Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 298
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 86: 461-484, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28654322

RESUMEN

Self-catalyzed DNA depurination is a sequence-specific physiological mechanism mediated by spontaneous extrusion of a stem-loop catalytic intermediate. Hydrolysis of the 5'G residue of the 5'GA/TGG loop and of the first 5'A residue of the 5'GAGA loop, together with particular first stem base pairs, specifies their hydrolysis without involving protein, cofactor, or cation. As such, this mechanism is the only known DNA catalytic activity exploited by nature. The consensus sequences for self-depurination of such G- and A-loop residues occur in all genomes examined across the phyla, averaging one site every 2,000-4,000 base pairs. Because apurinic sites are subject to error-prone repair, leading to substitution and short frameshift mutations, they are both a source of genome damage and a means for creating sequence diversity. Their marked overrepresentation in genomes, and largely unchanging density from the lowest to the highest organisms, indicate their selection over the course of evolution. The mutagenicity at such sites in many human genes is associated with loss of function of key proteins responsible for diverse diseases.


Asunto(s)
Adenina/metabolismo , Síndrome de Bloom/genética , ADN Catalítico/genética , Guanina/metabolismo , Polimorfismo Genético , Síndrome de Werner/genética , Evolución Biológica , Síndrome de Bloom/metabolismo , Síndrome de Bloom/patología , Catálisis , Reparación del ADN , ADN Catalítico/metabolismo , ADN Cruciforme/genética , ADN Cruciforme/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Humanos , Hidrólisis , Secuencias Invertidas Repetidas , Mutación , Síndrome de Werner/metabolismo , Síndrome de Werner/patología , Globinas beta/genética , Globinas beta/metabolismo
2.
Mol Cell ; 81(20): 4258-4270.e4, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34453891

RESUMEN

Currently favored models for meiotic recombination posit that both noncrossover and crossover recombination are initiated by DNA double-strand breaks but form by different mechanisms: noncrossovers by synthesis-dependent strand annealing and crossovers by formation and resolution of double Holliday junctions centered around the break. This dual mechanism hypothesis predicts different hybrid DNA patterns in noncrossover and crossover recombinants. We show that these predictions are not upheld, by mapping with unprecedented resolution parental strand contributions to recombinants at a model locus. Instead, break repair in both noncrossovers and crossovers involves synthesis-dependent strand annealing, often with multiple rounds of strand invasion. Crossover-specific double Holliday junction formation occurs via processes involving branch migration as an integral feature, one that can be separated from repair of the break itself. These findings reveal meiotic recombination to be a highly dynamic process and prompt a new view of the relationship between crossover and noncrossover recombination.


Asunto(s)
Intercambio Genético , Roturas del ADN de Doble Cadena , ADN Cruciforme/genética , ADN de Hongos/genética , Meiosis , Reparación del ADN por Recombinación , Saccharomyces cerevisiae/genética , Intercambio de Cromátides Hermanas , ADN Cruciforme/metabolismo , ADN de Hongos/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Moldes Genéticos
3.
Nature ; 609(7927): 630-639, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36002576

RESUMEN

The Holliday junction is a key intermediate formed during DNA recombination across all kingdoms of life1. In bacteria, the Holliday junction is processed by two homo-hexameric AAA+ ATPase RuvB motors, which assemble together with the RuvA-Holliday junction complex to energize the strand-exchange reaction2. Despite its importance for chromosome maintenance, the structure and mechanism by which this complex facilitates branch migration are unknown. Here, using time-resolved cryo-electron microscopy, we obtained structures of the ATP-hydrolysing RuvAB complex in seven distinct conformational states, captured during assembly and processing of a Holliday junction. Five structures together resolve the complete nucleotide cycle and reveal the spatiotemporal relationship between ATP hydrolysis, nucleotide exchange and context-specific conformational changes in RuvB. Coordinated motions in a converter formed by DNA-disengaged RuvB subunits stimulate hydrolysis and nucleotide exchange. Immobilization of the converter enables RuvB to convert the ATP-contained energy into a lever motion, which generates the pulling force driving the branch migration. We show that RuvB motors rotate together with the DNA substrate, which, together with a progressing nucleotide cycle, forms the mechanistic basis for DNA recombination by continuous branch migration. Together, our data decipher the molecular principles of homologous recombination by the RuvAB complex, elucidate discrete and sequential transition-state intermediates for chemo-mechanical coupling of hexameric AAA+ motors and provide a blueprint for the design of state-specific compounds targeting AAA+ motors.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Proteínas Bacterianas , ADN Helicasas , ADN Cruciforme , ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/ultraestructura , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Microscopía por Crioelectrón , ADN Helicasas/química , ADN Helicasas/metabolismo , ADN Helicasas/ultraestructura , ADN Cruciforme/química , ADN Cruciforme/metabolismo , ADN Cruciforme/ultraestructura , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/ultraestructura , Recombinación Homóloga , Hidrólisis , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Complejos Multienzimáticos/ultraestructura , Nucleótidos , Conformación Proteica , Rotación
4.
Mol Cell ; 78(6): 1252-1263.e3, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32362315

RESUMEN

Crossover recombination is critical for meiotic chromosome segregation, but how mammalian crossing over is accomplished is poorly understood. Here, we illuminate how strands exchange during meiotic recombination in male mice by analyzing patterns of heteroduplex DNA in recombinant molecules preserved by the mismatch correction deficiency of Msh2-/- mutants. Surprisingly, MSH2-dependent recombination suppression was not evident. However, a substantial fraction of crossover products retained heteroduplex DNA, and some provided evidence of MSH2-independent correction. Biased crossover resolution was observed, consistent with asymmetry between DNA ends in earlier intermediates. Many crossover products yielded no heteroduplex DNA, suggesting dismantling by D-loop migration. Unlike the complexity of crossovers in yeast, these simple modifications of the original double-strand break repair model-asymmetry in recombination intermediates and D-loop migration-may be sufficient to explain most meiotic crossing over in mice while also addressing long-standing questions related to Holliday junction resolution.


Asunto(s)
Intercambio Genético/fisiología , Recombinación Homóloga/fisiología , Meiosis/fisiología , Animales , Segregación Cromosómica/genética , Intercambio Genético/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , ADN Cruciforme/genética , ADN Cruciforme/metabolismo , Recombinación Homóloga/genética , Masculino , Meiosis/genética , Ratones , Ratones Endogámicos DBA , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Ácidos Nucleicos Heterodúplex/genética
5.
Nature ; 586(7830): 623-627, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32814343

RESUMEN

During meiosis, crossover recombination connects homologous chromosomes to direct their accurate segregation1. Defective crossing over causes infertility, miscarriage and congenital disease. Each pair of chromosomes attains at least one crossover via the formation and biased resolution of recombination intermediates known as double Holliday junctions2,3. A central principle of crossover resolution is that the two Holliday junctions are resolved in opposite planes by targeting nuclease incisions to specific DNA strands4. The endonuclease activity of the MutLγ complex has been implicated in the resolution of crossovers5-10, but the mechanisms that activate and direct strand-specific cleavage remain unknown. Here we show that the sliding clamp PCNA is important for crossover-biased resolution. In vitro assays with human enzymes show that PCNA and its loader RFC are sufficient to activate the MutLγ endonuclease. MutLγ is further stimulated by a co-dependent activity of the pro-crossover factors EXO1 and MutSγ, the latter of which binds Holliday junctions11. MutLγ also binds various branched DNAs, including Holliday junctions, but does not show canonical resolvase activity, implying that the endonuclease incises adjacent to junction branch points to achieve resolution. In vivo, RFC facilitates MutLγ-dependent crossing over in budding yeast. Furthermore, PCNA localizes to prospective crossover sites along synapsed chromosomes. These data highlight similarities between crossover resolution and the initiation steps of DNA mismatch repair12,13 and evoke a novel model for crossover-specific resolution of double Holliday junctions during meiosis.


Asunto(s)
Intercambio Genético , Endonucleasas/metabolismo , Meiosis , Proteínas MutL/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Adenosina Trifosfato/metabolismo , Animales , ADN Cruciforme/química , ADN Cruciforme/genética , ADN Cruciforme/metabolismo , Activación Enzimática , Humanos , Hidrólisis , Masculino , Ratones , Proteínas MutS/metabolismo , Unión Proteica , Proteína de Replicación C/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
6.
Nature ; 586(7830): 618-622, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32814904

RESUMEN

During prophase of the first meiotic division, cells deliberately break their DNA1. These DNA breaks are repaired by homologous recombination, which facilitates proper chromosome segregation and enables the reciprocal exchange of DNA segments between homologous chromosomes2. A pathway that depends on the MLH1-MLH3 (MutLγ) nuclease has been implicated in the biased processing of meiotic recombination intermediates into crossovers by an unknown mechanism3-7. Here we have biochemically reconstituted key elements of this pro-crossover pathway. We show that human MSH4-MSH5 (MutSγ), which supports crossing over8, binds branched recombination intermediates and associates with MutLγ, stabilizing the ensemble at joint molecule structures and adjacent double-stranded DNA. MutSγ directly stimulates DNA cleavage by the MutLγ endonuclease. MutLγ activity is further stimulated by EXO1, but only when MutSγ is present. Replication factor C (RFC) and the proliferating cell nuclear antigen (PCNA) are additional components of the nuclease ensemble, thereby triggering crossing-over. Saccharomyces cerevisiae strains in which MutLγ cannot interact with PCNA present defects in forming crossovers. Finally, the MutLγ-MutSγ-EXO1-RFC-PCNA nuclease ensemble preferentially cleaves DNA with Holliday junctions, but shows no canonical resolvase activity. Instead, it probably processes meiotic recombination intermediates by nicking double-stranded DNA adjacent to the junction points9. As DNA nicking by MutLγ depends on its co-factors, the asymmetric distribution of MutSγ and RFC-PCNA on meiotic recombination intermediates may drive biased DNA cleavage. This mode of MutLγ nuclease activation might explain crossover-specific processing of Holliday junctions or their precursors in meiotic chromosomes4.


Asunto(s)
Intercambio Genético , Endonucleasas/metabolismo , Meiosis , Homólogo 1 de la Proteína MutL/metabolismo , Proteínas MutL/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Cromosomas Humanos/genética , Secuencia Conservada , ADN/metabolismo , División del ADN , Enzimas Reparadoras del ADN/metabolismo , ADN Cruciforme/metabolismo , Exodesoxirribonucleasas/metabolismo , Humanos , Homólogo 1 de la Proteína MutL/química , Proteínas MutL/química , Proteínas MutS/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína de Replicación C/metabolismo
7.
Nature ; 577(7792): 701-705, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31969709

RESUMEN

Transcription challenges the integrity of replicating chromosomes by generating topological stress and conflicts with forks1,2. The DNA topoisomerases Top1 and Top2 and the HMGB family protein Hmo1 assist DNA replication and transcription3-6. Here we describe the topological architecture of genes in Saccharomyces cerevisiae during the G1 and S phases of the cell cycle. We found under-wound DNA at gene boundaries and over-wound DNA within coding regions. This arrangement does not depend on Pol II or S phase. Top2 and Hmo1 preserve negative supercoil at gene boundaries, while Top1 acts at coding regions. Transcription generates RNA-DNA hybrids within coding regions, independently of fork orientation. During S phase, Hmo1 protects under-wound DNA from Top2, while Top2 confines Pol II and Top1 at coding units, counteracting transcription leakage and aberrant hybrids at gene boundaries. Negative supercoil at gene boundaries prevents supercoil diffusion and nucleosome repositioning at coding regions. DNA looping occurs at Top2 clusters. We propose that Hmo1 locks gene boundaries in a cruciform conformation and, with Top2, modulates the architecture of genes that retain the memory of the topological arrangements even when transcription is repressed.


Asunto(s)
ADN de Hongos/química , ADN Superhelicoidal/química , Genes Fúngicos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Ensamble y Desensamble de Cromatina , Replicación del ADN , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , ADN Cruciforme/química , ADN Cruciforme/genética , ADN Cruciforme/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN Superhelicoidal/genética , ADN Superhelicoidal/metabolismo , Fase G1 , Regulación Fúngica de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/metabolismo , Mutación , Hibridación de Ácido Nucleico , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/metabolismo , Sistemas de Lectura Abierta/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN de Hongos/química , ARN de Hongos/genética , ARN de Hongos/metabolismo , Fase S , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética
8.
Nucleic Acids Res ; 51(12): 6156-6171, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37158250

RESUMEN

Pathogenic Vibrio species account for 3-5 million annual life-threatening human infections. Virulence is driven by bacterial hemolysin and toxin gene expression often positively regulated by the winged helix-turn-helix (wHTH) HlyU transcriptional regulator family and silenced by histone-like nucleoid structural protein (H-NS). In the case of Vibrio parahaemolyticus, HlyU is required for virulence gene expression associated with type 3 Secretion System-1 (T3SS1) although its mechanism of action is not understood. Here, we provide evidence for DNA cruciform attenuation mediated by HlyU binding to support concomitant virulence gene expression. Genetic and biochemical experiments revealed that upon HlyU mediated DNA cruciform attenuation, an intergenic cryptic promoter became accessible allowing for exsA mRNA expression and initiation of an ExsA autoactivation feedback loop at a separate ExsA-dependent promoter. Using a heterologous E. coli expression system, we reconstituted the dual promoter elements which revealed that HlyU binding and DNA cruciform attenuation were strictly required to initiate the ExsA autoactivation loop. The data indicate that HlyU acts to attenuate a transcriptional repressive DNA cruciform to support T3SS1 virulence gene expression and reveals a non-canonical extricating gene regulation mechanism in pathogenic Vibrio species.


Asunto(s)
Vibrio parahaemolyticus , Humanos , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo , Sistemas de Secreción Tipo III/genética , ADN Cruciforme/metabolismo , Virulencia/genética , Escherichia coli/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
9.
Cell ; 138(1): 20-2, 2009 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-19596231

RESUMEN

The SLX4 protein functions as a platform for catalytic subunits of structure-specific endonucleases. Findings reported in Cell (Fekairi et al., 2009; Svendsen et al., 2009) and in Molecular Cell (Andersen et al., 2009; Muñoz et al., 2009) now identify the human SLX4 and show that in association with the SLX1 endonuclease it directs the symmetric cleavage and resolution of Holliday junctions.


Asunto(s)
Cromosomas/metabolismo , ADN Cruciforme/metabolismo , Resolvasas de Unión Holliday/aislamiento & purificación , Animales , Reparación del ADN , Humanos , Conformación de Ácido Nucleico , Recombinación Genética
10.
PLoS Genet ; 17(8): e1009717, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34432790

RESUMEN

Accurate repair of DNA double-strand breaks (DSBs) is crucial for cell survival and genome integrity. In Escherichia coli, DSBs are repaired by homologous recombination (HR), using an undamaged sister chromosome as template. The DNA intermediates of this pathway are expected to be branched molecules that may include 4-way structures termed Holliday junctions (HJs), and 3-way structures such as D-loops and repair forks. Using a tool creating a site-specific, repairable DSB on only one of a pair of replicating sister chromosomes, we have determined how these branched DNA intermediates are distributed across a DNA region that is undergoing DSB repair. In cells, where branch migration and cleavage of HJs are limited by inactivation of the RuvABC complex, HJs and repair forks are principally accumulated within a distance of 12 kb from sites of recombination initiation, known as Chi, on each side of the engineered DSB. These branched DNA structures can even be detected in the region of DNA between the Chi sites flanking the DSB, a DNA segment not expected to be engaged in recombination initiation, and potentially degraded by RecBCD nuclease action. This is observed even in the absence of the branch migration and helicase activities of RuvAB, RadA, RecG, RecQ and PriA. The detection of full-length DNA fragments containing HJs in this central region implies that DSB repair can restore the two intact chromosomes, into which HJs can relocate prior to their resolution. The distribution of recombination intermediates across the 12kb region beyond Chi is altered in xonA, recJ and recQ mutants suggesting that, in the RecBCD pathway of DSB repair, exonuclease I stimulates the formation of repair forks and that RecJQ promotes strand-invasion at a distance from the recombination initiation sites.


Asunto(s)
Reparación del ADN/genética , ADN Cruciforme/genética , Escherichia coli/genética , Proteínas Bacterianas/genética , Cromosomas Bacterianos/metabolismo , Roturas del ADN de Doble Cadena , ADN Helicasas/genética , Reparación del ADN/fisiología , Replicación del ADN , ADN Bacteriano/genética , ADN Cruciforme/metabolismo , Proteínas de Escherichia coli/genética , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Recombinación Homóloga
11.
Genes Dev ; 30(11): 1339-56, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27298337

RESUMEN

The RecQ helicase Sgs1 plays critical roles during DNA repair by homologous recombination, from end resection to Holliday junction (HJ) dissolution. Sgs1 has both pro- and anti-recombinogenic roles, and therefore its activity must be tightly regulated. However, the controls involved in recruitment and activation of Sgs1 at damaged sites are unknown. Here we show a two-step role for Smc5/6 in recruiting and activating Sgs1 through SUMOylation. First, auto-SUMOylation of Smc5/6 subunits leads to recruitment of Sgs1 as part of the STR (Sgs1-Top3-Rmi1) complex, mediated by two SUMO-interacting motifs (SIMs) on Sgs1 that specifically recognize SUMOylated Smc5/6. Second, Smc5/6-dependent SUMOylation of Sgs1 and Top3 is required for the efficient function of STR. Sgs1 mutants impaired in recognition of SUMOylated Smc5/6 (sgs1-SIMΔ) or SUMO-dead alleles (sgs1-KR) exhibit unprocessed HJs at damaged replication forks, increased crossover frequencies during double-strand break repair, and severe impairment in DNA end resection. Smc5/6 is a key regulator of Sgs1's recombination functions.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , ADN Cruciforme/metabolismo , RecQ Helicasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Intercambio Genético , Daño del ADN/genética , Reparación del ADN por Unión de Extremidades/genética , Mutación , RecQ Helicasas/genética , Recombinación Genética/genética , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Sumoilación
12.
J Biol Chem ; 298(7): 102092, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35654140

RESUMEN

Homologous recombination repairs DNA breaks and sequence gaps via the production of joint DNA intermediates such as Holliday junctions. Dissolving Holliday junctions into linear DNA repair products requires the activity of the Sgs1 helicase in yeast and of its homologs in other organisms. Recent studies suggest that the functions of these conserved helicases are regulated by sumoylation; however, the mechanisms that promote their sumoylation are not well understood. Here, we employed in vitro sumoylation systems and cellular assays to determine the roles of DNA and the scaffold protein Esc2 in Sgs1 sumoylation. We show that DNA binding enhances Sgs1 sumoylation in vitro. In addition, we demonstrate the Esc2's midregion (MR) with DNA-binding activity is required for Sgs1 sumoylation. Unexpectedly, we found that the sumoylation-promoting effect of Esc2-MR is DNA independent, suggesting a second function for this domain. In agreement with our biochemical data, we found the Esc2-MR domain, like its SUMO E2-binding C-terminal domain characterized in previous studies, is required for proficient sumoylation of Sgs1 and its cofactors, Top3 and Rmi1, in cells. Taken together, these findings provide evidence that while DNA binding enhances Sgs1 sumoylation, Esc2-based stimulation of this modification is mediated by two distinct domains.


Asunto(s)
Proteínas de Ciclo Celular , RecQ Helicasas , Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN Cruciforme/metabolismo , Proteínas de Unión al ADN/metabolismo , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilación
13.
Anal Biochem ; 682: 115347, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37821038

RESUMEN

DNA molecules that contain single Holliday junctions have served as model substrates to investigate the pathway in which homologous recombination intermediates are processed. However, the preparation of DNA containing Holliday junctions in high yield remains a challenge. In this work, we used a nicking endonuclease to generate gapped DNA, from which α-structured DNA or figure-8 DNA were created via RecA-mediated reactions. The resulting DNA molecules were found to serve as good substrates for Holliday junction resolvases. The simplified method negates the requirement for radioactive labelling of DNA, making the generation of Holliday junction DNA more accessible to non-experts.


Asunto(s)
ADN Cruciforme , Proteínas de Escherichia coli , ADN Cruciforme/metabolismo , Proteínas de Escherichia coli/química , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Escherichia coli/genética , ADN/química
14.
Bioorg Med Chem ; 73: 117022, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36155320

RESUMEN

The Holliday junction (HJ) branch migrator RuvAB complex plays a fundamental role during homologous recombination and DNA damage repair, and therefore, is an attractive target for the treatment of bacterial pathogens. Pseudomonas aeruginosa (P. aeruginosa, Pa) is one of the most common clinical opportunistic bacterial pathogens, which can cause a series of life-threatening acute or chronic infections. Here, we performed a high throughput small-molecule screening targeting PaRuvAB using the FRET-based HJ branch migration assay. We identified that corilagin, bardoxolone methyl (BM) and 10-(6'-plastoquinonyl) decyltriphenylphosphonium (SKQ1) could efficiently inhibit the branch migration activity of PaRuvAB, with IC50 values of 0.40 ± 0.04 µM, 0.38 ± 0.05 µM and 4.64 ± 0.27 µM, respectively. Further biochemical and molecular docking analyses demonstrated that corilagin directly bound to PaRuvB at the ATPase domain, and thus prevented ATP hydrolysis. In contrast, BM and SKQ1 acted through blocking the interactions between PaRuvA and HJ DNA. Finally, these compounds were shown to increase the susceptibility of P. aeruginosa to UV-C irradiation. Our work, for the first time, reports the small-molecule inhibitors of RuvA and RuvB from any species, providing valuable chemical tools to dissect the functional role of each individual protein in vivo.


Asunto(s)
Proteínas de Escherichia coli , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , ADN Helicasas , Reparación del ADN , ADN Bacteriano , ADN Cruciforme/metabolismo , Proteínas de Unión al ADN/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Glucósidos , Taninos Hidrolizables , Simulación del Acoplamiento Molecular , Ácido Oleanólico/análogos & derivados , Pseudomonas aeruginosa/metabolismo , Recombinación Genética
15.
Nucleic Acids Res ; 48(7): 3962-3974, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32095813

RESUMEN

Modified DNA bases functionally distinguish the taxonomic forms of life-5-methylcytosine separates prokaryotes from eukaryotes and 5-hydroxymethylcytosine (5hmC) invertebrates from vertebrates. We demonstrate here that mouse endonuclease G (mEndoG) shows specificity for both 5hmC and Holliday junctions. The enzyme has higher affinity (>50-fold) for junctions over duplex DNAs. A 5hmC-modification shifts the position of the cut site and increases the rate of DNA cleavage in modified versus unmodified junctions. The crystal structure of mEndoG shows that a cysteine (Cys69) is positioned to recognize 5hmC through a thiol-hydroxyl hydrogen bond. Although this Cys is conserved from worms to mammals, a two amino acid deletion in the vertebrate relative to the invertebrate sequence unwinds an α-helix, placing the thiol of Cys69 into the mEndoG active site. Mutations of Cys69 with alanine or serine show 5hmC-specificity that mirrors the hydrogen bonding potential of the side chain (C-H < S-H < O-H). A second orthogonal DNA binding site identified in the mEndoG structure accommodates a second arm of a junction. Thus, the specificity of mEndoG for 5hmC and junctions derives from structural adaptations that distinguish the vertebrate from the invertebrate enzyme, thereby thereby supporting a role for 5hmC in recombination processes.


Asunto(s)
5-Metilcitosina/análogos & derivados , ADN/química , Endodesoxirribonucleasas/química , 5-Metilcitosina/química , 5-Metilcitosina/metabolismo , Animales , Sitios de Unión , ADN/metabolismo , División del ADN , ADN Cruciforme/metabolismo , Endodesoxirribonucleasas/metabolismo , Ratones , Modelos Moleculares , Especificidad por Sustrato
16.
Nucleic Acids Res ; 48(21): 12407-12414, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33152066

RESUMEN

The axial stiffness of DNA origami is determined as a function of key nanostructural characteristics. Different constructs of two-helix nanobeams with specified densities of nicks and Holliday junctions are synthesized and stretched by fluid flow. Implementing single particle tracking to extract force-displacement curves enables the measurement of DNA origami stiffness values at the enthalpic elasticity regime, i.e. for forces larger than 15 pN. Comparisons between ligated and nicked helices show that the latter exhibit nearly a two-fold decrease in axial stiffness. Numerical models that treat the DNA helices as elastic rods are used to evaluate the local loss of stiffness at the locations of nicks and Holliday junctions. It is shown that the models reproduce the experimental data accurately, indicating that both of these design characteristics yield a local stiffness two orders of magnitude smaller than the corresponding value of the intact double-helix. This local degradation in turn leads to a macroscopic loss of stiffness that is evaluated numerically for multi-helix DNA bundles.


Asunto(s)
ADN Cruciforme/química , ADN de Cadena Simple/química , ADN Viral/química , Nanoestructuras/química , Bacteriófago M13/química , Bacteriófago M13/genética , Fenómenos Biomecánicos , ADN Cruciforme/genética , ADN Cruciforme/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , Elasticidad , Polinucleótido 5'-Hidroxil-Quinasa/química , Termodinámica
17.
Proc Natl Acad Sci U S A ; 116(50): 25068-25077, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31767757

RESUMEN

Extracellular DNA (eDNA) is a critical component of the extracellular matrix of bacterial biofilms that protects the resident bacteria from environmental hazards, which includes imparting significantly greater resistance to antibiotics and host immune effectors. eDNA is organized into a lattice-like structure, stabilized by the DNABII family of proteins, known to have high affinity and specificity for Holliday junctions (HJs). Accordingly, we demonstrated that the branched eDNA structures present within the biofilms formed by NTHI in the middle ear of the chinchilla in an experimental otitis media model, and in sputum samples recovered from cystic fibrosis patients that contain multiple mixed bacterial species, possess an HJ-like configuration. Next, we showed that the prototypic Escherichia coli HJ-specific DNA-binding protein RuvA could be functionally exchanged for DNABII proteins in the stabilization of biofilms formed by 3 diverse human pathogens, uropathogenic E. coli, nontypeable Haemophilus influenzae, and Staphylococcus epidermidis Importantly, while replacement of DNABII proteins within the NTHI biofilm matrix with RuvA was shown to retain similar mechanical properties when compared to the control NTHI biofilm structure, we also demonstrated that biofilm eDNA matrices stabilized by RuvA could be subsequently undermined upon addition of the HJ resolvase complex, RuvABC, which resulted in significant biofilm disruption. Collectively, our data suggested that nature has recapitulated a functional equivalent of the HJ recombination intermediate to maintain the structural integrity of bacterial biofilms.


Asunto(s)
Biopelículas , ADN Cruciforme , Matriz Extracelular , Resolvasas de Unión Holliday , Recombinación Genética , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Chinchilla , ADN Helicasas , ADN Cruciforme/química , ADN Cruciforme/metabolismo , Proteínas de Unión al ADN , Modelos Animales de Enfermedad , Proteínas de Escherichia coli , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Resolvasas de Unión Holliday/química , Resolvasas de Unión Holliday/metabolismo , Otitis Media
18.
Int J Mol Sci ; 23(2)2022 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-35054893

RESUMEN

Homologous recombination (HR) is thought to be important for the repair of stalled replication forks in hyperthermophilic archaea. Previous biochemical studies identified two branch migration helicases (Hjm and PINA) and two Holliday junction (HJ) resolvases (Hjc and Hje) as HJ-processing proteins; however, due to the lack of genetic evidence, it is still unclear whether these proteins are actually involved in HR in vivo and how their functional relation is associated with the process. To address the above questions, we constructed hjc-, hje-, hjm-, and pina single-knockout strains and double-knockout strains of the thermophilic crenarchaeon Sulfolobus acidocaldarius and characterized the mutant phenotypes. Notably, we succeeded in isolating the hjm- and/or pina-deleted strains, suggesting that the functions of Hjm and PINA are not essential for cellular growth in this archaeon, as they were previously thought to be essential. Growth retardation in Δpina was observed at low temperatures (cold sensitivity). When deletion of the HJ resolvase genes was combined, Δpina Δhjc and Δpina Δhje exhibited severe cold sensitivity. Δhjm exhibited severe sensitivity to interstrand crosslinkers, suggesting that Hjm is involved in repairing stalled replication forks, as previously demonstrated in euryarchaea. Our findings suggest that the function of PINA and HJ resolvases is functionally related at lower temperatures to support robust cellular growth, and Hjm is important for the repair of stalled replication forks in vivo.


Asunto(s)
ADN Helicasas/metabolismo , ADN Cruciforme/metabolismo , Resolvasas de Unión Holliday/metabolismo , Recombinación Homóloga , Sulfolobus acidocaldarius/enzimología , Proteínas Arqueales/metabolismo , Sulfolobus acidocaldarius/genética , Sulfolobus acidocaldarius/metabolismo
19.
Int J Mol Sci ; 23(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35955746

RESUMEN

The rescue of stalled DNA replication forks is essential for cell viability. Impeded but still intact forks can be rescued by atypical DNA helicases in a reaction known as fork regression. This reaction has been studied at the single-molecule level using the Escherichia coli DNA helicase RecG and, separately, using the eukaryotic SMARCAL1 enzyme. Both nanomachines possess the necessary activities to regress forks: they simultaneously couple DNA unwinding to duplex rewinding and the displacement of bound proteins. Furthermore, they can regress a fork into a Holliday junction structure, the central intermediate of many fork regression models. However, there are key differences between these two enzymes. RecG is monomeric and unidirectional, catalyzing an efficient and processive fork regression reaction and, in the process, generating a significant amount of force that is used to displace the tightly-bound E. coli SSB protein. In contrast, the inefficient SMARCAL1 is not unidirectional, displays limited processivity, and likely uses fork rewinding to facilitate RPA displacement. Like many other eukaryotic enzymes, SMARCAL1 may require additional factors and/or post-translational modifications to enhance its catalytic activity, whereas RecG can drive fork regression on its own.


Asunto(s)
Replicación del ADN , Proteínas de Escherichia coli , ADN Helicasas/metabolismo , ADN Cruciforme/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Eucariontes/genética
20.
Biochem Biophys Res Commun ; 534: 47-52, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33310187

RESUMEN

HU, a DNA-binding protein, has a helical N-terminal region (NTR) of ∼44 residues and a beta strand- and IDR-rich C-terminal region (CTR) of ∼46 residues. CTR binds to DNA through (i) a clasp (two arginine/lysine-rich, IDR-rich beta hairpins that bind to phosphate groups in the minor groove), (ii) a flat surface (comprising four antiparallel beta strands that abut the major groove), and (iii) a charge cluster (two lysine residues upon a short C-terminal helix). HU forms a dimer displaying extensive inter-subunit CTR-CTR contacts. A single-chain simulacrum of these contacts (HU-Simul) incorporating all DNA-binding elements was created by fusing together the CTRs of Escherichia coli HU-A and Thermus thermophilus HU. HU-Simul is monomeric, binds to dsDNA and cruciform DNA, but not to ssDNA.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Dicroismo Circular , ADN/química , ADN Cruciforme/química , ADN Cruciforme/metabolismo , ADN de Cadena Simple/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Ingeniería de Proteínas/métodos , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Thermus thermophilus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA