RESUMEN
RNA silencing relies on specific and efficient processing of double-stranded RNA by Dicer, which yields microRNAs (miRNAs) and small interfering RNAs (siRNAs)1,2. However, our current knowledge of the specificity of Dicer is limited to the secondary structures of its substrates: a double-stranded RNA of approximately 22 base pairs with a 2-nucleotide 3' overhang and a terminal loop3-11. Here we found evidence pointing to an additional sequence-dependent determinant beyond these structural properties. To systematically interrogate the features of precursor miRNAs (pre-miRNAs), we carried out massively parallel assays with pre-miRNA variants and human DICER (also known as DICER1). Our analyses revealed a deeply conserved cis-acting element, termed the 'GYM motif' (paired G, paired pyrimidine and mismatched C or A), near the cleavage site. The GYM motif promotes processing at a specific position and can override the previously identified 'ruler'-like counting mechanisms from the 5' and 3' ends of pre-miRNA3-6. Consistently, integrating this motif into short hairpin RNA or Dicer-substrate siRNA potentiates RNA interference. Furthermore, we find that the C-terminal double-stranded RNA-binding domain (dsRBD) of DICER recognizes the GYM motif. Alterations in the dsRBD reduce processing and change cleavage sites in a motif-dependent fashion, affecting the miRNA repertoire in cells. In particular, the cancer-associated R1855L substitution in the dsRBD strongly impairs GYM motif recognition. This study uncovers an ancient principle of substrate recognition by metazoan Dicer and implicates its potential in the design of RNA therapeutics.
Asunto(s)
ARN Helicasas DEAD-box , MicroARNs , Conformación de Ácido Nucleico , Precursores del ARN , ARN Interferente Pequeño , Ribonucleasa III , Humanos , Emparejamiento Base , ARN Helicasas DEAD-box/metabolismo , MicroARNs/biosíntesis , MicroARNs/genética , MicroARNs/metabolismo , Ribonucleasa III/metabolismo , Interferencia de ARN , ARN Bicatenario/química , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/biosíntesis , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Precursores del ARN/biosíntesis , Precursores del ARN/química , Precursores del ARN/genética , Precursores del ARN/metabolismo , Secuencia de BasesRESUMEN
In Drosophila, 23-30 nt long PIWI-interacting RNAs (piRNAs) direct the protein Piwi to silence germline transposon transcription. Most germline piRNAs derive from dual-strand piRNA clusters, heterochromatic transposon graveyards that are transcribed from both genomic strands. These piRNA sources are marked by the heterochromatin protein 1 homolog Rhino (Rhi), which facilitates their promoter-independent transcription, suppresses splicing, and inhibits transcriptional termination. Here, we report that the protein Maelstrom (Mael) represses canonical, promoter-dependent transcription in dual-strand clusters, allowing Rhi to initiate piRNA precursor transcription. Mael also represses promoter-dependent transcription at sites outside clusters. At some loci, Mael repression requires the piRNA pathway, while at others, piRNAs play no role. We propose that by repressing canonical transcription of individual transposon mRNAs, Mael helps Rhi drive non-canonical transcription of piRNA precursors without generating mRNAs encoding transposon proteins.
Asunto(s)
Elementos Transponibles de ADN , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , ARN Polimerasa II/metabolismo , ARN Guía de Kinetoplastida/biosíntesis , ARN Mensajero/biosíntesis , ARN Interferente Pequeño/biosíntesis , Transcripción Genética , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Sitios de Unión , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Regiones Promotoras Genéticas , Unión Proteica , ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN Polimerasa II/genética , ARN Guía de Kinetoplastida/genética , ARN Mensajero/genética , ARN Interferente Pequeño/genéticaRESUMEN
Piwi-interacting RNAs (piRNAs) engage Piwi proteins to suppress transposons and nonself nucleic acids and maintain genome integrity and are essential for fertility in a variety of organisms. In Caenorhabditis elegans, most piRNA precursors are transcribed from two genomic clusters that contain thousands of individual piRNA transcription units. While a few genes have been shown to be required for piRNA biogenesis, the mechanism of piRNA transcription remains elusive. Here we used functional proteomics approaches to identify an upstream sequence transcription complex (USTC) that is essential for piRNA biogenesis. The USTC contains piRNA silencing-defective 1 (PRDE-1), SNPC-4, twenty-one-U fouled-up 4 (TOFU-4), and TOFU-5. The USTC forms unique piRNA foci in germline nuclei and coats the piRNA cluster genomic loci. USTC factors associate with the Ruby motif just upstream of type I piRNA genes. USTC factors are also mutually dependent for binding to the piRNA clusters and forming the piRNA foci. Interestingly, USTC components bind differentially to piRNAs in the clusters and other noncoding RNA genes. These results reveal the USTC as a striking example of the repurposing of a general transcription factor complex to aid in genome defense against transposons.
Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Regulación de la Expresión Génica/genética , ARN Interferente Pequeño/genética , Secuencias de Aminoácidos , Animales , Proteínas de Caenorhabditis elegans/genética , Genoma de los Helmintos/genética , Unión Proteica , Proteómica , ARN Interferente Pequeño/biosíntesisRESUMEN
The Piwi-interacting RNA (piRNA) pathway is a small RNA-based immune system that silences mobile genetic elements in animal germlines. piRNA biogenesis requires a specialized machinery that converts long single-stranded precursors into small RNAs of â¼25-nucleotides in length. This process involves factors that operate in two different subcellular compartments: the nuage/Yb body and mitochondria. How these two sites communicate to achieve accurate substrate selection and efficient processing remains unclear. Here, we investigate a previously uncharacterized piRNA biogenesis factor, Daedalus (Daed), that is located on the outer mitochondrial membrane. Daed is essential for Zucchini-mediated piRNA production and the correct localization of the indispensable piRNA biogenesis factor Armitage (Armi). We found that Gasz and Daed interact with each other and likely provide a mitochondrial "anchoring platform" to ensure that Armi is held in place, proximal to Zucchini, during piRNA processing. Our data suggest that Armi initially identifies piRNA precursors in nuage/Yb bodies in a manner that depends on Piwi and then moves to mitochondria to present precursors to the mitochondrial biogenesis machinery. These results represent a significant step in understanding a critical aspect of transposon silencing; namely, how RNAs are chosen to instruct the piRNA machinery in the nature of its silencing targets.
Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , ARN Helicasas/metabolismo , ARN Interferente Pequeño/biosíntesis , Animales , Línea Celular , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Técnicas de Silenciamiento del Gen , Unión Proteica , Transporte de Proteínas , ARN Interferente Pequeño/metabolismoRESUMEN
PIWI-interacting RNAs (piRNAs) and their associated PIWI clade Argonaute proteins constitute the core of the piRNA pathway. In gonadal cells, this conserved pathway is crucial for genome defense, and its main function is to silence transposable elements. This is achieved through posttranscriptional and transcriptional gene silencing. Precursors that give rise to piRNAs require specialized transcription and transport machineries because piRNA biogenesis is a cytoplasmic process. The ping-pong cycle, a posttranscriptional silencing mechanism, combines the cleavage-dependent silencing of transposon RNAs with piRNA production. PIWI proteins also function in the nucleus, where they scan for nascent target transcripts with sequence complementarity, instructing transcriptional silencing and deposition of repressive chromatin marks at transposon loci. Although studies have revealed numerous factors that participate in each branch of the piRNA pathway, the precise molecular roles of these factors often remain unclear. In this review, we summarize our current understanding of the mechanisms involved in piRNA biogenesis and function.
Asunto(s)
Proteínas Argonautas/genética , Elementos Transponibles de ADN/genética , ARN Interferente Pequeño/genética , Transcripción Genética , Animales , Drosophila melanogaster/genética , Silenciador del Gen , Gónadas/crecimiento & desarrollo , ARN Interferente Pequeño/biosíntesisRESUMEN
Small interfering RNAs (siRNAs) are essential for proper development and immunity in eukaryotes1. Plants produce siRNAs with lengths of 21, 22 or 24 nucleotides. The 21- and 24-nucleotide species mediate cleavage of messenger RNAs and DNA methylation2,3, respectively, but the biological functions of the 22-nucleotide siRNAs remain unknown. Here we report the identification and characterization of a group of endogenous 22-nucleotide siRNAs that are generated by the DICER-LIKE 2 (DCL2) protein in plants. When cytoplasmic RNA decay and DCL4 are deficient, the resulting massive accumulation of 22-nucleotide siRNAs causes pleiotropic growth disorders, including severe dwarfism, meristem defects and pigmentation. Notably, two genes that encode nitrate reductases-NIA1 and NIA2-produce nearly half of the 22-nucleotide siRNAs. Production of 22-nucleotide siRNAs triggers the amplification of gene silencing and induces translational repression both gene specifically and globally. Moreover, these 22-nucleotide siRNAs preferentially accumulate upon environmental stress, especially those siRNAs derived from NIA1/2, which act to restrain translation, inhibit plant growth and enhance stress responses. Thus, our research uncovers the unique properties of 22-nucleotide siRNAs, and reveals their importance in plant adaptation to environmental stresses.
Asunto(s)
Aclimatación/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Biosíntesis de Proteínas/genética , ARN de Planta/genética , ARN Interferente Pequeño/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/metabolismo , Proteínas de Ciclo Celular , Silenciador del Gen , Mutación , Nitrato-Reductasa/genética , Enfermedades de las Plantas/genética , Estabilidad del ARN , ARN Mensajero/genética , ARN Interferente Pequeño/biosíntesis , Ribonucleasa III/metabolismoRESUMEN
In mammals, the acquisition of the germline from the soma provides the germline with an essential challenge: the need to erase and reset genomic methylation1. In the male germline, RNA-directed DNA methylation silences young, active transposable elements2-4. The PIWI protein MIWI2 (PIWIL4) and its associated PIWI-interacting RNAs (piRNAs) instruct DNA methylation of transposable elements3,5. piRNAs are proposed to tether MIWI2 to nascent transposable element transcripts; however, the mechanism by which MIWI2 directs the de novo methylation of transposable elements is poorly understood, although central to the immortality of the germline. Here we define the interactome of MIWI2 in mouse fetal gonocytes undergoing de novo genome methylation and identify a previously unknown MIWI2-associated factor, SPOCD1, that is essential for the methylation and silencing of young transposable elements. The loss of Spocd1 in mice results in male-specific infertility but does not affect either piRNA biogenesis or the localization of MIWI2 to the nucleus. SPOCD1 is a nuclear protein whose expression is restricted to the period of de novo genome methylation. It co-purifies in vivo with DNMT3L and DNMT3A, components of the de novo methylation machinery, as well as with constituents of the NURD and BAF chromatin remodelling complexes. We propose a model whereby tethering of MIWI2 to a nascent transposable element transcript recruits repressive chromatin remodelling activities and the de novo methylation apparatus through SPOCD1. In summary, we have identified a previously unrecognized and essential executor of mammalian piRNA-directed DNA methylation.
Asunto(s)
Metilación de ADN/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Animales , Proteínas Argonautas/metabolismo , Ensamble y Desensamble de Cromatina , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Elementos Transponibles de ADN/genética , Femenino , Fertilidad/genética , Silenciador del Gen , Genes de Partícula A Intracisternal/genética , Elementos de Nucleótido Esparcido Largo/genética , Masculino , Ratones , ARN Interferente Pequeño/biosíntesis , Espermatogénesis/genéticaRESUMEN
PIWI-interacting RNAs (piRNAs) of between approximately 24 and 31 nucleotides in length guide PIWI proteins to silence transposons in animal gonads, thereby ensuring fertility1. In the biogenesis of piRNAs, PIWI proteins are first loaded with 5'-monophosphorylated RNA fragments called pre-pre-piRNAs, which then undergo endonucleolytic cleavage to produce pre-piRNAs1,2. Subsequently, the 3'-ends of pre-piRNAs are trimmed by the exonuclease Trimmer (PNLDC1 in mouse)3-6 and 2'-O-methylated by the methyltransferase Hen1 (HENMT1 in mouse)7-9, generating mature piRNAs. It is assumed that the endonuclease Zucchini (MitoPLD in mouse) is a major enzyme catalysing the cleavage of pre-pre-piRNAs into pre-piRNAs10-13. However, direct evidence for this model is lacking, and how pre-piRNAs are generated remains unclear. Here, to analyse pre-piRNA production, we established a Trimmer-knockout silkworm cell line and derived a cell-free system that faithfully recapitulates Zucchini-mediated cleavage of PIWI-loaded pre-pre-piRNAs. We found that pre-piRNAs are generated by parallel Zucchini-dependent and -independent mechanisms. Cleavage by Zucchini occurs at previously unrecognized consensus motifs on pre-pre-piRNAs, requires the RNA helicase Armitage, and is accompanied by 2'-O-methylation of pre-piRNAs. By contrast, slicing of pre-pre-piRNAs with weak Zucchini motifs is achieved by downstream complementary piRNAs, producing pre-piRNAs without 2'-O-methylation. Regardless of the endonucleolytic mechanism, pre-piRNAs are matured by Trimmer and Hen1. Our findings highlight multiplexed processing of piRNA precursors that supports robust and flexible piRNA biogenesis.
Asunto(s)
Secuencias de Aminoácidos , Secuencia de Consenso , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Fosfolipasa D/química , Fosfolipasa D/metabolismo , ARN Interferente Pequeño/biosíntesis , Adenosina Trifosfato/metabolismo , Animales , Secuencia de Bases , Bombyx , Línea Celular , Sistema Libre de Células , Técnicas de Inactivación de Genes , Proteínas de Insectos/genética , Metilación , Ratones , ARN Helicasas/metabolismoRESUMEN
The piRNA pathway represses transposable elements in the gonads and thereby plays a vital role in protecting the integrity of germline genomes of animals. Mature piRNAs are processed from longer transcripts, piRNA precursors (pre-piRNAs). In Drosophila, processing of pre-piRNAs is initiated by piRNA-guided Slicer cleavage or the endonuclease Zucchini (Zuc). As Zuc does not have any sequence or structure preferences in vitro, it is not known how piRNA precursors are selected and channeled into the Zuc-dependent processing pathway. We show that a heterologous RNA that lacks complementary piRNAs is processed into piRNAs upon recruitment of several piRNA pathway factors. This processing requires Zuc and the helicase Armitage (Armi). Aubergine (Aub), Argonaute 3 (Ago3), and components of the nuclear RDC complex, which are required for normal piRNA biogenesis in germ cells, are dispensable. Our approach allows discrimination of proteins involved in the transcription and export of piRNA precursors from components required for the cytoplasmic processing steps. piRNA processing correlates with localization of the substrate RNA to nuage, a distinct membraneless cytoplasmic compartment, which surrounds the nucleus of germ cells, suggesting that sequestration of RNA to this subcellular compartment is both necessary and sufficient for selecting piRNA biogenesis substrates.
Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Endorribonucleasas/metabolismo , ARN Helicasas/metabolismo , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Interferente Pequeño/biosíntesis , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Citoplasma/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Endorribonucleasas/genética , Femenino , Células Germinativas/metabolismo , Ovario/metabolismo , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/metabolismo , ARN Helicasas/genéticaRESUMEN
PIWI-interacting RNAs (piRNAs) are small regulatory RNAs that bind to PIWI proteins to control transposons and maintain genome integrity in animal germ lines. piRNA 3' end formation in the silkworm Bombyx mori has been shown to be mediated by the 3'-to-5' exonuclease Trimmer (Trim; known as PNLDC1 in mammals), and piRNA intermediates are bound with PIWI anchored onto mitochondrial Tudor domain protein Papi. However, it remains unclear whether the Zucchini (Zuc) endonuclease and Nibbler (Nbr) 3'-to-5' exonuclease, both of which have pivotal roles in piRNA biogenesis in Drosophila, are required for piRNA processing in other species. Here we show that the loss of Zuc in Bombyx had no effect on the levels of Trim and Nbr, but resulted in the aberrant accumulation of piRNA intermediates within the Papi complex, and that these were processed to form mature piRNAs by recombinant Zuc. Papi exerted its RNA-binding activity only when bound with PIWI and phosphorylated, suggesting that complex assembly involves a hierarchical process. Both the 5' and 3' ends of piRNA intermediates within the Papi complex showed hallmarks of PIWI 'slicer' activity, yet no phasing pattern was observed in mature piRNAs. The loss of Zuc did not affect the 5'- and 3'-end formation of the intermediates, strongly supporting the idea that the 5' end of Bombyx piRNA is formed by PIWI slicer activity, but independently of Zuc, whereas the 3' end is formed by the Zuc endonuclease. The Bombyx piRNA biogenesis machinery is simpler than that of Drosophila, because Bombyx has no transcriptional silencing machinery that relies on phased piRNAs.
Asunto(s)
Bombyx/citología , Bombyx/genética , Endorribonucleasas/metabolismo , Células Germinativas/metabolismo , Proteínas Mitocondriales/metabolismo , ARN Interferente Pequeño/biosíntesis , Animales , Proteínas Argonautas/metabolismo , Drosophila , ARN Interferente Pequeño/genéticaRESUMEN
Dodders (Cuscuta spp.) are obligate parasitic plants that obtain water and nutrients from the stems of host plants via specialized feeding structures called haustoria. Dodder haustoria facilitate bidirectional movement of viruses, proteins and mRNAs between host and parasite, but the functional effects of these movements are not known. Here we show that Cuscuta campestris haustoria accumulate high levels of many novel microRNAs (miRNAs) while parasitizing Arabidopsis thaliana. Many of these miRNAs are 22 nucleotides in length. Plant miRNAs of this length are uncommon, and are associated with amplification of target silencing through secondary short interfering RNA (siRNA) production. Several A. thaliana mRNAs are targeted by 22-nucleotide C. campestris miRNAs during parasitism, resulting in mRNA cleavage, secondary siRNA production, and decreased mRNA accumulation. Hosts with mutations in two of the loci that encode target mRNAs supported significantly higher growth of C. campestris. The same miRNAs that are expressed and active when C. campestris parasitizes A. thaliana are also expressed and active when it infects Nicotiana benthamiana. Homologues of target mRNAs from many other plant species also contain the predicted target sites for the induced C. campestris miRNAs. These data show that C. campestris miRNAs act as trans-species regulators of host-gene expression, and suggest that they may act as virulence factors during parasitism.
Asunto(s)
Arabidopsis/genética , Cuscuta/genética , Interacciones Huésped-Parásitos/genética , MicroARNs/metabolismo , Nicotiana/genética , División del ARN , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , Arabidopsis/parasitología , Secuencia de Bases , Cuscuta/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Especificidad del Huésped , MicroARNs/genética , Mutación , ARN Mensajero/genética , ARN de Planta/genética , ARN Interferente Pequeño/biosíntesis , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Nicotiana/parasitología , Factores de Virulencia/genética , Factores de Virulencia/metabolismoRESUMEN
DNA methylation directed by 24-nucleotide (nt) small interfering RNAs (siRNAs) plays critical roles in gene regulation and transposon silencing in Arabidopsis. 24-nt siRNAs are known to be processed from double-stranded RNAs by Dicer-like 3 (DCL3) and loaded into the effector Argonaute 4 (AGO4). Here we report a distinct class of siRNAs independent of DCLs (sidRNAs). sidRNAs are present as ladders of â¼ 20-60 nt in length, often having the same 5' ends but differing in 3' ends by 1-nt steps. We further show that sidRNAs are associated with AGO4 and capable of directing DNA methylation. Finally we show that sidRNA production depends on distributive 3'-5' exonucleases. Our findings suggest an alternative route for siRNA biogenesis. Precursor transcripts are bound by AGO4 and subsequently subjected to 3'-5' exonucleolytic trimming for maturation. We propose that sidRNAs generated through this route are the initial triggers of de novo DNA methylation.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Metilación de ADN , ARN Interferente Pequeño/biosíntesis , Proteínas de Arabidopsis/genética , Proteínas Argonautas/metabolismo , Secuencia de Bases , Genoma de Planta , Datos de Secuencia Molecular , Mutación/genética , ARN de Planta/genética , ARN Polimerasa Dependiente del ARN/genética , Plantones/genéticaRESUMEN
Small-RNA (sRNA)-guided transcriptional gene silencing by Argonaute (Ago)-containing complexes is fundamental to genome integrity and epigenetic inheritance. The RNA cleavage ("Slicer") activity of Argonaute has been implicated in both sRNA maturation and target RNA cleavage. Typically, Argonaute slices and releases the passenger strand of duplex sRNA to generate active silencing complexes, but it remains unclear whether slicing of target nascent RNAs, or other RNAi components, also contributes to downstream transcriptional silencing. Here, we develop a strategy for loading the fission yeast Ago1 with a single-stranded sRNA guide, which bypasses the requirement for slicer activity in generation of active silencing complexes. We show that slicer-defective Ago1 can mediate secondary sRNA generation, H3K9 methylation, and silencing similar to or better than wild-type and associates with chromatin more efficiently. The results define an ancient and minimal sRNA-mediated chromatin silencing mechanism, which resembles the germline-specific sRNA-dependent transcriptional silencing pathways in Drosophila and mammals.
Asunto(s)
Proteínas Argonautas/metabolismo , Ensamble y Desensamble de Cromatina , Heterocromatina/metabolismo , Interferencia de ARN , ARN de Hongos/metabolismo , ARN Interferente Pequeño/biosíntesis , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Argonautas/genética , Metilación de ADN , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Regulación Fúngica de la Expresión Génica , Histonas/metabolismo , ARN de Hongos/genética , ARN Interferente Pequeño/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Transcripción GenéticaRESUMEN
Small non-coding RNAs called piRNAs serve as guides for an adaptable immune system that represses transposable elements in germ cells of Metazoa. In Drosophila the RDC complex, composed of Rhino, Deadlock and Cutoff (Cuff) bind chromatin of dual-strand piRNA clusters, special genomic regions, which encode piRNA precursors. The RDC complex is required for transcription of piRNA precursors, though the mechanism by which it licenses transcription remained unknown. Here, we show that Cuff prevents premature termination of RNA polymerase II. Cuff prevents cleavage of nascent RNA at poly(A) sites by interfering with recruitment of the cleavage and polyadenylation specificity factor (CPSF) complex. Cuff also protects processed transcripts from degradation by the exonuclease Rat1. Our work reveals a conceptually different mechanism of transcriptional enhancement. In contrast to other factors that regulate termination by binding to specific signals on nascent RNA, the RDC complex inhibits termination in a chromatin-dependent and sequence-independent manner.
Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , ARN Polimerasa II/metabolismo , ARN Interferente Pequeño/biosíntesis , Proteínas de Unión al ARN/metabolismo , Transcripción Genética , Adenosina/metabolismo , Animales , Animales Modificados Genéticamente , Sitios de Unión , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Biología Computacional , Bases de Datos Genéticas , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Exorribonucleasas/metabolismo , Genes Reporteros , Proteínas Asociadas a Microtúbulos/metabolismo , Complejos Multiproteicos , Polímeros/metabolismo , Unión Proteica , Estabilidad del ARN , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/genética , Terminación de la Transcripción GenéticaRESUMEN
In Drosophila germ cells, PIWI-interacting RNAs (piRNAs) are amplified through a PIWI slicer-dependent feed-forward loop termed the ping-pong cycle, yielding secondary piRNAs. However, the detailed mechanism remains poorly understood, largely because an ex vivo model system amenable to biochemical analyses has not been available. Here, we show that CRISPR-mediated loss of function of lethal (3) malignant brain tumor [l(3)mbt] leads to ectopic activation of the germ-specific ping-pong cycle in ovarian somatic cells. Perinuclear foci resembling nuage, the ping-pong center, appeared following l(3)mbt mutation. This activation of the ping-pong machinery in cultured cells will greatly facilitate elucidation of the mechanism underlying secondary piRNA biogenesis in Drosophila.
Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/genética , Ovario/metabolismo , ARN Interferente Pequeño/metabolismo , Animales , Proteínas de Drosophila/genética , Femenino , Silenciador del Gen , Mutación , Ovario/citología , ARN Interferente Pequeño/biosíntesis , ARN Interferente Pequeño/genéticaRESUMEN
The conserved THO/TREX (transcription/export) complex is critical for pre-mRNA processing and mRNA nuclear export. In metazoa, TREX is loaded on nascent RNA transcribed by RNA polymerase II in a splicing-dependent fashion; however, how TREX functions is poorly understood. Here we show that Thoc5 and other TREX components are essential for the biogenesis of piRNA, a distinct class of small noncoding RNAs that control expression of transposable elements (TEs) in the Drosophila germline. Mutations in TREX lead to defects in piRNA biogenesis, resulting in derepression of multiple TE families, gametogenesis defects, and sterility. TREX components are enriched on piRNA precursors transcribed from dual-strand piRNA clusters and colocalize in distinct nuclear foci that overlap with sites of piRNA transcription. The localization of TREX in nuclear foci and its loading on piRNA precursor transcripts depend on Cutoff, a protein associated with chromatin of piRNA clusters. Finally, we show that TREX is required for accumulation of nascent piRNA precursors. Our study reveals a novel splicing-independent mechanism for TREX loading on nascent RNA and its importance in piRNA biogenesis.
Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Regulación del Desarrollo de la Expresión Génica , ARN Interferente Pequeño/biosíntesis , ARN Interferente Pequeño/genética , Animales , Tipificación del Cuerpo/genética , Núcleo Celular/metabolismo , Proteínas de Drosophila/biosíntesis , Femenino , Fertilidad/genética , Masculino , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transporte de Proteínas , Precursores del ARN/metabolismo , Proteínas de Unión al ARN/metabolismoRESUMEN
Nuclear small RNA pathways safeguard genome integrity by establishing transcription-repressing heterochromatin at transposable elements. This inevitably also targets the transposon-rich source loci of the small RNAs themselves. How small RNA source loci are efficiently transcribed while transposon promoters are potently silenced is not understood. Here we show that, in Drosophila, transcription of PIWI-interacting RNA (piRNA) clusters-small RNA source loci in animal gonads-is enforced through RNA polymerase II pre-initiation complex formation within repressive heterochromatin. This is accomplished through Moonshiner, a paralogue of a basal transcription factor IIA (TFIIA) subunit, which is recruited to piRNA clusters via the heterochromatin protein-1 variant Rhino. Moonshiner triggers transcription initiation within piRNA clusters by recruiting the TATA-box binding protein (TBP)-related factor TRF2, an animal TFIID core variant. Thus, transcription of heterochromatic small RNA source loci relies on direct recruitment of the core transcriptional machinery to DNA via histone marks rather than sequence motifs, a concept that we argue is a recurring theme in evolution.
Asunto(s)
Elementos Transponibles de ADN/genética , Drosophila melanogaster/genética , Heterocromatina/genética , Heterocromatina/metabolismo , ARN Polimerasa II/metabolismo , ARN Interferente Pequeño/genética , Transcripción Genética , Animales , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/metabolismo , Femenino , Silenciador del Gen , Heterocromatina/química , Familia de Multigenes/genética , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/química , ARN Interferente Pequeño/biosíntesis , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Factor de Transcripción TFIIA/metabolismo , Iniciación de la Transcripción GenéticaRESUMEN
In Drosophila ovarian germ cells, PIWI-interacting RNAs (piRNAs) direct Aubergine and Argonaute3 to cleave transposon transcripts and instruct Piwi to repress transposon transcription, thereby safeguarding the germline genome. Here, we report that RNA cleavage by Argonaute3 initiates production of most Piwi-bound piRNAs. We find that the cardinal function of Argonaute3, whose piRNA guides predominantly correspond to sense transposon sequences, is to produce antisense piRNAs that direct transcriptional silencing by Piwi, rather than to make piRNAs that guide post-transcriptional silencing by Aubergine. We also find that the Tudor domain protein Qin prevents Aubergine's cleavage products from becoming Piwi-bound piRNAs, ensuring that antisense piRNAs guide Piwi. Although Argonaute3 slicing is required to efficiently trigger phased piRNA production, an alternative, slicing-independent pathway suffices to generate Piwi-bound piRNAs that repress transcription of a subset of transposon families. This alternative pathway may help flies silence newly acquired transposons for which they lack extensively complementary piRNAs.
Asunto(s)
Proteínas Argonautas/metabolismo , Proteínas de Drosophila/metabolismo , Factores de Iniciación de Péptidos/metabolismo , ARN Interferente Pequeño/biosíntesis , Transporte Activo de Núcleo Celular , Animales , Proteínas Argonautas/genética , Elementos Transponibles de ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Silenciador del Gen , Genes de Insecto , Modelos Biológicos , Mutación , Óvulo/metabolismo , Factores de Iniciación de Péptidos/genética , Unión Proteica , División del ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismoRESUMEN
PIWI-interacting RNAs (piRNAs) are an emerging class of non-coding RNAs involved in tumorigenesis. Expression quantitative trait locus (eQTL) analysis has been demonstrated to help reveal the genetic mechanism of single nucleotide polymorphisms (SNPs) in cancer etiology. However, there are no databases that have been constructed to provide an eQTL analysis between SNPs and piRNA expression. In this study, we collected genotyping and piRNA expression data for 10 997 samples across 33 cancer types from The Cancer Genome Atlas (TCGA). Using linear regression cis-eQTL analysis with adjustment of appropriate covariates, we identified millions of SNP-piRNA pairs in tumor (76 924 831) and normal (24 431 061) tissues. Further, we performed differential expression and survival analyses, and linked the eQTLs to genome-wide association study (GWAS) data to comprehensively decipher the functional roles of identified cis-piRNA eQTLs. Finally, we developed a user-friendly database, piRNA-eQTL (http://njmu-edu.cn:3838/piRNA-eQTL/), to help users query, browse and download corresponding eQTL results. In summary, piRNA-eQTL could serve as an important resource to assist the research community in understanding the roles of genetic variants and piRNAs in the development of cancers.
Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , ARN Neoplásico/genética , ARN Interferente Pequeño/biosíntesis , Bases de Datos Genéticas , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Estimación de Kaplan-Meier , Neoplasias/genética , Neoplasias/mortalidad , ARN Interferente Pequeño/genética , Interfaz Usuario-ComputadorRESUMEN
In metazoan germlines, the piRNA pathway acts as a genomic immune system, employing small RNA-mediated silencing to defend host DNA from the harmful effects of transposable elements (TEs). Expression of genomic TEs is proposed to initiate self regulation by increasing the production of repressive piRNAs, thereby "adapting" piRNA-mediated control to the most active TE families. Surprisingly, however, piRNA pathway proteins, which execute piRNA biogenesis and enforce silencing of targeted sequences, evolve rapidly and adaptively in animals. If TE silencing is ensured through piRNA biogenesis, what necessitates changes in piRNA pathway proteins? Here we used interspecific complementation to test for functional differences between Drosophila melanogaster and D. simulans alleles of three adaptively evolving piRNA pathway proteins: Armitage, Aubergine and Spindle-E. In contrast to piRNA-mediated transcriptional regulators examined in previous studies, these three proteins have cytoplasmic functions in piRNA maturation and post-transcriptional silencing. Across all three proteins we observed interspecific divergence in the regulation of only a handful of TE families, which were more robustly silenced by the heterospecific piRNA pathway protein. This unexpected result suggests that unlike transcriptional regulators, positive selection has not acted on cytoplasmic piRNA effector proteins to enhance their function in TE repression. Rather, TEs may evolve to "escape" silencing by host proteins. We further discovered that D. simulans alleles of aub and armi exhibit enhanced off-target effects on host transcripts in a D. melanogaster background, as well as modest reductions in the efficiency of piRNA biogenesis, suggesting that promiscuous binding of D. simulans Aub and Armi proteins to host transcripts reduces their participation in piRNA production. Avoidance of genomic auto-immunity may therefore be a critical target of selection. Our observations suggest that piRNA effector proteins are subject to an evolutionary trade-off between defending the host genome from the harmful effect of TEs while also minimizing collateral damage to host genes.