Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Dev Biol ; 516: 35-46, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39074652

RESUMEN

The mechanosensory hair cell of the vertebrate inner ear responds to the mechanical deflections that result from hearing or change in the acceleration due to gravity, to allow us to perceive and interpret sounds, maintain balance and spatial orientation. In mammals, ototoxic compounds, disease, and acoustic trauma can result in damage and extrusion of hair cells, without replacement, resulting in hearing loss. In contrast, non-mammalian vertebrates can regenerate sensory hair cells. Upon damage, hair cells are extruded and an associated cell type, the supporting cell is transformed into a hair cell. The mechanisms that can trigger regeneration are not known. Using mosaic deletion of the hair cell master gene, Atoh1, in the embryonic avian inner ear, we find that despite hair cells depletion at E9, by E12, hair cell number is restored in sensory epithelium. Our study suggests a homeostatic mechanism can restores hair cell number in the basilar papilla, that is activated when juxtracrine signalling is disrupted. Restoration of hair cell numbers during development may mirror regenerative processes, and our work provides insights into the mechanisms that trigger regeneration.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Células Ciliadas Auditivas , Homeostasis , Animales , Células Ciliadas Auditivas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Embrión de Pollo , Epitelio/metabolismo , Eliminación de Gen , Regeneración/fisiología , Recuento de Células , Mosaicismo , Pollos , Órgano Espiral/embriología , Órgano Espiral/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(24): 13552-13561, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32482884

RESUMEN

Precise control of organ growth and patterning is executed through a balanced regulation of progenitor self-renewal and differentiation. In the auditory sensory epithelium-the organ of Corti-progenitor cells exit the cell cycle in a coordinated wave between E12.5 and E14.5 before the initiation of sensory receptor cell differentiation, making it a unique system for studying the molecular mechanisms controlling the switch between proliferation and differentiation. Here we identify the Yap/Tead complex as a key regulator of the self-renewal gene network in organ of Corti progenitor cells. We show that Tead transcription factors bind directly to the putative regulatory elements of many stemness- and cell cycle-related genes. We also show that the Tead coactivator protein, Yap, is degraded specifically in the Sox2-positive domain of the cochlear duct, resulting in down-regulation of Tead gene targets. Further, conditional loss of the Yap gene in the inner ear results in the formation of significantly smaller auditory and vestibular sensory epithelia, while conditional overexpression of a constitutively active version of Yap, Yap5SA, is sufficient to prevent cell cycle exit and to prolong sensory tissue growth. We also show that viral gene delivery of Yap5SA in the postnatal inner ear sensory epithelia in vivo drives cell cycle reentry after hair cell loss. Taken together, these data highlight the key role of the Yap/Tead transcription factor complex in maintaining inner ear progenitors during development, and suggest new strategies to induce sensory cell regeneration.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Autorrenovación de las Células , Órgano Espiral/embriología , Órgano Espiral/metabolismo , Células Madre/citología , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Ciclo Celular , Proteínas de Ciclo Celular/genética , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Células Ciliadas Auditivas , Ratones , Órgano Espiral/citología , Unión Proteica , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Células Madre/metabolismo , Factores de Transcripción/genética , Proteínas Señalizadoras YAP
3.
Development ; 146(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31676552

RESUMEN

During cochlear development, hair cells (HCs) and supporting cells differentiate in the prosensory domain to form the organ of Corti, but how one row of inner HCs (IHCs) and three rows of outer HCs (OHCs) are organized is not well understood. Here, we investigated the process of HC induction by monitoring Atoh1 expression in cochlear explants of Atoh1-EGFP knock-in mouse embryos and showed that only the cells that express Atoh1 over a certain threshold are selected for HC fate determination. HC induction initially occurs at the medial edge of the prosensory domain to form IHCs and subsequently at the lateral edge to form OHCs, while Hedgehog signaling maintains a space between IHCs and OHCs, leading to formation of the tunnel of Corti. These results reveal dynamic Atoh1 expression in HC fate control and suggest that multi-directional signals regulate OHC induction, thereby organizing the prototype of the organ of Corti.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Cóclea/embriología , Células Ciliadas Auditivas/citología , Animales , Tipificación del Cuerpo , Proteína Morfogenética Ósea 4/fisiología , Diferenciación Celular , Linaje de la Célula , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/fisiología , Proteínas Hedgehog/fisiología , Imagenología Tridimensional , Ratones , Microscopía Fluorescente , Microscopía por Video , Órgano Espiral/embriología , Receptores Notch/fisiología , Transducción de Señal
4.
Dev Dyn ; 249(10): 1217-1242, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32492250

RESUMEN

BACKGROUND: Understanding the mechanisms that regulate hair cell (HC) differentiation in the organ of Corti (OC) is essential to designing genetic therapies for hearing loss due to HC loss or damage. We have previously identified Fibroblast Growth Factor 20 (FGF20) as having a key role in HC and supporting cell differentiation in the mouse OC. To investigate the genetic landscape regulated by FGF20 signaling in OC progenitors, we employ Translating Ribosome Affinity Purification combined with Next Generation RNA Sequencing (TRAPseq) in the Fgf20 lineage. RESULTS: We show that TRAPseq targeting OC progenitors effectively enriched for RNA from this rare cell population. TRAPseq identified differentially expressed genes (DEGs) downstream of FGF20, including Etv4, Etv5, Etv1, Dusp6, Hey1, Hey2, Heyl, Tectb, Fat3, Cpxm2, Sall1, Sall3, and cell cycle regulators such as Cdc20. Analysis of Cdc20 conditional-null mice identified decreased cochlea length, while analysis of Sall1-null and Sall1-ΔZn2-10 mice, which harbor a mutation that causes Townes-Brocks syndrome, identified a decrease in outer hair cell number. CONCLUSIONS: We present two datasets: genes with enriched expression in OC progenitors, and DEGs downstream of FGF20 in the embryonic day 14.5 cochlea. We validate select DEGs via in situ hybridization and in vivo functional studies in mice.


Asunto(s)
Factores de Crecimiento de Fibroblastos/fisiología , Órgano Espiral/metabolismo , Ribosomas/metabolismo , Animales , Diferenciación Celular , Factores de Crecimiento de Fibroblastos/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Terapia Genética , Células Ciliadas Auditivas Externas/metabolismo , Audición , Ratones , Ratones Transgénicos , Mutación , Neurogénesis , Órgano Espiral/embriología , Fenotipo , Biosíntesis de Proteínas , Análisis de Secuencia de ARN , Transducción de Señal , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Dev Biol ; 446(2): 133-141, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30605626

RESUMEN

Damage or loss of auditory hair cells leads to irreversible sensorineural hearing loss in human, thus regeneration of these cells to reconstruct auditory sensory epithelium holds the promise for the treatment of deafness. Regulatory factors involved in the development of auditory sensory epithelium play crucial roles in hair cell regeneration and hearing restoration. Here, we first focus on the transcription factor Atoh1 which is critical for hair cell development and regeneration, and comprehensively summarize the current understanding of the protein structure, target binding motif, developmental expression pattern, functional role, and upstream and downstream regulatory mechanism of Atoh1 in the context of controlling the cell fate commitment to hair cells or transdifferentiation from supporting cells. We also discuss cellular context dependency of Atoh1 in hair cell induction which should be taken into consideration when using Atoh1 gene therapy for hair cell regeneration. Next, we review the roles of Gfi1, Pou4f3, and Barhl1 in hair cell maturation and maintenance, and suggest that manipulation of these genes and their downstream targets will be helpful for the generation of functional hair cells with long-term viability. Finally, we provide an overview of the interplay between Notch, Wnt, Shh, and FGF signaling pathways during auditory sensory epithelium development. By analyzing crosstalk between these pathways, we suggest that combination of Wnt signaling activation with Hey1 and Hey2 inhibition will be crucial for hair cell regeneration and hearing restoration. Furthermore, this review highlights the importance of deeper understanding of the cellular context for hair cell development and the interconnection between these key regulators in developing new strategies to treat sensorineural hearing loss.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Oído Interno/metabolismo , Regulación del Desarrollo de la Expresión Génica , Órgano Espiral/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Oído Interno/embriología , Oído Interno/crecimiento & desarrollo , Células Ciliadas Auditivas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Órgano Espiral/embriología , Órgano Espiral/crecimiento & desarrollo , Factor de Transcripción Brn-3C/genética , Factor de Transcripción Brn-3C/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Development ; 144(20): 3766-3776, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28870992

RESUMEN

Developmental remodeling of the sensory epithelium of the cochlea is required for the formation of an elongated, tonotopically organized auditory organ, but the cellular processes that mediate these events are largely unknown. We used both morphological assessments of cellular rearrangements and time-lapse imaging to visualize cochlear remodeling in mouse. Analysis of cell redistribution showed that the cochlea extends through a combination of radial intercalation and cell growth. Live imaging demonstrated that concomitant cellular intercalation results in a brief period of epithelial convergence, although subsequent changes in cell size lead to medial-lateral spreading. Supporting cells, which retain contact with the basement membrane, exhibit biased protrusive activity and directed movement along the axis of extension. By contrast, hair cells lose contact with the basement membrane, but contribute to continued outgrowth through increased cell size. Regulation of cellular protrusions, movement and intercalation within the cochlea all require myosin II. These results establish, for the first time, many of the cellular processes that drive the distribution of sensory cells along the tonotopic axis of the cochlea.


Asunto(s)
Movimiento Celular , Cóclea/embriología , Regulación del Desarrollo de la Expresión Génica , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Tipificación del Cuerpo , Proliferación Celular , Tamaño de la Célula , Femenino , Genotipo , Células Ciliadas Auditivas/citología , Homocigoto , Mamíferos , Ratones , Miosina Tipo II/metabolismo , Órgano Espiral/embriología , Factores de Transcripción SOXB1/genética , Imagen de Lapso de Tiempo
7.
Development ; 143(5): 841-50, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26932672

RESUMEN

Determination of cell fate within the prosensory domain of the developing cochlear duct relies on the temporal and spatial regulation of the bHLH transcription factor Atoh1. Auditory hair cells and supporting cells arise in a wave of differentiation that patterns them into discrete rows mediated by Notch-dependent lateral inhibition. However, the mechanism responsible for selecting sensory cells from within the prosensory competence domain remains poorly understood. We show in mice that rather than being upregulated in rows of cells, Atoh1 is subject to transcriptional activation in groups of prosensory cells, and that highly conserved sites for Hes/Hey repressor binding in the Atoh1 promoter are needed to select the hair cell and supporting cell fate. During perinatal supporting cell transdifferentiation, which is a model of hair cell regeneration, we show that derepression is sufficient to induce Atoh1 expression, suggesting a mechanism for priming the 3' Atoh1 autoregulatory enhancer needed for hair cell expression.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Proteínas de Ciclo Celular/fisiología , Linaje de la Célula , Cóclea/embriología , Células Ciliadas Auditivas/fisiología , Proteínas de Homeodominio/fisiología , Órgano Espiral/fisiología , Proteínas Represoras/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Sitios de Unión , Diferenciación Celular , Transdiferenciación Celular , Cóclea/fisiología , Elementos de Facilitación Genéticos , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Mutación , Órgano Espiral/embriología , Regiones Promotoras Genéticas , Transducción de Señal , Factor de Transcripción HES-1
8.
Dev Biol ; 423(2): 126-137, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28159525

RESUMEN

Vestibular hair cells of the inner ear are specialized receptors that detect mechanical stimuli from gravity and motion via the deflection of a polarized bundle of stereocilia located on their apical cell surfaces. The orientation of stereociliary bundles is coordinated between neighboring cells by core PCP proteins including the large adhesive G-protein coupled receptor Celsr1. We show that mice lacking Celsr1 have vestibular behavioral phenotypes including circling. In addition, we show that Celsr1 is asymmetrically distributed at cell boundaries between hair cells and neighboring supporting cells in the developing vestibular and auditory sensory epithelia. In the absence of Celsr1 the stereociliary bundles of vestibular hair cells are misoriented relative to their neighbors, a phenotype that is greatest in the cristae of the semicircular canals. Since horizontal semi-circular canal defects lead to circling in other mutant mouse lines, we propose that this PCP phenotype is the cellular basis of the circling behavior in Celsr1 mutants.


Asunto(s)
Polaridad Celular , Oído Interno/citología , Oído Interno/embriología , Células Ciliadas Vestibulares/citología , Receptores Acoplados a Proteínas G/metabolismo , Animales , Conducta Animal , Oído Interno/metabolismo , Epitelio/metabolismo , Eliminación de Gen , Ratones Noqueados , Órgano Espiral/citología , Órgano Espiral/embriología , Órgano Espiral/metabolismo , Fenotipo , Transducción de Señal , Estereocilios/metabolismo
9.
Development ; 142(16): 2810-21, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26209643

RESUMEN

Atoh1, a basic helix-loop-helix (bHLH) transcription factor (TF), is essential for the differentiation of hair cells (HCs), mechanotransducers that convert sound into auditory signals in the mammalian organ of Corti (OC). Previous work demonstrated that replacing mouse Atoh1 with the fly ortholog atonal rescues HC differentiation, indicating functional replacement by other bHLH genes. However, replacing Atoh1 with Neurog1 resulted in reduced HC differentiation compared with transient Atoh1 expression in a 'self-terminating' Atoh1 conditional null mouse (Atoh1-Cre; Atoh1(f/f)). We now show that combining Neurog1 in one allele with removal of floxed Atoh1 in a self-terminating conditional mutant (Atoh1-Cre; Atoh1(f/kiNeurog1)) mouse results in significantly more differentiated inner HCs and outer HCs that have a prolonged longevity of 9 months compared with Atoh1 self-terminating littermates. Stereocilia bundles are partially disorganized, disoriented and not HC type specific. Replacement of Atoh1 with Neurog1 maintains limited expression of Pou4f3 and Barhl1 and rescues HCs quantitatively, but not qualitatively. OC patterning and supporting cell differentiation are also partially disrupted. Diffusible factors involved in patterning are reduced (Fgf8) and factors involved in cell-cell interactions are affected (Jag1, Hes5). Despite the presence of many HCs with stereocilia these mice are deaf, possibly owing to HC and OC patterning defects. This study provides a novel approach to disrupt OC development through modulating the HC-specific intracellular TF network. The resulting disorganized OC indicates that normally differentiated HCs act as 'self-organizers' for OC development and that Atoh1 plays a crucial role to initiate HC stereocilia differentiation independently of HC viability.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/fisiología , Células Ciliadas Auditivas/fisiología , Proteínas del Tejido Nervioso/metabolismo , Órgano Espiral/embriología , Animales , Técnicas de Sustitución del Gen , Inmunohistoquímica , Hibridación in Situ , Ratones , Microscopía Electrónica de Rastreo , Reacción en Cadena de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
Dev Biol ; 414(1): 72-84, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27090805

RESUMEN

The transcription factor Sox2 is both necessary and sufficient for the generation of sensory regions of the inner ear. It regulates expression of the Notch ligand Jag1 in prosensory progenitors, which signal to neighboring cells to up-regulate Sox2 and sustain prosensory identity. However, the expression pattern of Sox2 in the early inner ear is very broad, suggesting that Sox2-expressing progenitors form a wide variety of cell types in addition to generating the sensory regions of the ear. We used Sox2-CreER mice to follow the fates of Sox2-expressing cells at different stages in ear development. We find that Sox2-expressing cells in the early otocyst give rise to large numbers of non-sensory structures throughout the inner ear, and that Sox2 only becomes a truly prosensory marker at embryonic day (E)11.5. Our fate map reveals the organ of Corti derives from a central domain on the medial side of the otocyst and shows that a significant amount of the organ of Corti derives from a Sox2-negative population in this region.


Asunto(s)
Oído Interno/citología , Células-Madre Neurales/citología , Órgano Espiral/embriología , Factores de Transcripción SOXB1/análisis , Animales , Antígenos de Diferenciación/análisis , Linaje de la Célula , Oído Interno/embriología , Regulación del Desarrollo de la Expresión Génica , Técnicas de Sustitución del Gen , Genes Reporteros , Imagenología Tridimensional , Proteína Jagged-1/biosíntesis , Proteína Jagged-1/genética , Proteínas Luminiscentes/análisis , Ratones , Ratones Transgénicos , Órgano Espiral/citología , Receptores Notch/fisiología , Transducción de Señal/fisiología
11.
Development ; 141(2): 399-409, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24381198

RESUMEN

The organ of Corti consists of sensory hair cells (HCs) interdigitated with nonsensory supporting cells (SCs) to form a checkerboard-like cellular pattern. HCs are equipped with hair bundles on their apical surfaces. We previously reported that cell-adhesive nectins regulate the checkerboard-like cellular patterning of HCs and SCs in the mouse auditory epithelium. Nectin-1 and -3 are differentially expressed in normal HCs and SCs, respectively, and in Nectin-3-deficient mice a number of HCs are aberrantly attached to each other. We show here that these aberrantly attached HCs in Nectin-3-deficient mice, but not unattached ones, show disturbances of the orientation and morphology of the hair bundles and the positioning of the kinocilium, with additional abnormal localisation of cadherin-catenin complexes and the apical-basal polarity proteins Pals1 and Par-3. These results indicate that, owing to the loss of Nectin-3, hair cells contact each other inappropriately and form abnormal junctions, ultimately resulting in abnormal hair bundle orientation and morphology.


Asunto(s)
Moléculas de Adhesión Celular/deficiencia , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patología , Órgano Espiral/anomalías , Órgano Espiral/metabolismo , Animales , Proteínas Portadoras/metabolismo , Adhesión Celular , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Polaridad Celular , Femenino , Receptores Frizzled/metabolismo , Regulación del Desarrollo de la Expresión Génica , Uniones Intercelulares/metabolismo , Uniones Intercelulares/patología , Células Laberínticas de Soporte/metabolismo , Células Laberínticas de Soporte/patología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Nectinas , Órgano Espiral/embriología , Embarazo
12.
Development ; 140(8): 1785-95, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23533177

RESUMEN

The V-shaped hair bundles atop auditory hair cells and their uniform orientation are manifestations of epithelial planar cell polarity (PCP) required for proper perception of sound. PCP is regulated at the tissue level by a conserved core Wnt/PCP pathway. However, the hair cell-intrinsic polarity machinery is poorly understood. Recent findings implicate hair cell microtubules in planar polarization of hair cells. To elucidate the microtubule-mediated polarity pathway, we analyzed Lis1 function in the auditory sensory epithelium in the mouse. We show that conditional deletion of Lis1 in developing hair cells causes defects in cytoplasmic dynein and microtubule organization, resulting in planar polarity defects without overt effects on the core PCP pathway. Lis1 ablation during embryonic development results in defects in hair bundle morphology and orientation, cellular organization and junctional nectin localization. We present evidence that Lis1 regulates localized Rac-PAK signaling in embryonic hair cells, probably through microtubule-associated Tiam1, a guanine nucleotide exchange factor for Rac. Lis1 ablation in postnatal hair cells significantly disrupts centrosome anchoring and the normal V-shape of hair bundles, accompanied by defects in the pericentriolar matrix and microtubule organization. Lis1 is also required for proper positioning of the Golgi complex and mitochondria as well as for hair cell survival. Together, our results demonstrate that Lis1 mediates the planar polarity of hair cells through regulation of microtubule organization downstream of the tissue polarity pathway.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Polaridad Celular/fisiología , Células Ciliadas Auditivas/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/fisiología , Órgano Espiral/embriología , Transducción de Señal/fisiología , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Animales , Western Blotting , Cartilla de ADN/genética , Eliminación de Gen , Factores de Intercambio de Guanina Nucleótido/metabolismo , Inmunohistoquímica , Ratones , Microscopía Electrónica de Rastreo , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Orgánulos/fisiología , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T
13.
Proc Natl Acad Sci U S A ; 110(34): 13869-74, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23918393

RESUMEN

Neural precursor cells of the central nervous system undergo successive temporal waves of terminal division, each of which is soon followed by the onset of cell differentiation. The organ of Corti in the mammalian cochlea develops differently, such that precursors at the apex are the first to exit from the cell cycle but the last to begin differentiating as mechanosensory hair cells. Using a tissue-specific knockout approach in mice, we show that this unique temporal pattern of sensory cell development requires that the adjacent auditory (spiral) ganglion serve as a source of the signaling molecule Sonic hedgehog (Shh). In the absence of this signaling, the cochlear duct is shortened, sensory hair cell precursors exit from the cell cycle prematurely, and hair cell differentiation closely follows cell cycle exit in a similar apical-to-basal direction. The dynamic relationship between the restriction of Shh expression in the developing spiral ganglion and its proximity to regions of the growing cochlear duct dictates the timing of terminal mitosis of hair cell precursors and their subsequent differentiation.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Diferenciación Celular/fisiología , Células Ciliadas Auditivas/fisiología , Proteínas Hedgehog/metabolismo , Morfogénesis/fisiología , Órgano Espiral/embriología , Ganglio Espiral de la Cóclea/metabolismo , Animales , Desoxiuridina/análogos & derivados , Hibridación in Situ , Etiquetado Corte-Fin in Situ , Ratones , Órgano Espiral/citología
14.
Dev Dyn ; 244(2): 168-80, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25370455

RESUMEN

BACKGROUND: Inner ear morphogenesis is tightly regulated by the temporally and spatially coordinated action of signaling ligands and their receptors. Ligand-receptor interactions are influenced by heparan sulfate proteoglycans (HSPGs), cell surface molecules that consist of glycosaminoglycan chains bound to a protein core. Diversity in the sulfation pattern within glycosaminoglycan chains creates binding sites for numerous cell signaling factors, whose activities and distribution are modified by their association with HSPGs. RESULTS: Here we describe the expression patterns of two extracellular 6-O-endosulfatases, Sulf1 and Sulf2, whose activity modifies the 6-O-sulfation pattern of HSPGs. We use in situ hybridization to determine the temporal and spatial distribution of transcripts during the development of the chick and mouse inner ear. We also use immunocytochemistry to determine the cellular localization of Sulf1 and Sulf2 within the sensory epithelia. Furthermore, we analyze the organ of Corti in Sulf1/Sulf2 double knockout mice and describe an increase in the number of mechanosensory hair cells. CONCLUSIONS: Our results suggest that the tuning of intracellular signaling, mediated by Sulf activity, plays an important role in the development of the inner ear.


Asunto(s)
Proteínas Aviares/biosíntesis , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Órgano Espiral/embriología , Sulfatasas/biosíntesis , Sulfotransferasas/biosíntesis , Animales , Embrión de Pollo , Ratones , Órgano Espiral/citología , Transducción de Señal/fisiología
15.
Development ; 139(23): 4395-404, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23132246

RESUMEN

The canonical Wnt/ß-catenin signaling pathway is known to play crucial roles in organogenesis by regulating both proliferation and differentiation. In the inner ear, this pathway has been shown to regulate the size of the otic placode from which the cochlea will arise; however, direct activity of canonical Wnt signaling as well as its function during cochlear mechanosensory hair cell development had yet to be identified. Using TCF/Lef:H2B-GFP reporter mice and transfection of an independent TCF/Lef reporter construct, we describe the pattern of canonical Wnt activity in the developing mouse cochlea. We show that prior to terminal mitosis, canonical Wnt activity is high in early prosensory cells from which hair cells and support cells will differentiate, and activity becomes reduced as development progresses. Using an in vitro model we demonstrate that Wnt/ß-catenin signaling regulates both proliferation and hair cell differentiation within the developing cochlear duct. Inhibition of Wnt/ß-catenin signaling blocks proliferation during early mitotic phases of development and inhibits hair cell formation in the differentiating organ of Corti. Conversely, activation increases the number of hair cells that differentiate and induces proliferation in prosensory cells, causing an expansion of the Sox2-positive prosensory domain. We further demonstrate that the induced proliferation of Sox2-positive cells may be mediated by the cell cycle regulator cyclin D1. Lastly, we provide evidence that the mitotic Sox2-positive cells are competent to differentiate into hair cells. Combined, our data suggest that Wnt/ß-catenin signaling has a dual function in cochlear development, regulating both proliferation and hair cell differentiation.


Asunto(s)
Cóclea/embriología , Células Ciliadas Auditivas/metabolismo , Órgano Espiral/embriología , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Cóclea/citología , Cóclea/metabolismo , Ciclina D1/metabolismo , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Órgano Espiral/metabolismo , Organogénesis , Factores de Transcripción SOXB1/metabolismo
16.
Development ; 139(24): 4666-74, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23172918

RESUMEN

This study is the first to demonstrate that macrophage migration inhibitory factor (MIF), an immune system 'inflammatory' cytokine that is released by the developing otocyst, plays a role in regulating early innervation of the mouse and chick inner ear. We demonstrate that MIF is a major bioactive component of the previously uncharacterized otocyst-derived factor, which directs initial neurite outgrowth from the statoacoustic ganglion (SAG) to the developing inner ear. Recombinant MIF acts as a neurotrophin in promoting both SAG directional neurite outgrowth and neuronal survival and is expressed in both the developing and mature inner ear of chick and mouse. A MIF receptor, CD74, is found on both embryonic SAG neurons and adult mouse spiral ganglion neurons. Mif knockout mice are hearing impaired and demonstrate altered innervation to the organ of Corti, as well as fewer sensory hair cells. Furthermore, mouse embryonic stem cells become neuron-like when exposed to picomolar levels of MIF, suggesting the general importance of this cytokine in neural development.


Asunto(s)
Oído Interno/embriología , Oxidorreductasas Intramoleculares/fisiología , Factores Inhibidores de la Migración de Macrófagos/fisiología , Factores de Crecimiento Nervioso/fisiología , Animales , Animales Recién Nacidos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Embrión de Pollo , Oído Interno/efectos de los fármacos , Oído Interno/crecimiento & desarrollo , Oído Interno/metabolismo , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Oxidorreductasas Intramoleculares/farmacología , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Factores Inhibidores de la Migración de Macrófagos/farmacología , Ratones , Ratones Noqueados , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/farmacología , Neuritas/efectos de los fármacos , Neuritas/fisiología , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Órgano Espiral/embriología , Órgano Espiral/crecimiento & desarrollo , Órgano Espiral/metabolismo , Ganglio Espiral de la Cóclea/embriología , Ganglio Espiral de la Cóclea/crecimiento & desarrollo , Ganglio Espiral de la Cóclea/metabolismo
17.
Cell Tissue Res ; 361(1): 7-24, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25381571

RESUMEN

The mammalian inner ear develops from a placodal thickening into a complex labyrinth of ducts with five sensory organs specialized to detect position and movement in space. The mammalian ear also develops a spiraled cochlear duct containing the auditory organ, the organ of Corti (OC), specialized to translate sound into hearing. Development of the OC from a uniform sheet of ectoderm requires unparalleled precision in the topological developmental engineering of four different general cell types, namely sensory neurons, hair cells, supporting cells, and general otic epithelium, into a mosaic of ten distinctly recognizable cell types in and around the OC, each with a unique distribution. Moreover, the OC receives unique innervation by ear-derived spiral ganglion afferents and brainstem-derived motor neurons as efferents and requires neural-crest-derived Schwann cells to form myelin and neural-crest-derived cells to induce the stria vascularis. This transformation of a sheet of cells into a complicated interdigitating set of cells necessitates the orchestrated expression of multiple transcription factors that enable the cellular transformation from ectoderm into neurosensory cells forming the spiral ganglion neurons (SGNs), while simultaneously transforming the flat epithelium into a tube, the cochlear duct, housing the OC. In addition to the cellular and conformational changes forming the cochlear duct with the OC, changes in the surrounding periotic mesenchyme form passageways for sound to stimulate the OC. We review molecular developmental data, generated predominantly in mice, in order to integrate the well-described expression changes of transcription factors and their actions, as revealed in mutants, in the formation of SGNs and OC in the correct position and orientation with suitable innervation. Understanding the molecular basis of these developmental changes leading to the formation of the mammalian OC and highlighting the gaps in our knowledge might guide in vivo attempts to regenerate this most complicated cellular mosaic of the mammalian body for the reconstitution of hearing in a rapidly growing population of aging people suffering from hearing loss.


Asunto(s)
Oído Interno/embriología , Ectodermo/embriología , Órgano Espiral/embriología , Ganglio Espiral de la Cóclea/embriología , Animales , Oído Interno/crecimiento & desarrollo , Humanos , Ratones
18.
PLoS Biol ; 10(1): e1001231, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22235191

RESUMEN

A large proportion of age-related hearing loss is caused by loss or damage to outer hair cells in the organ of Corti. The organ of Corti is the mechanosensory transducing apparatus in the inner ear and is composed of inner hair cells, outer hair cells, and highly specialized supporting cells. The mechanisms that regulate differentiation of inner and outer hair cells are not known. Here we report that fibroblast growth factor 20 (FGF20) is required for differentiation of cells in the lateral cochlear compartment (outer hair and supporting cells) within the organ of Corti during a specific developmental time. In the absence of FGF20, mice are deaf and lateral compartment cells remain undifferentiated, postmitotic, and unresponsive to Notch-dependent lateral inhibition. These studies identify developmentally distinct medial (inner hair and supporting cells) and lateral compartments in the developing organ of Corti. The viability and hearing loss in Fgf20 knockout mice suggest that FGF20 may also be a deafness-associated gene in humans.


Asunto(s)
Diferenciación Celular/genética , Cóclea/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Transducción de Señal/genética , Animales , Cóclea/citología , Cóclea/embriología , Oído Interno/citología , Oído Interno/embriología , Oído Interno/metabolismo , Femenino , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/metabolismo , Pérdida Auditiva/genética , Pérdida Auditiva/metabolismo , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Cultivo de Órganos , Órgano Espiral/citología , Órgano Espiral/embriología , Órgano Espiral/metabolismo , Receptores Notch/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
Med Sci (Paris) ; 30(11): 1004-10, 2014 Nov.
Artículo en Francés | MEDLINE | ID: mdl-25388583

RESUMEN

Since our seminal study in 2003, much has been written about core planar cell polarity (core PCP) signaling and the inner ear. In just a few years, and using the inner ear as a model system, our understanding of the molecular basis of this signaling pathway and how it can influence the development of tissues in mammals has increased considerably. Recently, a number of studies using various animal models of development have uncovered original relationships between the cilia and PCP, and the study of the hair cells of the inner ear has helped elucidating one of these links. In this review, we highlight the differences of PCP signaling between mammals and invertebrates. In the light of recent results, we sum up our current knowledge about PCP signaling in the mammalian cochlear epithelium and we discuss the impact of recent data in the field. We focus our attention on the interrelationship between asymmetric polarity complexes and the position of the cilium, which is essential for the establishment of the overall tissue polarity.


Asunto(s)
Polaridad Celular/fisiología , Células Neuroepiteliales/ultraestructura , Órgano Espiral/citología , Estereocilios/fisiología , Animales , División Celular , Movimiento Celular , Humanos , Péptidos y Proteínas de Señalización Intracelular/fisiología , Invertebrados , Mamíferos , Modelos Biológicos , Proteínas del Tejido Nervioso/fisiología , Órgano Espiral/embriología , Transducción de Señal/fisiología , Especificidad de la Especie
20.
BMC Dev Biol ; 13: 6, 2013 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-23394545

RESUMEN

BACKGROUND: Thyroid hormones regulate growth and development. However, the molecular mechanisms by which thyroid hormone regulates cell structural development are not fully understood. The mammalian cochlea is an intriguing system to examine these mechanisms, as cellular structure plays a key role in tissue development, and thyroid hormone is required for the maturation of the cochlea in the first postnatal week. RESULTS: In hypothyroid conditions, we found disruptions in sensory outer hair cell morphology and fewer microtubules in non-sensory supporting pillar cells. To test the functional consequences of these cytoskeletal defects on cell mechanics, we combined atomic force microscopy with live cell imaging. Hypothyroidism stiffened outer hair cells and supporting pillar cells, but pillar cells ultimately showed reduced cell stiffness, in part from a lack of microtubules. Analyses of changes in transcription and protein phosphorylation suggest that hypothyroidism prolonged expression of fibroblast growth factor receptors, and decreased phosphorylated Cofilin. CONCLUSIONS: These findings demonstrate that thyroid hormones may be involved in coordinating the processes that regulate cytoskeletal dynamics and suggest that manipulating thyroid hormone sensitivity might provide insight into the relationship between cytoskeletal formation and developing cell mechanical properties.


Asunto(s)
Órgano Espiral/embriología , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Hormonas Tiroideas/fisiología , Factores Despolimerizantes de la Actina/fisiología , Actinas/fisiología , Animales , Técnica del Anticuerpo Fluorescente , Hipotiroidismo/fisiopatología , Ratones , Microscopía de Fuerza Atómica , Microtúbulos , Órgano Espiral/citología , Órgano Espiral/metabolismo , Fosforilación , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA