Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.021
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 86: 417-438, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28301743

RESUMEN

This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.


Asunto(s)
ADN Helicasas/genética , ADN Polimerasa II/genética , Replicación del ADN , ADN/genética , Células Eucariotas/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN/metabolismo , ADN Helicasas/metabolismo , ADN Polimerasa I/genética , ADN Polimerasa I/metabolismo , ADN Polimerasa II/metabolismo , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Eucariotas/citología , Humanos , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo
2.
Nature ; 627(8004): 664-670, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418884

RESUMEN

Telomerase adds G-rich telomeric repeats to the 3' ends of telomeres1, counteracting telomere shortening caused by loss of telomeric 3' overhangs during leading-strand DNA synthesis ('the end-replication problem'2). Here we report a second end-replication problem that originates from the incomplete duplication of the C-rich telomeric repeat strand (C-strand) by lagging-strand DNA synthesis. This problem is resolved by fill-in synthesis mediated by polymerase α-primase bound to Ctc1-Stn1-Ten1 (CST-Polα-primase). In vitro, priming for lagging-strand DNA replication does not occur on the 3' overhang and lagging-strand synthesis stops in a zone of approximately 150 nucleotides (nt) more than 26 nt from the end of the template. Consistent with the in vitro data, lagging-end telomeres of cells lacking CST-Polα-primase lost 50-60 nt of telomeric CCCTAA repeats per population doubling. The C-strands of leading-end telomeres shortened by around 100 nt per population doubling, reflecting the generation of 3' overhangs through resection. The measured overall C-strand shortening in the absence of CST-Polα-primase fill-in is consistent with the combined effects of incomplete lagging-strand synthesis and 5' resection at the leading ends. We conclude that canonical DNA replication creates two telomere end-replication problems that require telomerase to maintain the G-rich strand and CST-Polα-primase to maintain the C-strand.


Asunto(s)
ADN Polimerasa I , ADN Primasa , Replicación del ADN , Proteínas de Unión a Telómeros , Telómero , Humanos , ADN Polimerasa I/metabolismo , ADN Primasa/metabolismo , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismo , Proteínas de Unión a Telómeros/metabolismo
3.
Nat Immunol ; 17(5): 495-504, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27019227

RESUMEN

Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations that disrupt nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts the expression of POLA1, which encodes the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency resulted in increased production of type I interferons. This enzyme is necessary for the synthesis of RNA:DNA primers during DNA replication and, strikingly, we found that POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Together this work identifies POLA1 as a critical regulator of the type I interferon response.


Asunto(s)
ADN Polimerasa I/metabolismo , ADN/biosíntesis , Interferón Tipo I/metabolismo , ARN/biosíntesis , Secuencia de Bases , Células Cultivadas , Citosol/metabolismo , ADN/genética , ADN Polimerasa I/genética , Salud de la Familia , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Masculino , Microscopía Confocal , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Linaje , Trastornos de la Pigmentación/genética , Trastornos de la Pigmentación/metabolismo , ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
4.
Mol Cell ; 76(3): 371-381.e4, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31495565

RESUMEN

Break-induced replication (BIR) is a pathway of homology-directed repair that repairs one-ended DNA breaks, such as those formed at broken replication forks or uncapped telomeres. In contrast to conventional S phase DNA synthesis, BIR proceeds by a migrating D-loop and results in conservative synthesis of the nascent strands. DNA polymerase delta (Pol δ) initiates BIR; however, it is not known whether synthesis of the invading strand switches to a different polymerase or how the complementary strand is synthesized. By using alleles of the replicative DNA polymerases that are permissive for ribonucleotide incorporation, thus generating a signature of their action in the genome that can be identified by hydrolytic end sequencing, we show that Pol δ replicates both the invading and the complementary strand during BIR. In support of this conclusion, we show that depletion of Pol δ from cells reduces BIR, whereas depletion of Pol ε has no effect.


Asunto(s)
Roturas del ADN , ADN Polimerasa III/metabolismo , Replicación del ADN , ADN de Hongos/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , ADN Ligasa (ATP)/genética , ADN Ligasa (ATP)/metabolismo , ADN Polimerasa I/genética , ADN Polimerasa I/metabolismo , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , ADN Polimerasa III/genética , ADN de Hongos/genética , Células HEK293 , Células HeLa , Humanos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Cell ; 146(1): 80-91, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21729781

RESUMEN

Proper eukaryotic DNA replication requires temporal separation of helicase loading from helicase activation and replisome assembly. Using an in vitro assay for eukaryotic origin-dependent replication initiation, we investigated the control of these events. After helicase loading, we found that the Dbf4-dependent Cdc7 kinase (DDK) but not S phase cyclin-dependent kinase (S-CDK) is required for the initial origin recruitment of Sld3 and the Cdc45 helicase-activating protein. Likewise, in vivo, DDK drives early-firing-origin recruitment of Cdc45 before activation of S-CDK. After S-CDK activation, a second helicase-activating protein (GINS) and the remainder of the replisome are recruited to the origin. Finally, recruitment of lagging but not leading strand DNA polymerases depends on Mcm10 and DNA unwinding. Our studies identify distinct roles for DDK and S-CDK during helicase activation and support a model in which the leading strand DNA polymerase is recruited prior to origin DNA unwinding and RNA primer synthesis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Replicación del ADN , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ADN Polimerasa I/metabolismo , Proteínas de Unión al ADN/metabolismo , Fase G1 , Proteínas Nucleares/metabolismo , Origen de Réplica , Fase S , Saccharomyces cerevisiae/citología
6.
Trends Genet ; 38(3): 211-213, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34949465

RESUMEN

Geminiviruses reprogram host machineries to ensure their own propagation. They do not encode any DNA polymerase. Furthermore, the absence of direct evidence about the precise role of any host-encoded DNA polymerase has made geminivirus replication an enigma. Wu et al. recently resolved this puzzle by revealing that geminiviruses utilize plant DNA polymerase α and δ to drive their replication.


Asunto(s)
Geminiviridae , Plantas , ADN Polimerasa I/metabolismo , Replicación del ADN/genética , Geminiviridae/enzimología , Geminiviridae/genética , Enfermedades de las Plantas/virología , Plantas/enzimología , Plantas/virología , Replicación Viral
7.
Mol Cell ; 67(5): 867-881.e7, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28757209

RESUMEN

Brca2 deficiency causes Mre11-dependent degradation of nascent DNA at stalled forks, leading to cell lethality. To understand the molecular mechanisms underlying this process, we isolated Xenopus laevis Brca2. We demonstrated that Brca2 protein prevents single-stranded DNA gap accumulation at replication fork junctions and behind them by promoting Rad51 binding to replicating DNA. Without Brca2, forks with persistent gaps are converted by Smarcal1 into reversed forks, triggering extensive Mre11-dependent nascent DNA degradation. Stable Rad51 nucleofilaments, but not RPA or Rad51T131P mutant proteins, directly prevent Mre11-dependent DNA degradation. Mre11 inhibition instead promotes reversed fork accumulation in the absence of Brca2. Rad51 directly interacts with the Pol α N-terminal domain, promoting Pol α and δ binding to stalled replication forks. This interaction likely promotes replication fork restart and gap avoidance. These results indicate that Brca2 and Rad51 prevent formation of abnormal DNA replication intermediates, whose processing by Smarcal1 and Mre11 predisposes to genome instability.


Asunto(s)
Proteína BRCA2/metabolismo , Replicación del ADN , ADN/biosíntesis , Recombinasa Rad51/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animales , Proteína BRCA2/genética , Sitios de Unión , ADN/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Polimerasa I/metabolismo , ADN Polimerasa III/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Femenino , Inestabilidad Genómica , Humanos , Proteína Homóloga de MRE11 , Masculino , Mutación , Unión Proteica , Recombinasa Rad51/genética , Origen de Réplica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Tiempo , Proteínas de Xenopus/genética , Xenopus laevis/genética
8.
Mol Cell ; 65(1): 131-141, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-27989437

RESUMEN

Eukaryotic chromosomal DNA is faithfully replicated in a complex series of cell-cycle-regulated events that are incompletely understood. Here we report the reconstitution of DNA replication free in solution with purified proteins from the budding yeast Saccharomyces cerevisiae. The system recapitulates regulated bidirectional origin activation; synthesis of leading and lagging strands by the three replicative DNA polymerases Pol α, Pol δ, and Pol ε; and canonical maturation of Okazaki fragments into continuous daughter strands. We uncover a dual regulatory role for chromatin during DNA replication: promoting origin dependence and determining Okazaki fragment length by restricting Pol δ progression. This system thus provides a functional platform for the detailed mechanistic analysis of eukaryotic chromosome replication.


Asunto(s)
Cromatina/genética , Replicación del ADN , ADN de Hongos/genética , Nucleosomas/genética , Origen de Réplica , Saccharomyces cerevisiae/genética , Cromatina/metabolismo , ADN/genética , ADN/metabolismo , ADN Polimerasa I/genética , ADN Polimerasa I/metabolismo , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , ADN de Hongos/biosíntesis , Genotipo , Humanos , Nucleosomas/metabolismo , Fenotipo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Tiempo
9.
Mol Cell ; 65(1): 117-130, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-27989438

RESUMEN

The integrity of eukaryotic genomes requires rapid and regulated chromatin replication. How this is accomplished is still poorly understood. Using purified yeast replication proteins and fully chromatinized templates, we have reconstituted this process in vitro. We show that chromatin enforces DNA replication origin specificity by preventing non-specific MCM helicase loading. Helicase activation occurs efficiently in the context of chromatin, but subsequent replisome progression requires the histone chaperone FACT (facilitates chromatin transcription). The FACT-associated Nhp6 protein, the nucleosome remodelers INO80 or ISW1A, and the lysine acetyltransferases Gcn5 and Esa1 each contribute separately to maximum DNA synthesis rates. Chromatin promotes the regular priming of lagging-strand DNA synthesis by facilitating DNA polymerase α function at replication forks. Finally, nucleosomes disrupted during replication are efficiently re-assembled into regular arrays on nascent DNA. Our work defines the minimum requirements for chromatin replication in vitro and shows how multiple chromatin factors might modulate replication fork rates in vivo.


Asunto(s)
Cromatina/genética , Replicación del ADN , ADN de Hongos/genética , Nucleosomas/genética , Origen de Réplica , Saccharomyces cerevisiae/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Cromatina/metabolismo , ADN Polimerasa I/genética , ADN Polimerasa I/metabolismo , ADN de Hongos/biosíntesis , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas HMGN/genética , Proteínas HMGN/metabolismo , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Nucleosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Tiempo , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(17): e2111744119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35467978

RESUMEN

Human DNA polymerase α (Polα) does not possess proofreading ability and plays an important role in genome replication and mutagenesis. Polα extends the RNA primers generated by primase and provides a springboard for loading other replication factors. Here we provide the structural and functional analysis of the human Polα interaction with a mismatched template:primer. The structure of the human Polα catalytic domain in the complex with an incoming deoxycytidine triphosphate (dCTP) and the template:primer containing a T-C mismatch at the growing primer terminus was solved at a 2.9 Å resolution. It revealed the absence of significant distortions in the active site and in the conformation of the substrates, except the primer 3'-end. The T-C mismatch acquired a planar geometry where both nucleotides moved toward each other by 0.4 Å and 0.7 Å, respectively, and made one hydrogen bond. The binding studies conducted at a physiological salt concentration revealed that Polα has a low affinity to DNA and is not able to discriminate against a mispaired template:primer in the absence of deoxynucleotide triphosphate (dNTP). Strikingly, in the presence of cognate dNTP, Polα showed a more than 10-fold higher selectivity for a correct duplex versus a mismatched one. According to pre-steady-state kinetic studies, human Polα extends the T-C mismatch with a 249-fold lower efficiency due to reduction of the polymerization rate constant by 38-fold and reduced affinity to the incoming nucleotide by 6.6-fold. Thus, a mismatch at the postinsertion site affects all factors important for primer extension: affinity to both substrates and the rate of DNA polymerization.


Asunto(s)
ADN Polimerasa I , Replicación del ADN , Dominio Catalítico , ADN Polimerasa I/genética , ADN Polimerasa I/metabolismo , Cartilla de ADN/genética , Humanos , Cinética
11.
Plant Cell ; 33(5): 1417-1429, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-33647940

RESUMEN

Both genetic and epigenetic information must be transferred from mother to daughter cells during cell division. The mechanisms through which information about chromatin states and epigenetic marks like histone 3 lysine 27 trimethylation (H3K27me3) are transferred have been characterized in animals; these processes are less well understood in plants. Here, based on characterization of a dwarf rice (Oryza sativa) mutant (dwarf-related wd40 protein 1, drw1) deficient for yeast CTF4 (CHROMOSOME TRANSMISSION FIDELITY PROTEIN 4), we discovered that CTF4 orthologs in plants use common cellular machinery yet accomplish divergent functional outcomes. Specifically, drw1 exhibited no flowering-related phenotypes (as in the putatively orthologous Arabidopsis thaliana eol1 mutant), but displayed cell cycle arrest and DNA damage responses. Mechanistically, we demonstrate that DRW1 sustains normal cell cycle progression by modulating the expression of cell cycle inhibitors KIP-RELATED PROTEIN 1 (KRP1) and KRP5, and show that these effects are mediated by DRW1 binding their promoters and increasing H3K27me3 levels. Thus, although CTF4 orthologs ENHANCER OF LHP1 1 (EOL1) in Arabidopsis and DRW1 in rice are both expressed uniquely in dividing cells, commonly interact with several Polycomb complex subunits, and promote H3K27me3 deposition, we now know that their regulatory functions diverged substantially during plant evolution. Moreover, our work experimentally illustrates specific targets of CTF4/EOL1/DRW1, their protein-proteininteraction partners, and their chromatin/epigenetic effects in plants.


Asunto(s)
Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Núcleo Celular/metabolismo , Daño del ADN , ADN Polimerasa I/metabolismo , Flores/fisiología , Histonas/metabolismo , Lisina/metabolismo , Metilación , Mutación/genética , Oryza/anatomía & histología , Oryza/citología , Fenotipo , Proteínas de Plantas/genética , Unión Proteica , Fase S
12.
Nature ; 560(7716): 112-116, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30022158

RESUMEN

In DNA repair, the resection of double-strand breaks dictates the choice between homology-directed repair-which requires a 3' overhang-and classical non-homologous end joining, which can join unresected ends1,2. BRCA1-mutant cancers show minimal resection of double-strand breaks, which renders them deficient in homology-directed repair and sensitive to inhibitors of poly(ADP-ribose) polymerase 1 (PARP1)3-8. When BRCA1 is absent, the resection of double-strand breaks is thought to be prevented by 53BP1, RIF1 and the REV7-SHLD1-SHLD2-SHLD3 (shieldin) complex, and loss of these factors diminishes sensitivity to PARP1 inhibitors4,6-9. Here we address the mechanism by which 53BP1-RIF1-shieldin regulates the generation of recombinogenic 3' overhangs. We report that CTC1-STN1-TEN1 (CST)10, a complex similar to replication protein A that functions as an accessory factor of polymerase-α (Polα)-primase11, is a downstream effector in the 53BP1 pathway. CST interacts with shieldin and localizes with Polα to sites of DNA damage in a 53BP1- and shieldin-dependent manner. As with loss of 53BP1, RIF1 or shieldin, the depletion of CST leads to increased resection. In BRCA1-deficient cells, CST blocks RAD51 loading and promotes the efficacy of PARP1 inhibitors. In addition, Polα inhibition diminishes the effect of PARP1 inhibitors. These data suggest that CST-Polα-mediated fill-in helps to control the repair of double-strand breaks by 53BP1, RIF1 and shieldin.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Polimerasa I/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Animales , Proteína BRCA1/deficiencia , Línea Celular , ADN Primasa/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Humanos , Ratones , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Reparación del ADN por Recombinación , Telómero/genética , Telómero/metabolismo
13.
Mol Cell ; 63(3): 385-96, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27397685

RESUMEN

Replisome assembly at eukaryotic replication forks connects the DNA helicase to DNA polymerases and many other factors. The helicase binds the leading-strand polymerase directly, but is connected to the Pol α lagging-strand polymerase by the trimeric adaptor Ctf4. Here, we identify new Ctf4 partners in addition to Pol α and helicase, all of which contain a "Ctf4-interacting-peptide" or CIP-box. Crystallographic analysis classifies CIP-boxes into two related groups that target different sites on Ctf4. Mutations in the CIP-box motifs of the Dna2 nuclease or the rDNA-associated protein Tof2 do not perturb DNA synthesis genome-wide, but instead lead to a dramatic shortening of chromosome 12 that contains the large array of rDNA repeats. Our data reveal unexpected complexity of Ctf4 function, as a hub that connects multiple accessory factors to the replisome. Most strikingly, Ctf4-dependent recruitment of CIP-box proteins couples other processes to DNA synthesis, including rDNA copy-number regulation.


Asunto(s)
Cromosomas Fúngicos/enzimología , ADN Helicasas/metabolismo , ADN de Hongos/biosíntesis , ADN Ribosómico/biosíntesis , Proteínas de Unión al ADN/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fase S , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Sitios de Unión , Cromosomas Fúngicos/genética , ADN Helicasas/genética , ADN Polimerasa I/metabolismo , ADN de Hongos/genética , ADN Ribosómico/genética , Proteínas de Unión al ADN/genética , Dosificación de Gen , Péptidos y Proteínas de Señalización Intracelular/genética , Modelos Moleculares , Complejos Multiproteicos , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-Actividad
14.
Nucleic Acids Res ; 50(21): 12266-12273, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36454017

RESUMEN

DNA polymerase α (Polα) is essential for DNA replication initiation and makes a notable contribution to genome mutagenesis. The activity and fidelity of Polα during the early steps of DNA replication have not been well studied. Here we show that at the beginning of DNA synthesis, when extending the RNA primer received from primase, Polα is more mutagenic than during the later DNA elongation steps. Kinetic and binding studies revealed substantially higher activity and affinity to the template:primer when Polα interacts with ribonucleotides of a chimeric RNA-DNA primer. Polα activity greatly varies during first six steps of DNA synthesis, and the bias in the rates of correct and incorrect dNTP incorporation leads to impaired fidelity, especially upon the second step of RNA primer extension. Furthermore, increased activity and stability of Polα/template:primer complexes containing RNA-DNA primers result in higher efficiency of mismatch extension.


Asunto(s)
ADN Polimerasa I , Mutágenos , Humanos , ADN Polimerasa I/metabolismo , Replicación del ADN/genética , ADN Primasa/metabolismo , Mutagénesis , ADN/química , Cartilla de ADN/genética , ARN/genética
15.
Nucleic Acids Res ; 50(11): 6264-6270, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35689638

RESUMEN

The human primosome, a four-subunit complex of primase and DNA polymerase alpha (Polα), synthesizes chimeric RNA-DNA primers of a limited length for DNA polymerases delta and epsilon to initiate DNA replication on both chromosome strands. Despite recent structural insights into the action of its two catalytic centers, the mechanism of DNA synthesis termination is still unclear. Here we report results of functional and structural studies revealing how the human primosome counts RNA-DNA primer length and timely terminates DNA elongation. Using a single-turnover primer extension assay, we defined two factors that determine a mature primer length (∼35-mer): (i) a tight interaction of the C-terminal domain of the DNA primase large subunit (p58C) with the primer 5'-end, and (ii) flexible tethering of p58C and the DNA polymerase alpha catalytic core domain (p180core) to the primosome platform domain by extended linkers. The obtained data allow us to conclude that p58C is a key regulator of all steps of RNA-DNA primer synthesis. The above-described findings provide a notable insight into the mechanism of DNA synthesis termination by a eukaryotic primosome, an important process for ensuring successful primer handover to replication DNA polymerases and for maintaining genome integrity.


Asunto(s)
ADN Polimerasa I , ADN Primasa , Cromosomas/metabolismo , ADN/química , ADN/genética , ADN Polimerasa I/metabolismo , ADN Primasa/metabolismo , Cartilla de ADN/genética , Replicación del ADN , ADN Polimerasa Dirigida por ADN/genética , Humanos , ARN/química , ARN/genética
16.
IUBMB Life ; 75(12): 983-1002, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37470284

RESUMEN

Most eukaryotes possess a mitochondrial genome, called mtDNA. In animals and fungi, the replication of mtDNA is entrusted by the DNA polymerase γ, or Pol γ. The yeast Pol γ is composed only of a catalytic subunit encoded by MIP1. In humans, Pol γ is a heterotrimer composed of a catalytic subunit homolog to Mip1, encoded by POLG, and two accessory subunits. In the last 25 years, more than 300 pathological mutations in POLG have been identified as the cause of several mitochondrial diseases, called POLG-related disorders, which are characterized by multiple mtDNA deletions and/or depletion in affected tissues. In this review, at first, we summarize the biochemical properties of yeast Mip1, and how mutations, especially those introduced recently in the N-terminal and C-terminal regions of the enzyme, affect the in vitro activity of the enzyme and the in vivo phenotype connected to the mtDNA stability and to the mtDNA extended and point mutability. Then, we focus on the use of yeast harboring Mip1 mutations equivalent to the human ones to confirm their pathogenicity, identify the phenotypic defects caused by these mutations, and find both mechanisms and molecular compounds able to rescue the detrimental phenotype. A closing chapter will be dedicated to other polymerases found in yeast mitochondria, namely Pol ζ, Rev1 and Pol η, and to their genetic interactions with Mip1 necessary to maintain mtDNA stability and to avoid the accumulation of spontaneous or induced point mutations.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animales , Humanos , ADN Polimerasa gamma/genética , ADN Polimerasa I/genética , ADN Polimerasa I/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ADN Mitocondrial/genética , Mutación , Replicación del ADN/genética
17.
Mol Cell ; 57(5): 812-823, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25661486

RESUMEN

Chromosomal replication is entwined with DNA damage tolerance (DDT) and chromatin structure establishment via elusive mechanisms. Here we examined how specific replication conditions affecting replisome architecture and repriming impact on DDT. We show that Saccharomyces cerevisiae Polα/Primase/Ctf4 mutants, proficient in bulk DNA replication, are defective in recombination-mediated damage-bypass by template switching (TS) and have reduced sister chromatid cohesion. The decrease in error-free DDT is accompanied by increased usage of mutagenic DDT, fork reversal, and higher rates of genome rearrangements mediated by faulty strand annealing. Notably, the DDT defects of Polα/Primase/Ctf4 mutants are not the consequence of increased sister chromatid distance, but are instead caused by altered single-stranded DNA metabolism and abnormal replication fork topology. We propose that error-free TS is driven by timely replicative helicase-coupled re-priming. Defects in this event impact on replication fork architecture and sister chromatid proximity, and represent a frequent source of chromosome lesions upon replication dysfunctions.


Asunto(s)
Cromátides/genética , Daño del ADN , ADN Polimerasa I/metabolismo , ADN Primasa/metabolismo , Replicación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ADN Polimerasa I/genética , ADN Primasa/genética , Reparación del ADN/genética , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/ultraestructura , Proteínas de Unión al ADN/genética , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Microscopía Electrónica , Modelos Genéticos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , Recombinación Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/genética , Factores de Tiempo
18.
Nucleic Acids Res ; 49(20): 11653-11665, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34718732

RESUMEN

The CST complex (CTC1-STN1-TEN1) has been shown to inhibit telomerase extension of the G-strand of telomeres and facilitate the switch to C-strand synthesis by DNA polymerase alpha-primase (pol α-primase). Recently the structure of human CST was solved by cryo-EM, allowing the design of mutant proteins defective in telomeric ssDNA binding and prompting the reexamination of CST inhibition of telomerase. The previous proposal that human CST inhibits telomerase by sequestration of the DNA primer was tested with a series of DNA-binding mutants of CST and modeled by a competitive binding simulation. The DNA-binding mutants had substantially reduced ability to inhibit telomerase, as predicted from their reduced affinity for telomeric DNA. These results provide strong support for the previous primer sequestration model. We then tested whether addition of CST to an ongoing processive telomerase reaction would terminate DNA extension. Pulse-chase telomerase reactions with addition of either wild-type CST or DNA-binding mutants showed that CST has no detectable ability to terminate ongoing telomerase extension in vitro. The same lack of inhibition was observed with or without pol α-primase bound to CST. These results suggest how the switch from telomerase extension to C-strand synthesis may occur.


Asunto(s)
ADN de Cadena Simple/metabolismo , Telomerasa/metabolismo , Proteínas de Unión a Telómeros/metabolismo , ADN Polimerasa I/metabolismo , ADN Primasa/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , Células HEK293 , Humanos , Mutación , Unión Proteica , Telomerasa/química
19.
PLoS Genet ; 16(5): e1008755, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32379761

RESUMEN

During eukaryotic DNA replication, DNA polymerase alpha/primase (Pol α) initiates synthesis on both the leading and lagging strands. It is unknown whether leading- and lagging-strand priming are mechanistically identical, and whether Pol α associates processively or distributively with the replisome. Here, we titrate cellular levels of Pol α in S. cerevisiae and analyze Okazaki fragments to study both replication initiation and ongoing lagging-strand synthesis in vivo. We observe that both Okazaki fragment initiation and the productive firing of replication origins are sensitive to Pol α abundance, and that both processes are disrupted at similar Pol α concentrations. When the replisome adaptor protein Ctf4 is absent or cannot interact with Pol α, lagging-strand initiation is impaired at Pol α concentrations that still support normal origin firing. Additionally, we observe that activation of the checkpoint becomes essential for viability upon severe depletion of Pol α. Using strains in which the Pol α-Ctf4 interaction is disrupted, we demonstrate that this checkpoint requirement is not solely caused by reduced lagging-strand priming. Our results suggest that Pol α recruitment for replication initiation and ongoing lagging-strand priming are distinctly sensitive to the presence of Ctf4. We propose that the global changes we observe in Okazaki fragment length and origin firing efficiency are consistent with distributive association of Pol α at the replication fork, at least when Pol α is limiting.


Asunto(s)
ADN Polimerasa I/metabolismo , ADN Primasa/metabolismo , Replicación del ADN , ADN de Hongos/biosíntesis , Proteínas de Unión al ADN/fisiología , Origen de Réplica , Proteínas de Saccharomyces cerevisiae/fisiología , ADN , Replicación del ADN/genética , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Organismos Modificados Genéticamente , Unión Proteica , Origen de Réplica/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Elongación de la Transcripción Genética/fisiología
20.
Genes Dev ; 29(11): 1151-63, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26019174

RESUMEN

DNA double-strand breaks (DSBs) are repaired by two main pathways: nonhomologous end-joining and homologous recombination (HR). Repair pathway choice is thought to be determined by cell cycle timing and chromatin context. Nucleoli, prominent nuclear subdomains and sites of ribosome biogenesis, form around nucleolar organizer regions (NORs) that contain rDNA arrays located on human acrocentric chromosome p-arms. Actively transcribed rDNA repeats are positioned within the interior of the nucleolus, whereas sequences proximal and distal to NORs are packaged as heterochromatin located at the nucleolar periphery. NORs provide an opportunity to investigate the DSB response at highly transcribed, repetitive, and essential loci. Targeted introduction of DSBs into rDNA, but not abutting sequences, results in ATM-dependent inhibition of their transcription by RNA polymerase I. This is coupled with movement of rDNA from the nucleolar interior to anchoring points at the periphery. Reorganization renders rDNA accessible to repair factors normally excluded from nucleoli. Importantly, DSBs within rDNA recruit the HR machinery throughout the cell cycle. Additionally, unscheduled DNA synthesis, consistent with HR at damaged NORs, can be observed in G1 cells. These results suggest that HR can be templated in cis and suggest a role for chromosomal context in the maintenance of NOR genomic stability.


Asunto(s)
Ciclo Celular , Nucléolo Celular/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Línea Celular , ADN Polimerasa I/metabolismo , ADN Ribosómico/genética , Regulación de la Expresión Génica , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA