Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.469
Filtrar
Más filtros

Colección OPSURU
Intervalo de año de publicación
1.
Nature ; 597(7875): 230-234, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34497394

RESUMEN

Parties to the 2015 Paris Agreement pledged to limit global warming to well below 2 °C and to pursue efforts to limit the temperature increase to 1.5 °C relative to pre-industrial times1. However, fossil fuels continue to dominate the global energy system and a sharp decline in their use must be realized to keep the temperature increase below 1.5 °C (refs. 2-7). Here we use a global energy systems model8 to assess the amount of fossil fuels that would need to be left in the ground, regionally and globally, to allow for a 50 per cent probability of limiting warming to 1.5 °C. By 2050, we find that nearly 60 per cent of oil and fossil methane gas, and 90 per cent of coal must remain unextracted to keep within a 1.5 °C carbon budget. This is a large increase in the unextractable estimates for a 2 °C carbon budget9, particularly for oil, for which an additional 25 per cent of reserves must remain unextracted. Furthermore, we estimate that oil and gas production must decline globally by 3 per cent each year until 2050. This implies that most regions must reach peak production now or during the next decade, rendering many operational and planned fossil fuel projects unviable. We probably present an underestimate of the production changes required, because a greater than 50 per cent probability of limiting warming to 1.5 °C requires more carbon to stay in the ground and because of uncertainties around the timely deployment of negative emission technologies at scale.


Asunto(s)
Conservación de los Recursos Energéticos/legislación & jurisprudencia , Combustibles Fósiles/análisis , Combustibles Fósiles/provisión & distribución , Calentamiento Global/prevención & control , Cooperación Internacional/legislación & jurisprudencia , Modelos Teóricos , Temperatura , Aceites Combustibles/análisis , Aceites Combustibles/provisión & distribución , Mapeo Geográfico , Calentamiento Global/legislación & jurisprudencia , Metano/análisis , Metano/provisión & distribución , Paris , Probabilidad , Factores de Tiempo , Incertidumbre
2.
Int Microbiol ; 27(5): 1429-1444, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38286952

RESUMEN

Direct combustion of sulfur-enriched liquid fuel oil causes sulfur oxide emission, which is one of the main contributors to air pollution. Biodesulfurization is a promising and eco-friendly method to desulfurize a wide range of thiophenic compounds present in fuel oil. Previously, numerous bacterial strains from genera such as Rhodococcus, Corynebacterium, Gordonia, Nocardia, Mycobacterium, Mycolicibacterium, Paenibacillus, Shewanella, Sphingomonas, Halothiobacillus, and Bacillus have been reported to be capable of desulfurizing model thiophenic compounds or fossil fuels. In the present study, we report a new desulfurizing bacterium, Tsukamurella sp. 3OW, capable of desulfurization of dibenzothiophene through the carbon-sulfur bond cleavage 4S pathway. The bacterium showed a high affinity for the hydrocarbon phase and broad substrate specificity towards various thiophenic compounds. The overall genome-related index analysis revealed that the bacterium is closely related to Tsukamurella paurometabola species. The genomic pool of strain 3OW contains 57 genes related to sulfur metabolism, including the key dszABC genes responsible for dibenzothiophene desulfurization. The DBT-adapted cells of the strain 3OW displayed significant resilience and viability in elevated concentrations of crude oil. The bacterium showed a 19 and 37% reduction in the total sulfur present in crude and diesel oil, respectively. Furthermore, FTIR analysis indicates that the oil's overall chemistry remained unaltered following biodesulfurization. This study implies that Tsukamurella paurometabola species, previously undocumented in the context of biodesulfurization, has good potential for application in the biodesulfurization of petroleum oils.


Asunto(s)
Carbono , Filogenia , Azufre , Tiofenos , Azufre/metabolismo , Tiofenos/metabolismo , Tiofenos/química , Carbono/metabolismo , Genoma Bacteriano , Biodegradación Ambiental , Genómica , Actinomycetales/metabolismo , Actinomycetales/genética , Actinomycetales/clasificación , Actinomycetales/aislamiento & purificación , Aceites Combustibles/microbiología
3.
Environ Sci Technol ; 58(36): 16006-16015, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39051771

RESUMEN

Ship emissions are a significant source of air pollution, and the primary policy to control is fuel oil quality improvement. However, the impact of this policy on particle size distribution and composition characteristics remains unclear. Measurements were conducted on nine different vessels (ocean-going vessels, coastal cargo ships, and inland cargo ships) to determine the impact of fuel upgrading (S < 0.1% m/m marine gas oil (MGO) vs S < 0.5% m/m heavy fuel oil (HFO)) on elemental carbon (EC) and polycyclic aromatic hydrocarbons (PAHs) emitted by ships. (1) Fuel improvement significantly reduced EC and PAH emission, by 31 ± 25 and 45 ± 38%, respectively. However, particle size distributions showed a trend toward finer particles, with the peak size decreasing from DP = 0.38-0.60 µm (HFO) to DP = 0.15-0.25 µm (MGO), and the emission factor of DP < 100 nm increased. (2) Changes in emission characteristics led to an increase in the toxicity of ultrafine particulate matter. (3) Ship types and engine conditions affected the EC and PAH particle size distributions. Inland ships have a more concentrated particle size distribution. Higher loads result in higher emissions. (4) The composition and engine conditions of fuel oils jointly affected pollutant formation mechanisms. MGO and HFO exhibited opposite EC emissions when emitting the same level of PAHs.


Asunto(s)
Carbono , Aceites Combustibles , Tamaño de la Partícula , Hidrocarburos Policíclicos Aromáticos , Navíos , Material Particulado , Contaminantes Atmosféricos , Emisiones de Vehículos , Contaminación del Aire
4.
Environ Res ; 260: 119609, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39002626

RESUMEN

Sulphur Emission Control Areas (SECAs), mandated by the International Maritime Organization (IMO), regulate fuel sulphur content (FSC) to mitigate the environmental and health impact of shipping emissions in coastal areas. Currently, FSC is limited to 0.1% (w/w) within and 0.5% (w/w) outside SECAs, with exceptions for ships employing wet sulphur scrubbers. These scrubbers enable vessels using non-compliant fuels such as high-sulphur heavy fuel oils (HFOs) to enter SECAs. However, while sulphur reduction via scrubbers is effective, their efficiency in capturing other potentially harmful gases remains uncertain. Moreover, emerging compliant fuels like highly aromatic fuels or low-sulphur blends lack characterisation and may pose risks. Over three years, we assessed emissions from an experimental marine engine at 25% and 75% load, representative of manoeuvring and cruising, respectively. First, characterizing emissions from five different compliant and non-compliant fuels (marine gas oil MGO, hydro-treated vegetable oil HVO, high-, low- and ultra-low sulphur HFOs), we calculated emission factors (EF). Then, the wet scrubber gas-phase capture efficiency was measured using compliant and non-compliant HFOs. NOx EF varied among fuels (5200-19700 mg/kWh), with limited scrubber reduction. CO (EF 750-13700 mg/kWh) and hydrocarbons (HC; EF 122-1851 mg/kWh) showed also insufficient abatement. Carcinogenic benzene was notably higher at 25% load and about an order of magnitude higher with HFOs compared to MGO and HVO, with no observed scrubber reduction. In contrast, carbonyls such as carcinogenic formaldehyde and acetaldehyde, acting as ozone precursors, were effectively scrubbed due to their polarity and water solubility. The ozone formation potential (OFP) of all fuels was examined. Significant EF differences between fuels and engine loads were observed, with the wet scrubber providing limited or no reduction of gaseous emissions. We suggest enhanced regulations and emission abatements in the marine sector to mitigate gaseous pollutants harmful to human health and the environment.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Navíos , Emisiones de Vehículos , Contaminantes Atmosféricos/análisis , Ozono/análisis , Emisiones de Vehículos/análisis , Aceites Combustibles/análisis , Azufre/análisis
5.
Ecotoxicol Environ Saf ; 279: 116463, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38749194

RESUMEN

The environmental impact of oil spills is a critical concern, particularly pertaining to low sulfur marine diesel (LSMD) and high sulfur fuel oil (HSFO) that are commonly involved in coastal spills. Although transcriptomic biomonitoring of sentinel animals can be a powerful tool for assessing biological effects, conventional methods utilize lethal sampling to examine the liver. As a non-lethal alternative, we have previously shown salmonid caudal fin cyp1a1 is significantly responsive to LSMD-derived toxicants. The present study further investigated the transcriptomic biomonitoring potential of coho salmon smolt caudal fin in comparison to liver tissue in the context of LSMD and HSFO seawater accommodated fraction (seaWAF) exposure in cold-water marine environments. Assessing the toxicity of these seaWAFs involved quantifying polycyclic aromatic hydrocarbon (tPAH50) concentrations and generating gene expression profiles. Initial qPCR analyses revealed significant cyp1a1 response in both liver and caudal fin tissues of both genetic sexes to all seaWAF exposures. RNA-Seq analysis, focusing on the highest LSMD and HSFO seaWAF concentrations (28.4±1.8 and 645.08±146.3 µg/L tPAH50, respectively), revealed distinct tissue-specific and genetic sex-independent transcriptomic responses with an overall enrichment of oxidative stress, cell adhesion, and morphogenesis-related pathways. Remarkably, the caudal fin tissue exhibited transcriptomic response patterns comparable to liver tissue, particularly consistent differential expression of 33 gene transcripts in the liver (independent of sex and oil type) and 44 in the caudal fin. The present work underscores the viability of using the caudal fin as a non-lethal alternative to liver sampling for assessing and tracking oil spill exposure in marine environments.


Asunto(s)
Aletas de Animales , Citocromo P-450 CYP1A1 , Aceites Combustibles , Hígado , Contaminación por Petróleo , Transcriptoma , Contaminantes Químicos del Agua , Animales , Hígado/efectos de los fármacos , Hígado/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminación por Petróleo/efectos adversos , Aletas de Animales/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Masculino , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Aceites Combustibles/toxicidad , Femenino , Azufre , Monitoreo del Ambiente/métodos , Oncorhynchus kisutch/genética , Gasolina/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/análisis , Agua de Mar/química
6.
Environ Sci Technol ; 57(34): 12701-12712, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37590157

RESUMEN

Recent restrictions on marine fuel sulfur content and a heightened regulatory focus on maritime decarbonization are driving the deployment of low-carbon and low-sulfur alternative fuels for maritime transport. In this study, we quantified the life-cycle greenhouse gas and sulfur oxide emissions of several novel marine biofuel candidates and benchmarked the results against the emissions reduction targets set by the International Maritime Organization. A total of 11 biofuel pathways via four conversion processes are considered, including (1) biocrudes derived from hydrothermal liquefaction of wastewater sludge and manure, (2) bio-oils from catalytic fast pyrolysis of woody biomass, (3) diesel via Fischer-Tropsch synthesis of landfill gas, and (4) lignin ethanol oil from reductive catalytic fractionation of poplar. Our analysis reveals that marine biofuels' life-cycle greenhouse gas emissions range from -60 to 56 gCO2e MJ-1, representing a 41-163% reduction compared with conventional low-sulfur fuel oil, thus demonstrating a considerable potential for decarbonizing the maritime sector. Due to the net-negative carbon emissions from their life cycles, all waste-based pathways showed over 100% greenhouse gas reduction potential with respect to low-sulfur fuel oil. However, while most biofuel feedstocks have a naturally occurring low-sulfur content, the waste feedstocks considered here have higher sulfur content, requiring hydrotreating prior to use as a marine fuel. Combining the break-even price estimates from a published techno-economic analysis, which was performed concurrently with this study, the marginal greenhouse gas abatement cost was estimated to range from -$120 to $370 tCO2e-1 across the pathways considered. Lower marginal greenhouse gas abatement costs were associated with waste-based pathways, while higher marginal greenhouse gas abatement costs were associated with the other biomass-based pathways. Except for lignin ethanol oil, all candidates show the potential to be competitive with a carbon credit of $200 tCO2e-1 in 2016 dollars, which is within the range of prices recently received in connection with California's low-carbon fuel standard.


Asunto(s)
Aceites Combustibles , Gases de Efecto Invernadero , Animales , Biocombustibles , Lignina , Pirólisis , Madera , Azufre , Carbono , Etanol , Estadios del Ciclo de Vida
7.
Environ Sci Technol ; 57(44): 16999-17010, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37856868

RESUMEN

In early 2020, two unique events perturbed ship emissions of pollutants around Southern China, proffering insights into the impacts of ship emissions on regional air quality: the decline of ship activities due to COVID-19 and the global enforcement of low-sulfur (<0.5%) fuel oil for ships. In January and February 2020, estimated ship emissions of NOx, SO2, and primary PM2.5 over Southern China dropped by 19, 71, and 58%, respectively, relative to the same period in 2019. The decline of ship NOx emissions was mostly over the coastal waters and inland waterways of Southern China due to reduced ship activities. The decline of ship SO2 and primary PM2.5 emissions was most pronounced outside the Chinese Domestic Emission Control Area due to the switch to low-sulfur fuel oil there. Ship emission reductions in early 2020 drove 16 to 18% decreases in surface NO2 levels but 3.8 to 4.9% increases in surface ozone over Southern China. We estimated that ship emissions contributed 40% of surface NO2 concentrations over Guangdong in winter. Our results indicated that future abatements of ship emissions should be implemented synergistically with reductions of land-borne anthropogenic emissions of nonmethane volatile organic compounds to effectively alleviate regional ozone pollution.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aceites Combustibles , Ozono , Contaminantes Atmosféricos/análisis , Navíos , Emisiones de Vehículos/análisis , Material Particulado/análisis , Dióxido de Nitrógeno , Contaminación del Aire/análisis , China , Ozono/análisis , Azufre , Monitoreo del Ambiente/métodos
9.
Sensors (Basel) ; 23(12)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37420829

RESUMEN

In this work, we present hardware and firmware design and preliminary testing results for a noninvasive device for measuring fuel oil consumption in fuel oil vented heaters. Fuel oil vented heaters are a popular space heating method in northern climates. Monitoring fuel consumption is useful to understanding residential daily and seasonal heating patterns and understanding the thermal characteristics of buildings. The device is a pump monitoring apparatus (PuMA) that employs a magnetoresistive sensor to monitor the activity of solenoid driven positive displacement pumps, which are commonly used in fuel oil vented heaters. PuMA accuracy for calculating fuel oil consumption was evaluated in a lab setting and found to vary up to 7% from the measured consumption value during testing. This variance will be explored more in field testing.


Asunto(s)
Aceites Combustibles , Artículos Domésticos , Puma , Animales , Calefacción , Clima
10.
J Environ Manage ; 345: 118833, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37639910

RESUMEN

In the present study, through the laboratory-to-field scale experiments and trials, we report the development and evaluation of an integrated oil-spill response system capable of oil collection, recovery (separation), and storage, for a timely and effective response to the initial stage of oil-spill accidents. With the laboratory-scale experiments, first, we evaluate that the water-surface waves tend to abate the oil recovery rate below 80% (it is above 95% for the optimized configuration without the waves), which is overcome by installing the hydrophilic (and oleophobic) porous structures at the inlet and/or near the water outlet of the separator. In the follow-up meso-scale towing tank tests with a scaled-up prototype, (i) we optimize the maneuverability of the assembled system depending on the speed and existence of waves, and (ii) evaluate the oil recovery performance (more than 80% recovery for the olive oil and Bunker A fuel oil). Although more thorough investigations and improvements are needed, a recovery rate of over 50% can be achieved for the newly enforced marine fuel oil (low sulfur fuel oil, LSFO) that was not targeted at the time of development. Finally, we perform a series of field tests with a full-scale system, to evaluate the rapid deployment and operational stability in the real marine environment. The overall floating balance and coordination of each functional part are sustained to be stable during the straight and rotary maneuvers up to the speed of 5 knots. Also, the collection of the floating debris (mimicking the spilled oil) is demonstrated in the field test. The present system is now being tested by the Korea Coast Guard and we believe that it will be very powerful to prevent the environmental damage due to the oil spills.


Asunto(s)
Aceites Combustibles , Contaminación por Petróleo , Bahías , Laboratorios , Agua
11.
Anal Chem ; 94(48): 16855-16863, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36418227

RESUMEN

The comprehensive chemical description of air pollution is a prerequisite for understanding atmospheric transformation processes and effects on climate and environmental health. In this study, a prototype vacuum photoionization Orbitrap mass spectrometer was evaluated for field-suitability by an online on-site investigation of emissions from a ship diesel engine. Despite remote measurements in a challenging environment, the mass spectrometric performance could fully be exploited. Due to the high resolution and mass accuracy in combination with resonance-enhanced multiphoton ionization, the aromatic hydrocarbon profile could selectively and sensitively be analyzed. Limitations from commonly deployed time-of-flight platforms could be overcome, allowing to unraveling the oxygen- and sulfur-containing compounds. Scan-by-scan evaluation of the online data revealed no shift in exact m/z, assignment statistics with root mean square error (RMSE) below 0.2 ppm, continuous high-resolution capabilities, and good isotopic profile matches. Emissions from three different feed fuels were investigated, namely, diesel, heavy fuel oil (HFO), and very low sulfur fuel oil (VLSFO). Regulations mainly concern the fuel sulfur content, and thus, exhaust gas treatment or new emerging fuels, such as the cycle-oil-based VLSFO, can legally be applied. Unfortunately, despite lower CHS-class emissions, a substantial amount of PAHs is emitted by the VLSFO with higher aromaticity compared to the HFO. Hence, legislative measures might need to take further chemical criteria into account.


Asunto(s)
Contaminantes Atmosféricos , Aceites Combustibles , Material Particulado/análisis , Navíos , Contaminantes Atmosféricos/análisis , Aceites Combustibles/análisis , Vacio , Emisiones de Vehículos/análisis , Espectrometría de Masas , Azufre/análisis
12.
Langmuir ; 38(31): 9567-9574, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35881913

RESUMEN

Phase-selective organogelators (PSOGs) have recently attracted more attention because of their advantages in handling oil spills and leaked organic solvents. However, it is difficult to separate and recover the organic phase and PSOGs from organic gels due to the strong interaction between them. Aiming to enhance the separation and recovery performance of the organic phase and PSOGs, we synthesized a series of pH-responsive PSOGs by using itaconic anhydride and fatty amines with carbon chain lengths of C12-C18. Here, PSOGs have an excellent gelation ability in that amounts of organic solvents and fuel oil can be solidified at a low concentration (<3 wt %). It is worth noting that these gels are stronger, which is more convenient for removal by a salvage operation. More importantly, compared with traditional organogelators, pH-responsive PSOGs can easily recover the organic phase and fuel oil with an adjustment of the pH without extraction or distillation. Because of the transformation between the hydrophilicity and hydrophobicity of PSOGs by pH stimulation, 83.15% PSOGs are recovered in three-cycle experiments. In addition, the recycled PSOGs can be used to realize the removal of the organic phase again. Herein, we find that pH-responsive PSOGs could be used as promising and sustainable materials for separating and recovering organic solvents/oils and PSOGs.


Asunto(s)
Aceites Combustibles , Contaminación por Petróleo , Ácidos Carboxílicos , Geles/química , Concentración de Iones de Hidrógeno , Contaminación por Petróleo/análisis , Solventes/química
13.
Environ Sci Technol ; 56(18): 12917-12925, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36070884

RESUMEN

The lack of emission data for ocean-going vessels (OGVs) and the recent fuel switching make it urgent to enhance the onboard measurement of ship emissions, especially for intermediate volatile organic compounds (IVOCs). This study focused on the IVOC emission characteristics and formation pathways of three OGVs under various engine conditions (power and load) and fuel oils (heavy fuel oil (HFO) versus marine gas oil (MGO)). The results showed that the (1) IVOC emission factors (EFIVOC) of the three OGVs increased with engine power and were higher for MGO (1494.4 ± 421.7 mg/kg) than HFO (1830.5 ± 534.5 mg/kg) and engine load is an important parameter. (2) Engine load and oil type affect the composition and volatility distribution of IVOCs. The proportion of polycyclic aromatic hydrocarbons in IVOCs increased with a higher load, and using MGO shifted IVOC components to a higher volatility in contrast to HFO. (3) The compositions of IVOCs were more like those in fuel oils under low loads than under high loads, indicating that different formation pathways of IVOCs exist for different engine loads. (4) A higher EFIVOC was observed nearshore than in open sea owing to the lower and transient engine load, which indicates the necessity of paying attention to the IVOC emissions for ships.


Asunto(s)
Contaminantes Atmosféricos , Aceites Combustibles , Hidrocarburos Policíclicos Aromáticos , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Gasolina , Óxido de Magnesio , Navíos , Emisiones de Vehículos/análisis
14.
Environ Res ; 212(Pt A): 113160, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35351451

RESUMEN

For the first time, two new kinds of inorganic-organic hybrid nanomaterials (Bi2WO6@rGO and Cu-WO4@rGO) were fabricated by simple hydrothermal treatment and employed for green and efficient oxidative desulfurization of real fuel. The characterization of newly synthesized nanocomposites was performed by SEM, EDX, P-XRD, FT-IR and TGA. SEM and XRD analyses revealed well decoration of dopants (Cu-WO4 and Bi-WO3) on the surface of rGO with a crystallite size of <50 nm. The catalytic activity of both nanocatalysts was examined for model (dibenzothiophene) and real fuel (kerosene and diesel) by oxidative desulfurization route. Experimental findings revealed a high efficiency of over 90% under optimal reaction conditions of 0.1 g catalyst, 1 mL of oxidant, and 100 mg/L after 120 min at 30 °C. The major factors affecting desulfurization efficiency (time, temperature, catalyst amount, dibenzothiophene (DBT) concentration and amount of oxidant) and kinetic studies were described. The DBT removal via oxidative desulfurization followed pseudo first-order kinetics with an activation energy of 14.57 and 16.91 kJ/mol for Cu-WO4@rGO and Bi2WO6@rGO, respectively. The prepared catalysts showed promising reusability for the ODS process up to 5 times with no significant decrease in efficiency. In conclusion, the findings confirm the robustness of newly prepared nanocomposite for efficient production of sulfur-free oil.


Asunto(s)
Aceites Combustibles , Nanocompuestos , Grafito , Cinética , Oxidantes , Estrés Oxidativo , Espectroscopía Infrarroja por Transformada de Fourier
15.
Environ Res ; 212(Pt B): 113325, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35439455

RESUMEN

Oil spills have many adverse effects on the marine environment. Bilge oil spills occur frequently in the sea as a result of maritime accidents or illegal discharge. It is difficult to unambiguously identify the specific sources of such spills because bilge oil contains a mixture of fuel oil and lubricant. In this study, bilge oils with different fuel oil/lubricant ratios were prepared and analyzed using a modified version of the CEN/TR methodology (European Committee for Standardization, 2012). As the lubricant content of bilge oil increased, the intensity of the C20-C24 group, which is the commonly-used normalization compound group for fuel oil in the percentage weathering (PW) plot, also changed. Therefore, the mean area of the C15-C18 group, which was affected by the lubricant content, was used instead. Although heavy fuel oil is usually normalized to a hopane, bilge oil with a high lubricant content cannot be analyzed based on a mass spectrometry (MS)-PW plot; thus, heavy fuel oil-based bilge oil was normalized to a phytane in this study. Although hopanes and styrenes are unsuitable comparison compounds for heavy fuel oil-based bilge oil analysis, for light fuel oil-based bilge oil, hopanes and steranes could be applied as diagnostic ratio comparisons when the lubricant peak was clearly detected in the chromatograms of the spilled and suspected oil samples. By applying the CEN/TR methodology according to this approach, the similarities between spilled and suspected oil samples were more easily revealed. In addition, the field applicability of the proposed method was tested for four actual oil spills.


Asunto(s)
Aceites Combustibles , Contaminación por Petróleo , Petróleo , Aceites Combustibles/análisis , Lubricantes , Aceites , Triterpenos Pentacíclicos , Petróleo/análisis , Contaminación por Petróleo/análisis
16.
Environ Health ; 21(1): 96, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36221093

RESUMEN

BACKGROUND: Numerous studies have documented PM2.5's links with adverse health outcomes. Comparatively fewer studies have evaluated specific PM2.5 components. The lack of exposure measurements and high correlation among different PM2.5 components are two limitations. METHODS: We applied a novel exposure prediction model to obtain annual Census tract-level concentrations of 15 PM2.5 components (Zn, V, Si, Pb, Ni, K, Fe, Cu, Ca, Br, SO42-, NO3-, NH4+, OC, EC) in Massachusetts from 2000 to 2015, to which we matched geocoded deaths. All non-accidental mortality, cardiovascular mortality, and respiratory mortality were examined for the population aged 18 or over. Weighted quantile sum (WQS) regression models were used to examine the cumulative associations between PM2.5 components mixture and outcomes and each component's contributions to the cumulative associations. We have fit WQS models on 15 PM2.5 components and a priori identified source groups (heavy fuel oil combustion, biomass burning, crustal matter, non-tailpipe traffic source, tailpipe traffic source, secondary particles from power plants, secondary particles from agriculture, unclear source) for the 15 PM2.5 components. Total PM2.5 mass analysis and single component associations were also conducted through quasi-Poisson regression models. RESULTS: Positive cumulative associations between the components mixture and all three outcomes were observed from the WQS models. Components with large contribution to the cumulative associations included K, OC, and Fe. Biomass burning, traffic emissions, and secondary particles from power plants were identified as important source contributing to the cumulative associations. Mortality rate ratios for cardiovascular mortality were of greater magnitude than all non-accidental mortality and respiratory mortality, which is also observed in cumulative associations estimated from WQS, total PM2.5 mass analysis, and single component associations. CONCLUSION: We have found positive associations between the mixture of 15 PM2.5 components and all non-accidental mortality, cardiovascular mortality, and respiratory mortality. Among these components, Fe, K, and OC have been identified as having important contribution to the cumulative associations. The WQS results also suggests potential source effects from biomass burning, traffic emissions, and secondary particles from power plants.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Enfermedades Cardiovasculares , Aceites Combustibles , Enfermedades Respiratorias , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Enfermedades Cardiovasculares/inducido químicamente , Monitoreo del Ambiente , Aceites Combustibles/análisis , Humanos , Plomo/análisis , Material Particulado/análisis , Enfermedades Respiratorias/epidemiología
17.
Molecules ; 27(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35164161

RESUMEN

Among the large group of xenobiotics released into the environment, petroleum derivatives are particularly dangerous, especially given continuing industrial development and the rising demand for fuel. As increasing amounts of fly ash and sewage sludge are released, it becomes necessary to explore new methods of reusing these types of waste as reclamation agents or nutrient sources. The present study examined how soil contamination with Eco-Diesel oil (0; 10; 20 cm3 kg-1 soil) affected the trace-element content in the aerial parts of maize. Coal and sludge ashes were used as reclamation agents. Our study revealed that diesel oil strongly affected the trace-element content in the aerial parts of maize. In the non-amended group, Eco-Diesel oil contamination led to higher accumulation of the trace elements in maize (with the exception of Pb and Ni), with Cu and Mn content increasing the most. The ashes incorporated into the soil performed inconsistently as a reclamation agent. Overall, the amendment reduced Mn and Fe in the aerial parts of maize while increasing average Cd and Cu levels. No significant effect was noted for the other elements.


Asunto(s)
Ceniza del Carbón/química , Aceites Combustibles/análisis , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Zea mays/química , Contaminación Ambiental , Gasolina/análisis , Suelo/química , Oligoelementos/análisis
18.
Environ Sci Technol ; 55(22): 15031-15039, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34734701

RESUMEN

This study aims to investigate the effect of the stepwise marine fuel oil regulations on the concentrations of vanadium (V) and nickel (Ni) in ambient air based on a 4-y (2017-2020) online measurement in Shanghai, a coastal city in China. The annual concentration of V was reduced by 58% due to the switch from Domestic Emission Control Area (DECA) 1.0 to DECA 2.0 and further by 74% after the implementation of the International Maritime Organization (IMO) 2020 regulation, while the reduction rate for Ni was only 27% and then 18% respectively. Consistently, a reduction of 84% in V content and a negligible change in Ni content were measured in 180cst ship oil samples from 2010 to 2020. The similar increasing trend of Ni/V ratios (from <0.4 to >2.0) in both ambient measurement and heavy fuel oil samples suggests that the DECA and IMO 2020 regulations effectively reduced the ambient V. However, nickel content is still enriched in the in-use desulfurized residual oils and ship-emitted particles in coastal China. Meanwhile, the previous ratio between V and Ni cannot be used as a tracer for identifying ship-emitted particles due to its large variation in oils. Further updating of the source profile of ship traffic emissions in coastal cities is necessary in the future.


Asunto(s)
Contaminantes Atmosféricos , Aceites Combustibles , Contaminantes Atmosféricos/análisis , China , Níquel , Material Particulado/análisis , Navíos , Emisiones de Vehículos/análisis
19.
Environ Sci Technol ; 55(11): 7561-7570, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33998807

RESUMEN

This study performed technoeconomic and life-cycle analyses to assess the economic feasibility and emission benefits and tradeoffs of various biofuel production pathways as an alternative to conventional marine fuels. We analyzed production pathways for (1) Fischer-Tropsch diesel from biomass and cofeeding biomass with natural gas or coal, (2) renewable diesel via hydroprocessed esters and fatty acids from yellow grease and cofeeding yellow grease with heavy oil, and (3) bio-oil via fast pyrolysis of low-ash woody feedstock. We also developed a new version of the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) marine fuel module for the estimation of life-cycle greenhouse gas (GHG) and criteria air pollutant (CAP) emissions of conventional and biobased marine fuels. The alternative fuels considered have a minimum fuel selling price between 2.36 and 4.58 $/heavy fuel oil gallon equivalent (HFOGE), and all exhibit improved life-cycle GHG emissions compared to heavy fuel oil (HFO), with reductions ranging from 40 to 93%. The alternative fuels also exhibit reductions in sulfur oxides and particulate matter emissions. Additionally, when compared with marine gas oil and liquified natural gas, they perform favorably across most emission categories except for cases where carbon and sulfur emissions are increased by the cofed fossil feedstocks. The pyrolysis bio-oil offers the most promising marginal CO2 abatement cost at less than $100/tonne CO2e for HFO prices >$1.09/HFOGE followed by Fischer-Tropsch diesel from biomass and natural gas pathways, which fall below $100/tonne CO2e for HFO prices >$2.25/HFOGE. Pathways that cofeed fossil feedstocks with biomass do not perform as well for marginal CO2 abatement cost, particularly at low HFO prices. This study indicates that biofuels could be a cost-effective means of reducing GHG, sulfur oxide, and particulate matter emissions from the maritime shipping industry and that cofeeding biomass with natural gas could be a practical approach to smooth a transition to biofuels by reducing alternative fuel costs while still lowering GHG emissions, although marginal CO2 abatement costs are less favorable for the fossil cofeed pathways.


Asunto(s)
Contaminantes Atmosféricos , Aceites Combustibles , Contaminantes Atmosféricos/análisis , Biocombustibles , Carbón Mineral , Efecto Invernadero , Material Particulado
20.
Sensors (Basel) ; 21(23)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34883984

RESUMEN

This paper presents a ultrasonic-capacitive system for online analysis of the quality of fuel oils (FO), which are widely used to produce electric energy in Thermal Power Plants (TPP) due to their elevated heating value. The heating value, in turn, is linked to the quality of the fuel (i.e., the density and the amount of contaminants, such as water). Therefore, the analysis of the quality is of great importance for TPPs, either in order to avoid a decrease in generated power or in order to avoid damage to the TPP equipment. The proposed system is composed of two main strategies: a capacitive system (in order to estimate the water content in the fuel) and an ultrasonic system (in order to estimate the density). The conjunction of the two strategies is used in order to estimate the heating value of the fuel, online, as it passes through the pipeline and is an important tool for the TPP in order to detect counterfeit fuel. In addition, the ultrasonic system allows the estimation of the flow rate through the pipeline, hence estimating the amount of oil transferred and obtaining the total mass transferred as a feature of the system. Experimental results are provided for both sensors installed in a TPP in Brazil.


Asunto(s)
Aceites Combustibles , Brasil , Calefacción , Centrales Eléctricas , Ultrasonido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA