodeoxycholic acid (UDCA) exposure prevents neonatal cholestasis in Cyp2c70-/- mice and reduces cholangiopathy development later in life. METHODS: Cyp2c70+/- males were crossed with Cyp2c70+/- females fed either a regular chow diet or a 0.1% UDCA-containing diet during breeding, gestation, and suckling. Cholestasis and liver function parameters were assessed in their Cyp2c70-/- and wild-type offspring at 3 and 8 weeks of age. RESULTS: Three-week-old Cyp2c70-/- pups showed features of neonatal cholestasis, including elevated plasma BAs and transaminases, which were completely prevented in Cyp2c70-/- pups upon perinatal UDCA exposure. In addition, UDCA administration to the dams corrected altered hepatic gene expression patterns in Cyp2c70-/- pups, reduced markers of fibrogenesis and inflammation, and prevented cholangiocyte proliferation. Yet, these beneficial effects of perinatal UDCA exposure were not retained into adulthood upon discontinuation of treatment. CONCLUSION: Perinatal exposure of Cyp2c70-/- mice to UDCA has beneficial effects on liver function parameters, supporting a direct role of BA hydrophobicity in the development of neonatal cholestasis in these mice. However, prevention of neonatal cholestasis in Cyp2c70-/- mice has no long-lasting effects on liver pathophysiology. IMPACT: This is the first study showing that perinatal UDCA exposure prevents features of neonatal cholestasis that are observed in mice with a human-like bile acid composition, i.e., Cyp2c70-/- mice. Perinatal UDCA exposure of Cyp2c70-/- pups leads to UDCA enrichment in their circulating bile acid pool and, consequently, to a reduced hydrophobicity of biliary bile acids. Perinatal UDCA exposure of Cyp2c70-/- pups has no long-lasting effects on the development of cholangiopathy after discontinuation of treatment. The results in this study expand current knowledge regarding acute and long-lasting effects of UDCA treatment in early life.


Asunto(s)
Colestasis , Hepatopatías , Masculino , Embarazo , Femenino , Humanos , Ratones , Animales , Recién Nacido , Ácido Ursodesoxicólico/farmacología , Ácido Ursodesoxicólico/metabolismo , Ácidos y Sales Biliares , Colestasis/genética
3.
Biol Res ; 56(1): 28, 2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37237400

RESUMEN

BACKGROUND: Skeletal muscle generates force and movements and maintains posture. Under pathological conditions, muscle fibers suffer an imbalance in protein synthesis/degradation. This event causes muscle mass loss and decreased strength and muscle function, a syndrome known as sarcopenia. Recently, our laboratory described secondary sarcopenia in a chronic cholestatic liver disease (CCLD) mouse model. Interestingly, the administration of ursodeoxycholic acid (UDCA), a hydrophilic bile acid, is an effective therapy for cholestatic hepatic alterations. However, the effect of UDCA on skeletal muscle mass and functionality has never been evaluated, nor the possible involved mechanisms. METHODS: We assessed the ability of UDCA to generate sarcopenia in C57BL6 mice and develop a sarcopenic-like phenotype in C2C12 myotubes and isolated muscle fibers. In mice, we measured muscle strength by a grip strength test, muscle mass by bioimpedance and mass for specific muscles, and physical function by a treadmill test. We also detected the fiber's diameter and content of sarcomeric proteins. In C2C12 myotubes and/or isolated muscle fibers, we determined the diameter and troponin I level to validate the cellular effect. Moreover, to evaluate possible mechanisms, we detected puromycin incorporation, p70S6K, and 4EBP1 to evaluate protein synthesis and ULK1, LC3 I, and II protein levels to determine autophagic flux. The mitophagosome-like structures were detected by transmission electron microscopy. RESULTS: UDCA induced sarcopenia in healthy mice, evidenced by decreased strength, muscle mass, and physical function, with a decline in the fiber's diameter and the troponin I protein levels. In the C2C12 myotubes, we observed that UDCA caused a reduction in the diameter and content of MHC, troponin I, puromycin incorporation, and phosphorylated forms of p70S6K and 4EBP1. Further, we detected increased levels of phosphorylated ULK1, the LC3II/LC3I ratio, and the number of mitophagosome-like structures. These data suggest that UDCA induces a sarcopenic-like phenotype with decreased protein synthesis and autophagic flux. CONCLUSIONS: Our results indicate that UDCA induces sarcopenia in mice and sarcopenic-like features in C2C12 myotubes and/or isolated muscle fibers concomitantly with decreased protein synthesis and alterations in autophagic flux.


Asunto(s)
Sarcopenia , Ratones , Animales , Sarcopenia/inducido químicamente , Sarcopenia/patología , Ácido Ursodesoxicólico/farmacología , Ácido Ursodesoxicólico/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Troponina I/metabolismo , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo
4.
BMC Microbiol ; 22(1): 19, 2022 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-34996347

RESUMEN

BACKGROUND: An increasing body of evidence implicates the resident gut microbiota as playing a critical role in type 2 diabetes (T2D) pathogenesis. We previously reported significant improvement in postprandial glucose control in human participants with T2D following 12-week administration of a 5-strain novel probiotic formulation ('WBF-011') in a double-blind, randomized, placebo controlled setting (NCT03893422). While the clinical endpoints were encouraging, additional exploratory measurements were needed in order to link the motivating mechanistic hypothesis - increased short-chain fatty acids - with markers of disease. RESULTS: Here we report targeted and untargeted metabolomic measurements on fasting plasma (n = 104) collected at baseline and end of intervention. Butyrate and ursodeoxycholate increased among participants randomized to WBF-011, along with compelling trends between butyrate and glycated haemoglobin (HbA1c). In vitro monoculture experiments demonstrated that the formulation's C. butyricum strain efficiently synthesizes ursodeoxycholate from the primary bile acid chenodeoxycholate during butyrogenic growth. Untargeted metabolomics also revealed coordinated decreases in intermediates of fatty acid oxidation and bilirubin, potential secondary signatures for metabolic improvement. Finally, improvement in HbA1c was limited almost entirely to participants not using sulfonylurea drugs. We show that these drugs can inhibit growth of formulation strains in vitro. CONCLUSION: To our knowledge, this is the first description of an increase in circulating butyrate or ursodeoxycholate following a probiotic intervention in humans with T2D, adding support for the possibility of a targeted microbiome-based approach to assist in the management of T2D. The efficient synthesis of UDCA by C. butyricum is also likely of interest to investigators of its use as a probiotic in other disease settings. The potential for inhibitory interaction between sulfonylurea drugs and gut microbiota should be considered carefully in the design of future studies.


Asunto(s)
Butiratos/sangre , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Probióticos/uso terapéutico , Ácido Ursodesoxicólico/sangre , Ácidos y Sales Biliares/análisis , Ácidos y Sales Biliares/sangre , Ácidos y Sales Biliares/metabolismo , Glucemia/efectos de los fármacos , Butiratos/análisis , Butiratos/metabolismo , Clostridium butyricum/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/microbiología , Ácidos Grasos Volátiles/análisis , Ácidos Grasos Volátiles/sangre , Ácidos Grasos Volátiles/metabolismo , Heces/química , Microbioma Gastrointestinal/efectos de los fármacos , Hemoglobina Glucada/análisis , Humanos , Metabolómica , Probióticos/metabolismo , Compuestos de Sulfonilurea/uso terapéutico , Ácido Ursodesoxicólico/análisis , Ácido Ursodesoxicólico/metabolismo
5.
Metabolomics ; 18(7): 46, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35778620

RESUMEN

INTRODUCTION: Recurrence after the endoscopic treatment of common bile duct stones (CBDS) is related to bile metabolism and bile compositions. Ursodeoxycholic acid (UDCA) has been proved effective in reducing the recurrence of CBDS. However, the detailed effects of UDCA on bile metabolism are still not extensively explored. OBJECTIVES: This study aimed to analyze the role of UDCA in patients with choledocholithiasis (CDC) from the perspective of biochemistry and metabolomics. METHODS: A total of 89 patients with CDC who underwent endoscopic retrograde cholangiopancreatography were prospectively examined and randomly assigned to control and UDCA groups. The biochemical detections (cholesterol, bilirubin, and so on) were performed on the collected bile. Moreover, the metabolomics analysis was conducted based on bile from 20 patients in the UDCA group. RESULTS: The bile levels of cholesterol and endotoxins significantly decreased after UDCA treatment. Regarding bile metabolomics, the levels of 25 metabolites changed significantly after UDCA treatment. The pathway enrichment analysis showed that the UDCA addition evoked a common response related to phenylalanine, tyrosine, and tryptophan biosynthesis; phenylalanine metabolism; arachidonic acid metabolism; and terpenoid backbone biosynthesis. CONCLUSIONS: UDCA treatment within a short time interval (7 days) did not improve the circulating laboratory values in patients with CDC who had undergone endoscopy surgery. However, relevant decreases in the bile levels of cholesterol and endotoxin were observed. UDCA evoked a common response related to lipid metabolism and amino acid metabolism, which probably reduced the bile level of cholesterol, protected hepatocytes, and corrected the abnormality of lipid metabolism caused by CDC.


Asunto(s)
Coledocolitiasis , Ácido Ursodesoxicólico , Bilis/química , Bilis/metabolismo , Coledocolitiasis/tratamiento farmacológico , Coledocolitiasis/metabolismo , Colesterol/análisis , Humanos , Metabolómica , Fenilalanina/metabolismo , Estudios Prospectivos , Ácido Ursodesoxicólico/metabolismo , Ácido Ursodesoxicólico/uso terapéutico
6.
Biotechnol Lett ; 43(2): 415-422, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33179169

RESUMEN

The comparative transcriptome analysis of the fungus Gibberella zeae which could efficiently catalyze the 7ß-hydroxylation of LCA to produce UDCA was performed with LCA induction. This is the first time to report the comparative transcriptome of fungus under LCA treatment. Totally, 1364 differentially expressed genes including 770 up-regulated and 594 down-regulated genes were identified. In the 770 up-regulated genes, 12 genes with the function of hydroxylation were picked out by application of function screening, which were annotated as CYP450 or hydroxylase. Moreover, the qRT-PCR results of five up-regulated CYP450-like genes confirmed the credibility of RNA-Seq further. These results provide valuable information for the discovery of novel enzyme producing clinical drug UDCA from butchery byproduct LCA, and also might indicate some clues for the detoxification process of LCA in humans.


Asunto(s)
Fusarium/genética , Ácido Litocólico/metabolismo , Transcriptoma/genética , Ácido Ursodesoxicólico/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Humanos , Ácido Litocólico/genética , Oxigenasas de Función Mixta/genética , Ácido Retinoico 4-Hidroxilasa/genética , Ácido Ursodesoxicólico/genética
7.
Angew Chem Int Ed Engl ; 60(2): 753-757, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33085147

RESUMEN

We engineered the cytochrome P450 monooxygenase CYP107D1 (OleP) from Streptomyces antibioticus for the stereo- and regioselective 7ß-hydroxylation of lithocholic acid (LCA) to yield ursodeoxycholic acid (UDCA). OleP was previously shown to hydroxylate testosterone at the 7ß-position but LCA is exclusively hydroxylated at the 6ß-position, forming murideoxycholic acid (MDCA). Structural and 3DM analysis, and molecular docking were used to identify amino acid residues F84, S240, and V291 as specificity-determining residues. Alanine scanning identified S240A as a UDCA-producing variant. A synthetic "small but smart" library based on these positions was screened using a colorimetric assay for UDCA. We identified a nearly perfectly regio- and stereoselective triple mutant (F84Q/S240A/V291G) that produces 10-fold higher levels of UDCA than the S240A variant. This biocatalyst opens up new possibilities for the environmentally friendly synthesis of UDCA from the biological waste product LCA.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Ácido Ursodesoxicólico/metabolismo , Proteínas Bacterianas/genética , Sitios de Unión , Dominio Catalítico , Sistema Enzimático del Citocromo P-450/genética , Ácido Desoxicólico/química , Ácido Desoxicólico/metabolismo , Hidroxilación , Ácido Litocólico/química , Ácido Litocólico/metabolismo , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Estereoisomerismo , Streptomyces/enzimología , Ácido Ursodesoxicólico/síntesis química , Ácido Ursodesoxicólico/química
8.
J Hepatol ; 72(6): 1122-1131, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32001325

RESUMEN

BACKGROUND & AIMS: Cholestasis comprises a spectrum of liver diseases characterized by the accumulation of bile acids. Bile acids and activation of the farnesoid X receptor (FXR) can inhibit autophagy, a cellular self-digestion process necessary for cellular homeostasis and regeneration. In mice, autophagy appears to be impaired in cholestasis and induction of autophagy may reduce liver injury. METHODS: Herein, we explored autophagy in human cholestasis in vivo and investigated the underlying molecular mechanisms in vitro. FXR chromatin immunoprecipitation-sequencing and qPCR were performed in combination with luciferase promoter studies to identify functional FXR binding targets in a human cholestatic liver sample. RESULTS: Autophagic processing appeared to be impaired in patients with cholestasis and in individuals treated with the FXR ligand obeticholic acid (OCA). In vitro, chenodeoxycholic acid and OCA inhibited autophagy at the level of autophagosome to lysosome fusion in an FXR-dependent manner. Rubicon, which inhibits autophago-lysosomal maturation, was identified as a direct FXR target that is induced in cholestasis and by FXR-agonistic bile acids. Genetic inhibition of Rubicon reversed the bile acid-induced impairment of autophagic flux. In contrast to OCA, ursodeoxycholic acid (UDCA), which is a non-FXR-agonistic bile acid, induced autophagolysosome formation independently of FXR, enhanced autophagic flux and was associated with reduced Rubicon levels. CONCLUSION: In models of human cholestasis, autophagic processing is impaired in an FXR-dependent manner, partly resulting from the induction of Rubicon. UDCA is a potent inducer of hepatic autophagy. Manipulating autophagy and Rubicon may represent a novel treatment concept for cholestatic liver diseases. LAY SUMMARY: Autophagy, a cellular self-cleansing process, is impaired in various forms of human cholestasis. Bile acids, which accumulate in cholestatic liver disease, induce Rubicon, a protein that inhibits proper execution of autophagy. Ursodeoxycholic acid, which is the first-line treatment option for many cholestatic liver diseases, induces hepatic autophagy along with reducing Rubicon.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia/genética , Colestasis/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal/genética , Autofagosomas/metabolismo , Autofagia/efectos de los fármacos , Proteínas Relacionadas con la Autofagia/genética , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/metabolismo , Ácido Quenodesoxicólico/farmacología , Ácido Quenodesoxicólico/uso terapéutico , Colestasis/tratamiento farmacológico , Citotoxinas , Técnicas de Silenciamiento del Gen , Células Hep G2 , Humanos , Hígado/metabolismo , Hígado/patología , Lisosomas/metabolismo , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/genética , Estudios Retrospectivos , Transfección , Ácido Ursodesoxicólico/metabolismo , Ácido Ursodesoxicólico/farmacología
9.
Lipids Health Dis ; 19(1): 158, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32615989

RESUMEN

BACKGROUND: Many studies indicate that gallstone formation has genetic components. The abnormal expression of lipid-related genes could be the basis for particular forms of cholesterol gallstone disease. The aim of this study was to obtain insight into lipid metabolism disorder during cholesterol gallstone formation and to evaluate the effect of ursodeoxycholic acid (UDCA) on the improvement of bile lithogenicity and its potential influence on the transcription of lipid-related genes. METHODS: Gallstone-susceptible mouse models were induced by feeding with a lithogenic diet (LD) for 8 weeks. Bile and liver tissues were obtained from these mouse models after 0, 4 and 8 weeks. Bile lipids were measured enzymatically, and the cholesterol saturation index (CSI) was calculated to evaluate the bile lithogenicity by using Carey's critical tables. Real-time polymerase chain reaction (RT-PCR) was used to detect the mRNA expression levels of farnesoid X receptor (FXR), liver X receptor (LXR), adenosine triphosphate-binding cassette subfamily G member 5/8 (ABCG5/8), cholesterol 7-α hydroxylase (CYP7A1), oxysterol 7-α hydroxylase (CYP7B1), sterol 27-α hydroxylase (CYP27A1), peroxisome proliferator-activated receptor alpha (PPAR-α) and adenosine triphosphate-binding cassette subfamily B member 11 (ABCB11). RESULTS: The rate of gallstone formation was 100% in the 4-week group but only 30% in the UDCA-treated group. The UDCA-treated group had a significantly lower CSI compared with other groups. Of special note, the data on the effects of UDCA showed higher expression levels of ABCG8, ABCB11 and CYP27A1, as well as lower expression levels of LXR and PPAR-α, compared to the model control group. CONCLUSIONS: UDCA exhibits tremendously potent activity in restraining lipid accumulation, thus reversing the lithogenic effect and protecting hepatocytes from serious pathological damage. The abnormal expression of ABCG8, CYP7A1, CYP27A1, LXR and PPAR-α might lead to high lithogenicity of bile. These results are helpful in exploring new lipid metabolism pathways and potential targets for the treatment of cholesterol stones and for providing some basis for the study of the pathogenesis and genetic characteristics of cholelithiasis. Research on the mechanism of UDCA in improving lipid metabolism and bile lithogenicity may be helpful for clinical treatment and for reducing the incidence of gallstones.


Asunto(s)
Bilis/metabolismo , Cálculos Biliares/etiología , Metabolismo de los Lípidos/genética , Ácido Ursodesoxicólico/farmacología , Transportador de Casete de Unión a ATP, Subfamilia G, Miembro 8/genética , Animales , Ácidos y Sales Biliares/metabolismo , Colestanotriol 26-Monooxigenasa/genética , Colesterol 7-alfa-Hidroxilasa/genética , Dieta/efectos adversos , Modelos Animales de Enfermedad , Cálculos Biliares/patología , Regulación de la Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Lipoproteínas/genética , Hígado/efectos de los fármacos , Hígado/patología , Hígado/fisiología , Masculino , Ratones Endogámicos C57BL , PPAR alfa/genética , Ácido Ursodesoxicólico/metabolismo
10.
Biochem Biophys Res Commun ; 520(1): 67-72, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31575408

RESUMEN

Intrahepatic cholestasis of pregnancy (ICP) is gestation-specific liver disease associated with liver injury and increased serum and hepatic bile acids. Although the mechanism of ICP is still not fully understood, the reproductive hormones seem to play an important role. Recent studies show that a progesterone metabolite, epiallopregnanolone sulfate (PM5S), is supraphysiologically elevated in the serum of ICP patients, indicating it may play an etiology role in ICP. Bile acid homeostasis is controlled by multiple mechanisms including farnesoid X receptor (FXR)-mediated bile acid export and synthesis. It is known that cholic acid (CA), a primary bile acid, can activate FXR, which is inhibited by PM5S, an FXR antagonist. Here we employed a mouse model of concurrent exposure of CA and PM5S-induced liver injury and determined the effects of probiotic Lactobacillus rhamnosus GG (LGG) in the prevention of the bile acid disorders and liver injury. Mice challenged with CA + PM5S had significantly increased levels of serum and hepatic bile acids and bilirubin and liver enzyme. Pretreatment with LGG significantly reduced bile acid and bilirubin levels associated with reduced liver enzyme level and mRNA expression levels of pro-inflammatory cytokines. We also showed that the beneficial effects of LGG is likely mediated by hepatic FXR activation and bile salt export pump (BSEP) upregulation. In conclusion, our results provide a rationale for the application of probiotics in the management of ICP through gut microbiota-mediated FXR activation.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Inflamación/metabolismo , Lacticaseibacillus rhamnosus , Hígado/lesiones , Pregnanolona/análogos & derivados , Probióticos/farmacología , Proteínas de Unión al ARN/metabolismo , Proteínas Angiogénicas/metabolismo , Animales , Bilirrubina/metabolismo , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/metabolismo , Colestasis/metabolismo , Colesterol 7-alfa-Hidroxilasa/metabolismo , Ácido Cólico/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Pregnanolona/farmacología , Transducción de Señal , Ácido Ursodesoxicólico/metabolismo
11.
Metabolomics ; 15(3): 30, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30830474

RESUMEN

INTRODUCTION: Ursodeoxycholic acid (UDCA) is an intestinal bacterial metabolite with hepatoprotective effects. However, molecular mechanisms underlying its effects remain unclear. OBJECTIVES: The aim of this study was to investigate the mechanisms underlying the therapeutic effects of UDCA by using global metabolomics analyses in healthy subjects. METHODS: Healthy Korean men were administered UDCA at dosage of 400, 800, or 1200 mg daily for 2 weeks. Serum samples were collected and used for liver function tests and to determine miR-122 expression levels. Urinary and plasma global metabolomics analyses were conducted using a liquid chromatography system coupled with quadrupole-time-of-flight mass spectrometry (LC/QTOFMS) and gas chromatography-TOFMS (GC/TOFMS). Unsupervised multivariate analysis (principal component analysis) was performed to identify discriminative markers before and after treatment. RESULTS: Alanine transaminase score and serum miR-122 levels decreased significantly after 2 weeks of treatment. Through LC- and GC-based metabolomic profiling, we identified 40 differential metabolites in plasma and urine samples. CONCLUSIONS: Regulation of liver function scores and metabolic alternations highlight the potential hepatoprotective action of UDCA, which were primarily associated with amino acid, flavonoid, and fatty acid metabolism in healthy men.


Asunto(s)
Hígado/metabolismo , MicroARNs/efectos de los fármacos , Ácido Ursodesoxicólico/metabolismo , Adulto , Aminoácidos/metabolismo , Biomarcadores/sangre , Cromatografía Liquida/métodos , Ácidos Grasos , Flavonoides , Cromatografía de Gases y Espectrometría de Masas/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Voluntarios Sanos , Humanos , Metabolismo de los Lípidos , Lípidos , Masculino , Espectrometría de Masas/métodos , Redes y Vías Metabólicas , Metabolómica/métodos , MicroARNs/genética , Análisis de Componente Principal , República de Corea , Ácido Ursodesoxicólico/farmacología
12.
Appl Microbiol Biotechnol ; 103(6): 2665-2674, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30734123

RESUMEN

7-Ketolithocholic acid (7-KLCA) is an important intermediate for the synthesis of ursodeoxycholic acid (UDCA). UDCA is the main effective component of bear bile powder that is used in traditional Chinese medicine for the treatment of human cholesterol gallstones. 7α-Hydroxysteroid dehydrogenase (7α-HSDH) is the key enzyme used in the industrial production of 7-KLCA. Unfortunately, the natural 7α-HSDHs reported have difficulty meeting the requirements of industrial application, due to their poor activities and strong substrate inhibition. In this study, a directed evolution strategy combined with high-throughput screening was applied to improve the catalytic efficiency and tolerance of high substrate concentrations of NADP+-dependent 7α-HSDH from Clostridium absonum. Compared with the wild type, the best mutant (7α-3) showed 5.5-fold higher specific activity and exhibited 10-fold higher and 14-fold higher catalytic efficiency toward chenodeoxycholic acid (CDCA) and NADP+, respectively. Moreover, 7α-3 also displayed significantly enhanced tolerance in the presence of high concentrations of substrate compared to the wild type. Owing to its improved catalytic efficiency and enhanced substrate tolerance, 7α-3 could efficiently biosynthesize 7-KLCA with a substrate loading of 100 mM, resulting in 99% yield of 7-KLCA at 2 h, in contrast to only 85% yield of 7-KLCA achieved for the wild type at 16 h.


Asunto(s)
Clostridium/enzimología , Evolución Molecular Dirigida , Hidroxiesteroide Deshidrogenasas/metabolismo , Ácido Litocólico/análogos & derivados , Clostridium/genética , Escherichia coli/genética , Ensayos Analíticos de Alto Rendimiento , Hidroxiesteroide Deshidrogenasas/genética , Cinética , Ácido Litocólico/biosíntesis , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Ácido Ursodesoxicólico/metabolismo
13.
Am J Physiol Gastrointest Liver Physiol ; 315(2): G259-G271, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29672156

RESUMEN

The intestinal barrier is often disrupted in disease states, and intestinal barrier failure leads to sepsis. Ursodeoxycholic acid (UDCA) is a bile acid that may protect the intestinal barrier. We hypothesized that UDCA would protect the intestinal epithelium in injury models. To test this hypothesis, we utilized an in vitro wound-healing assay and a mouse model of intestinal barrier injury. We found that UDCA stimulates intestinal epithelial cell migration in vitro, and this migration was blocked by inhibition of cyclooxygenase 2 (COX-2), epidermal growth factor receptor (EGFR), or ERK. Furthermore, UDCA stimulated both COX-2 induction and EGFR phosphorylation. In vivo UDCA protected the intestinal barrier from LPS-induced injury as measured by FITC dextran leakage into the serum. Using 5-bromo-2'-deoxyuridine and 5-ethynyl-2'-deoxyuridine injections, we found that UDCA stimulated intestinal epithelial cell migration in these animals. These effects were blocked with either administration of Rofecoxib, a COX-2 inhibitor, or in EGFR-dominant negative Velvet mice, wherein UDCA had no effect on LPS-induced injury. Finally, we found increased COX-2 and phosphorylated ERK levels in LPS animals also treated with UDCA. Taken together, these data suggest that UDCA can stimulate intestinal epithelial cell migration and protect against acute intestinal injury via an EGFR- and COX-2-dependent mechanism. UDCA may be an effective treatment to prevent the early onset of gut-origin sepsis. NEW & NOTEWORTHY In this study, we show that the secondary bile acid ursodeoxycholic acid stimulates intestinal epithelial cell migration after cellular injury and also protects the intestinal barrier in an acute rodent injury model, neither of which has been previously reported. These effects are dependent on epidermal growth factor receptor activation and downstream cyclooxygenase 2 upregulation in the small intestine. This provides a potential treatment for acute, gut-origin sepsis as seen in diseases such as necrotizing enterocolitis.


Asunto(s)
Ciclooxigenasa 2/metabolismo , Enterocitos , Receptores ErbB/metabolismo , Enfermedades Intestinales , Sepsis , Ácido Ursodesoxicólico , Animales , Ácidos y Sales Biliares/metabolismo , Ácidos y Sales Biliares/farmacología , Movimiento Celular/fisiología , Colagogos y Coleréticos/metabolismo , Colagogos y Coleréticos/farmacología , Modelos Animales de Enfermedad , Enterocitos/efectos de los fármacos , Enterocitos/fisiología , Enfermedades Intestinales/complicaciones , Enfermedades Intestinales/metabolismo , Ratones , Factores Protectores , Sepsis/etiología , Sepsis/prevención & control , Ácido Ursodesoxicólico/metabolismo , Ácido Ursodesoxicólico/farmacología
14.
J Hepatol ; 67(1): 110-119, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28242240

RESUMEN

BACKGROUND & AIMS: Severe cholestasis may cause cholemic nephropathy that can be modeled in common bile duct ligated (CBDL) mice. We aimed to explore the therapeutic efficacy and mechanisms of norursodeoxycholic acid (norUDCA) in cholemic nephropathy. METHODS: In 8-week CBDL mice fed with norUDCA (prior or post CBDL) or chow we evaluated serum urea levels, urine cytology and urinary neutrophil gelatinase associated lipocalin (uNGAL), kidney and liver tissue quantification of fibrosis by hydroxyproline content and gene chip expression looking at key genes of inflammation and fibrosis. Moreover, we comprehensively analysed bile acid profiles in liver, kidney, serum and urine samples. RESULTS: NorUDCA-fed CBDL mice had significantly lower serum urea and uNGAL levels and less severe cholemic nephropathy as demonstrated by normal urine cytology, significantly reduced tubulointerstitial nephritis, and renal fibrosis as compared to controls. NorUDCA underwent extensive metabolism to produce even more hydrophilic compounds that were significantly enriched in kidneys. CONCLUSION: NorUDCA ameliorates cholemic nephropathy due to the formation of highly hydrophilic metabolites enriched in kidney. Consequently, norUDCA may represent a medical treatment for cholemic nephropathy. LAY SUMMARY: The term cholemic nephropathy describes renal dysfunction together with characteristic morphological alterations of the kidney in obstructive cholestasis that can be mimicked by ligation of the common bile duct in mice. Feeding the hydrophilic bile acid norUDCA to bile duct ligated mice leads to a significant amelioration of the renal phenotype due to the formation of highly hydrophilic metabolites enriched in the kidney and may therefore represent a medical treatment for cholemic nephropathy.


Asunto(s)
Colestasis/complicaciones , Enfermedades Renales/tratamiento farmacológico , Ácido Ursodesoxicólico/análogos & derivados , Animales , Ácidos y Sales Biliares/orina , Modelos Animales de Enfermedad , Fibrosis , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Ligadura , Lipocalina 2/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Nefritis Intersticial/tratamiento farmacológico , Ácido Ursodesoxicólico/metabolismo , Ácido Ursodesoxicólico/uso terapéutico
15.
Am J Physiol Gastrointest Liver Physiol ; 312(6): G550-G558, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28360029

RESUMEN

Ward JB, Lajczak NK, Kelly OB, O'Dwyer AM, Giddam AK, Ní Gabhann J, Franco P, Tambuwala MM, Jefferies CA, Keely S, Roda A, Keely SJ. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. Am J Physiol Gastrointest Liver Physiol 312: G550-G558, 2017. First published March 30, 2017; doi:10.1152/ajpgi.00256.2016.-Inflammatory bowel diseases (IBD) comprise a group of common and debilitating chronic intestinal disorders for which currently available therapies are often unsatisfactory. The naturally occurring secondary bile acid, ursodeoxycholic acid (UDCA), has well-established anti-inflammatory and cytoprotective actions and may therefore be effective in treating IBD. We aimed to investigate regulation of colonic inflammatory responses by UDCA and to determine the potential impact of bacterial metabolism on its therapeutic actions. The anti-inflammatory efficacy of UDCA, a nonmetabolizable analog, 6α-methyl-UDCA (6-MUDCA), and its primary colonic metabolite lithocholic acid (LCA) was assessed in the murine dextran sodium sulfate (DSS) model of mucosal injury. The effects of bile acids on cytokine (TNF-α, IL-6, Il-1ß, and IFN-γ) release from cultured colonic epithelial cells and mouse colonic tissue in vivo were investigated. Luminal bile acids were measured by gas chromatography-mass spectrometry. UDCA attenuated release of proinflammatory cytokines from colonic epithelial cells in vitro and was protective against the development of colonic inflammation in vivo. In contrast, although 6-MUDCA mimicked the effects of UDCA on epithelial cytokine release in vitro, it was ineffective in preventing inflammation in the DSS model. In UDCA-treated mice, LCA became the most common colonic bile acid. Finally, LCA treatment more potently inhibited epithelial cytokine release and protected against DSS-induced mucosal inflammation than did UDCA. These studies identify a new role for the primary metabolite of UDCA, LCA, in preventing colonic inflammation and suggest that microbial metabolism of UDCA is necessary for the full expression of its protective actions.NEW & NOTEWORTHY On the basis of its cytoprotective and anti-inflammatory actions, the secondary bile acid ursodeoxycholic acid (UDCA) has well-established uses in both traditional and Western medicine. We identify a new role for the primary metabolite of UDCA, lithocholic acid, as a potent inhibitor of intestinal inflammatory responses, and we present data to suggest that microbial metabolism of UDCA is necessary for the full expression of its protective effects against colonic inflammation.


Asunto(s)
Antiinflamatorios/farmacología , Colitis/prevención & control , Colon/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Ácido Litocólico/farmacología , Ácido Ursodesoxicólico/farmacología , Animales , Bacterias/metabolismo , Biotransformación , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/microbiología , Colon/metabolismo , Colon/microbiología , Colon/patología , Citocinas/metabolismo , Sulfato de Dextran , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Microbioma Gastrointestinal , Células HT29 , Humanos , Mediadores de Inflamación/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Masculino , Ratones Endogámicos C57BL , Factores de Tiempo , Ácido Ursodesoxicólico/análogos & derivados , Ácido Ursodesoxicólico/metabolismo
16.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(9): 917-928, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28602806

RESUMEN

Suppression of fatty acid absorption is one goal to fight obesity. However, the responsible molecular mechanism is poorly understood. Aim of the present study was the search for the key regulator of the overall fatty acid absorption mechanism and its pharmaceutical modulation. As experimental tool we employed the polarized human intestinal tumor derived cell line CaCo2. Here we showed that influx of fatty acids is mediated by an apical heterotetrameric plasma membrane protein complex of which the calcium-independent membrane phospholipase A2 (iPLA2ß) is one constituent. The newly synthesized bile acid-phospholipid conjugate ursodeoxycholate-lysophosphatidylethanolamide (UDCA-LPE) blocked iPLA2ß, which structurally disrupted the fatty acid-uptake complex. Furthermore, the inhibition of iPLA2ß lead to reduction of cytosolic lysophosphatidylcholine (LPC) production which suppressed p-JNK1, as a central regulator of metabolism. In a concerted action low p-JNK1 levels prohibited synthesis of the members of the fatty acid uptake complex as well as of apolipoprotein B and the connected members of the basolateral vesicular chylomicron excretion machinery, thereby inhibiting cellular lipid excretion. The basolateral chylomicron release was shown to determine the overall fatty acid-absorption capacity as rate limiting step, whereas apical uptake replenishes the cellular stores, enabling continuous transcellular movement of fatty acids. In conclusion, the UDCA-LPE mediated inhibition of p-JNK1 represents a powerful tool to control intestinal absorption of fatty acids and, thus may be employed as a drug to treat obesity.


Asunto(s)
Quilomicrones/metabolismo , Ácidos Grasos/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Animales , Apolipoproteínas B/metabolismo , Ácidos y Sales Biliares/metabolismo , Células CACO-2 , Calcio/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Femenino , Fosfolipasas A2 Grupo IV/metabolismo , Humanos , Lisofosfatidilcolinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ácido Ursodesoxicólico/metabolismo
17.
J Virol ; 89(15): 7660-72, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25972546

RESUMEN

UNLABELLED: Prion diseases are fatal neurodegenerative disorders associated with the conversion of cellular prion protein (PrPC) into its aberrant infectious form (PrPSc). There is no treatment available for these diseases. The bile acids tauroursodeoxycholic acid(TUDCA) and ursodeoxycholic acid (UDCA) have been recently shown to be neuroprotective in other protein misfolding disease models, including Parkinson's, Huntington's and Alzheimer's diseases, and also in humans with amyotrophic lateral sclerosis.Here, we studied the therapeutic efficacy of these compounds in prion disease. We demonstrated that TUDCA and UDCA substantially reduced PrP conversion in cell-free aggregation assays, as well as in chronically and acutely infected cell cultures. This effect was mediated through reduction of PrPSc seeding ability, rather than an effect on PrPC. We also demonstrated the ability of TUDCA and UDCA to reduce neuronal loss in prion-infected cerebellar slice cultures. UDCA treatment reduced astrocytosis and prolonged survival in RML prion-infected mice. Interestingly, these effects were limited to the males, implying a gender-specific difference in drug metabolism. Beyond effects on PrPSc, we found that levels of phosphorylated eIF2 were increased at early time points, with correlated reductions in postsynaptic density protein 95. As demonstrated for other neurodegenerative diseases, we now show that TUDCA and UDCA may have a therapeutic role in prion diseases, with effects on both prion conversion and neuroprotection. Our findings, together with the fact that these natural compounds are orally bioavailable, permeable to the blood-brain barrier, and U.S. Food and Drug Administration-approved for use in humans, make these compounds promising alternatives for the treatment of prion diseases. IMPORTANCE: Prion diseases are fatal neurodegenerative diseases that are transmissible to humans and other mammals. There are no disease-modifying therapies available, despite decades of research. Treatment targets have included inhibition of protein accumulation,clearance of toxic aggregates, and prevention of downstream neurodegeneration. No one target may be sufficient; rather, compounds which have a multimodal mechanism, acting on different targets, would be ideal. TUDCA and UDCA are bile acids that may fulfill this dual role. Previous studies have demonstrated their neuroprotective effects in several neurodegenerative disease models, and we now demonstrate that this effect occurs in prion disease, with an added mechanistic target of upstream prion seeding. Importantly, these are natural compounds which are orally bioavailable, permeable to the blood-brain barrier, and U.S.Food and Drug Administration-approved for use in humans with primary biliary cirrhosis. They have recently been proven efficacious in human amyotrophic lateral sclerosis. Therefore, these compounds are promising options for the treatment of prion diseases.


Asunto(s)
Neuronas/metabolismo , Proteínas PrPC/metabolismo , Proteínas PrPSc/metabolismo , Enfermedades por Prión/metabolismo , Enfermedades por Prión/fisiopatología , Ácido Tauroquenodesoxicólico/metabolismo , Ácido Ursodesoxicólico/metabolismo , Animales , Ácidos y Sales Biliares/metabolismo , Muerte Celular , Supervivencia Celular , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Especificidad de la Especie
18.
Diabetes Obes Metab ; 18(12): 1217-1225, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27451030

RESUMEN

AIMS: Treatment with glucagon-like peptide (GLP)-1 receptor agonists or dipeptidyl peptidase (DPP)-4 inhibitors might increase gallstone formation; however, the mechanisms involved are unknown. We aimed to assess the effects of these drugs on gallbladder volume and bile acid profile. MATERIALS AND METHODS: A total of 57 type 2 diabetes patients (mean ± SD age, 62.8 ± 6.9 years; BMI, 31.8 ± 4.1 kg/m2 ; HbA1c, 7.3% ± 0.6%), treated with metformin and/or sulfonylureas, were included in this 12-week randomized, placebo-controlled, double-blind, single-centre trial between July 2013 and August 2015 at the VU University Medical Center, the Netherlands. Patients received the GLP-1 receptor agonist liraglutide, the DPP-4 inhibitor sitagliptin or matching placebo for 12 weeks. Gallbladder fasting volume and ejection fraction were measured using ultrasonography after a high-fat meal. Serum bile acids were measured in the fasting and postprandial state and in faecal samples. The trial was registered at ClinicalTrials.gov (NCT01744236). RESULTS: Neither liraglutide nor sitagliptin had an effect on gallbladder fasting volume and ejection fraction (p > .05). Liraglutide increased serum levels of deoxycholic acid in the fasting state [0.20 µmol/L (95% CI 0.027-0.376), p = 0.024] and postprandial state [AUC 40.71 (13.22-68.21), p = 0.005] and in faeces [ratio 1.5 (1.03-2.19); p = 0.035]. Sitagliptin had no effect on serum bile acids, but increased faecal levels of chenodeoxycholic acid [ratio 3.42 (1.33-8.79), p = 0.012], cholic acid [ratio 3.32 (1.26-8.87), p = 0.017] and ursodeoxycholic acid [ratio 3.81 (1.44-10.14), p = 0.008]. CONCLUSIONS: Neither liraglutide nor sitagliptin has an effect on gallbladder volume. Observed changes in bile acids with liraglutide suggest alterations in the intestinal microbiome, while sitagliptin appears to increase hepatic bile acid production.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Vesícula Biliar/diagnóstico por imagen , Hipoglucemiantes/uso terapéutico , Liraglutida/uso terapéutico , Fosfato de Sitagliptina/uso terapéutico , Anciano , Glucemia/metabolismo , Ácido Quenodesoxicólico/metabolismo , Ácido Cólico/metabolismo , Ácido Desoxicólico/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Método Doble Ciego , Quimioterapia Combinada , Ayuno , Heces/química , Femenino , Vesícula Biliar/patología , Receptor del Péptido 1 Similar al Glucagón/agonistas , Hemoglobina Glucada/metabolismo , Humanos , Masculino , Metformina/uso terapéutico , Persona de Mediana Edad , Tamaño de los Órganos , Periodo Posprandial , Compuestos de Sulfonilurea/uso terapéutico , Ultrasonografía , Ácido Ursodesoxicólico/metabolismo
19.
Can J Physiol Pharmacol ; 94(4): 402-7, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26913826

RESUMEN

Intrahepatic cholestasis of pregnancy (ICP) is a severe liver disorder occurring specifically in pregnancy, and matrix metalloproteinase (MMP)-2 and MMP-9 were found to be elevated in ICP patients. Using ethinylestradiol-induced ICP rats as the model, we examined the effect of resveratrol on ICP symptoms such as bile flow rate, serum enzymatic activities, and TBA concentration, as well as MMP levels, and compared with the known ICP drug ursodeoxycholic acid. Both MMP-2 and MMP-9 were upregulated in ICP rats, and resveratrol treatment could inhibit the elevation of both MMPs, whereas ursodeoxycholic acid did not exhibit any effect. Although ursodeoxycholic acid alleviated ICP symptoms, resveratrol treatment in general exhibited better outcome in restoring bile flow rate, serum enzymatic activities, and TBA concentration. Our results for the first instance strongly supported the potential of RE as a new therapeutic agent in treating ICP, possibly through inhibiting MMP-2 and MMP-9.


Asunto(s)
Colestasis Intrahepática/tratamiento farmacológico , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Complicaciones del Embarazo/tratamiento farmacológico , Estilbenos/farmacología , Animales , Colestasis Intrahepática/metabolismo , Femenino , Embarazo , Complicaciones del Embarazo/metabolismo , Ratas , Ratas Sprague-Dawley , Resveratrol , Ácido Ursodesoxicólico/metabolismo
20.
J Hepatol ; 62(4): 871-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25463533

RESUMEN

BACKGROUND & AIMS: Intrahepatic granuloma formation and fibrosis characterize the pathological features of Schistosoma mansoni infection. Based on previously observed substantial anti-fibrotic effects of 24-nor-ursodeoxycholic acid (norUDCA) in Abcb4/Mdr2(-/-) mice with cholestatic liver injury and biliary fibrosis, we hypothesized that norUDCA improves inflammation-driven liver fibrosis in S. mansoni infection. METHODS: Adult NMRI mice were infected with 50 S. mansoni cercariae and after 12 weeks received either norUDCA- or ursodeoxycholic acid (UDCA)-enriched diet (0.5% wt/wt) for 4 weeks. Bile acid effects on liver histology, serum biochemistry, key regulatory cytokines, hepatic hydroxyproline content as well as granuloma formation were compared to naive mice and infected controls. In addition, effects of norUDCA on primary T-cell activation/proliferation and maturation of the antigen-presenting-cells (dendritic cells, macrophages) were determined in vitro. RESULTS: UDCA as well as norUDCA attenuated the inflammatory response in livers of S. mansoni infected mice, but exclusively norUDCA changed cellular composition and reduced size of hepatic granulomas as well as TH2-mediated hepatic fibrosis in vivo. Moreover, norUDCA affected surface expression level of major histocompatibility complex (MHC) class II of macrophages and dendritic cells as well as activation/proliferation of T-lymphocytes in vitro, whereas UDCA had no effect. CONCLUSIONS: This study demonstrates pronounced anti-inflammatory and anti-fibrotic effects of norUDCA compared to UDCA in S. mansoni induced liver injury, and indicates that norUDCA directly represses antigen presentation of antigen presenting cells and subsequent T-cell activation in vitro. Therefore, norUDCA represents a promising drug for the treatment of this important cause of liver fibrosis.


Asunto(s)
Granuloma , Cirrosis Hepática , Esquistosomiasis mansoni , Ácido Ursodesoxicólico/análogos & derivados , Animales , Colagogos y Coleréticos/metabolismo , Colagogos y Coleréticos/farmacología , Modelos Animales de Enfermedad , Monitoreo de Drogas , Granuloma/tratamiento farmacológico , Granuloma/inmunología , Granuloma/patología , Inmunohistoquímica , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Inflamación/patología , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/etiología , Cirrosis Hepática/inmunología , Cirrosis Hepática/patología , Cirrosis Hepática/fisiopatología , Activación de Linfocitos/efectos de los fármacos , Ratones , Esquistosomiasis mansoni/complicaciones , Esquistosomiasis mansoni/inmunología , Esquistosomiasis mansoni/patología , Esquistosomiasis mansoni/fisiopatología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Resultado del Tratamiento , Ácido Ursodesoxicólico/metabolismo , Ácido Ursodesoxicólico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA