Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.770
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 625(7996): 813-821, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38172637

RESUMEN

Although the impact of host genetics on gut microbial diversity and the abundance of specific taxa is well established1-6, little is known about how host genetics regulates the genetic diversity of gut microorganisms. Here we conducted a meta-analysis of associations between human genetic variation and gut microbial structural variation in 9,015 individuals from four Dutch cohorts. Strikingly, the presence rate of a structural variation segment in Faecalibacterium prausnitzii that harbours an N-acetylgalactosamine (GalNAc) utilization gene cluster is higher in individuals who secrete the type A oligosaccharide antigen terminating in GalNAc, a feature that is jointly determined by human ABO and FUT2 genotypes, and we could replicate this association in a Tanzanian cohort. In vitro experiments demonstrated that GalNAc can be used as the sole carbohydrate source for F. prausnitzii strains that carry the GalNAc-metabolizing pathway. Further in silico and in vitro studies demonstrated that other ABO-associated species can also utilize GalNAc, particularly Collinsella aerofaciens. The GalNAc utilization genes are also associated with the host's cardiometabolic health, particularly in individuals with mucosal A-antigen. Together, the findings of our study demonstrate that genetic associations across the human genome and bacterial metagenome can provide functional insights into the reciprocal host-microbiome relationship.


Asunto(s)
Bacterias , Microbioma Gastrointestinal , Interacciones Microbiota-Huesped , Metagenoma , Humanos , Acetilgalactosamina/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Estudios de Cohortes , Simulación por Computador , Faecalibacterium prausnitzii/genética , Microbioma Gastrointestinal/genética , Genoma Humano/genética , Genotipo , Interacciones Microbiota-Huesped/genética , Técnicas In Vitro , Metagenoma/genética , Familia de Multigenes , Países Bajos , Tanzanía
2.
Nature ; 606(7913): 358-367, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35477154

RESUMEN

The composition of the intestinal microbiome varies considerably between individuals and is correlated with health1. Understanding the extent to which, and how, host genetics contributes to this variation is essential yet has proved to be difficult, as few associations have been replicated, particularly in humans2. Here we study the effect of host genotype on the composition of the intestinal microbiota in a large mosaic pig population. We show that, under conditions of exacerbated genetic diversity and environmental uniformity, microbiota composition and the abundance of specific taxa are heritable. We map a quantitative trait locus affecting the abundance of Erysipelotrichaceae species and show that it is caused by a 2.3 kb deletion in the gene encoding N-acetyl-galactosaminyl-transferase that underpins the ABO blood group in humans. We show that this deletion is a ≥3.5-million-year-old trans-species polymorphism under balancing selection. We demonstrate that it decreases the concentrations of N-acetyl-galactosamine in the gut, and thereby reduces the abundance of Erysipelotrichaceae that can import and catabolize N-acetyl-galactosamine. Our results provide very strong evidence for an effect of the host genotype on the abundance of specific bacteria in the intestine combined with insights into the molecular mechanisms that underpin this association. Our data pave the way towards identifying the same effect in rural human populations.


Asunto(s)
Sistema del Grupo Sanguíneo ABO , Acetilgalactosamina , Microbioma Gastrointestinal , Genotipo , Porcinos , Sistema del Grupo Sanguíneo ABO/genética , Acetilgalactosamina/metabolismo , Animales , Bacterias/aislamiento & purificación , Microbioma Gastrointestinal/genética , N-Acetilgalactosaminiltransferasas/metabolismo , Sitios de Carácter Cuantitativo , Porcinos/genética , Porcinos/microbiología
3.
Nature ; 598(7880): 332-337, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616040

RESUMEN

Humans have co-evolved with a dense community of microbial symbionts that inhabit the lower intestine. In the colon, secreted mucus creates a barrier that separates these microorganisms from the intestinal epithelium1. Some gut bacteria are able to utilize mucin glycoproteins, the main mucus component, as a nutrient source. However, it remains unclear which bacterial enzymes initiate degradation of the complex O-glycans found in mucins. In the distal colon, these glycans are heavily sulfated, but specific sulfatases that are active on colonic mucins have not been identified. Here we show that sulfatases are essential to the utilization of distal colonic mucin O-glycans by the human gut symbiont Bacteroides thetaiotaomicron. We characterized the activity of 12 different sulfatases produced by this species, showing that they are collectively active on all known sulfate linkages in O-glycans. Crystal structures of three enzymes provide mechanistic insight into the molecular basis of substrate specificity. Unexpectedly, we found that a single sulfatase is essential for utilization of sulfated O-glycans in vitro and also has a major role in vivo. Our results provide insight into the mechanisms of mucin degradation by a prominent group of gut bacteria, an important process for both normal microbial gut colonization2 and diseases such as inflammatory bowel disease3.


Asunto(s)
Bacteroides/enzimología , Colon/metabolismo , Colon/microbiología , Microbioma Gastrointestinal , Mucinas/metabolismo , Sulfatasas/metabolismo , Acetilgalactosamina/química , Acetilgalactosamina/metabolismo , Animales , Colon/química , Cristalografía por Rayos X , Femenino , Galactosa/metabolismo , Humanos , Masculino , Ratones , Modelos Moleculares , Especificidad por Sustrato , Sulfatasas/química
4.
Nucleic Acids Res ; 52(10): 5423-5437, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38742636

RESUMEN

Oral delivery is the most widely used and convenient route of administration of medicine. However, oral administration of hydrophilic macromolecules is commonly limited by low intestinal permeability and pre-systemic degradation in the gastrointestinal (GI) tract. Overcoming some of these challenges allowed emergence of oral dosage forms of peptide-based drugs in clinical settings. Antisense oligonucleotides (ASOs) have also been investigated for oral administration but despite the recent progress, the bioavailability remains low. Given the advancement with highly potent and durable trivalent N-acetylgalactosamine (GalNAc)-conjugated small interfering RNAs (siRNAs) via subcutaneous (s.c.) injection, we explored their activities after oral administration. We report robust RNA interference (RNAi) activity of orally administrated GalNAc-siRNAs co-formulated with permeation enhancers (PEs) in rodents and non-human primates (NHPs). The relative bioavailability calculated from NHP liver exposure was <2.0% despite minimal enzymatic degradation in the GI. To investigate the impact of oligonucleotide size on oral delivery, highly specific GalNAc-conjugated single-stranded oligonucleotides known as REVERSIRs with different lengths were employed and their activities for reversal of RNAi effect were monitored. Our data suggests that intestinal permeability is highly influenced by the size of oligonucleotides. Further improvements in the potency of siRNA and PE could make oral delivery of GalNAc-siRNAs as a practical solution.


Asunto(s)
Acetilgalactosamina , ARN Interferente Pequeño , Animales , Acetilgalactosamina/química , Acetilgalactosamina/metabolismo , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/farmacocinética , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Administración Oral , Ratones , Ratas , Interferencia de ARN , Masculino , Disponibilidad Biológica , Humanos , Ratas Sprague-Dawley , Macaca fascicularis , Hígado/metabolismo , Macaca mulatta
5.
Nucleic Acids Res ; 52(9): 5273-5284, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38348876

RESUMEN

RNA interference (RNAi) is an endogenous process that can be harnessed using chemically modified small interfering RNAs (siRNAs) to potently modulate gene expression in many tissues. The route of administration and chemical architecture are the primary drivers of oligonucleotide tissue distribution, including siRNAs. Independently of the nature and type, oligonucleotides are eliminated from the body through clearance tissues, where their unintended accumulation may result in undesired gene modulation. Divalent siRNAs (di-siRNAs) administered into the CSF induce robust gene silencing throughout the central nervous system (CNS). Upon clearance from the CSF, they are mainly filtered by the kidneys and liver, with the most functionally significant accumulation occurring in the liver. siRNA- and miRNA-induced silencing can be blocked through substrate inhibition using single-stranded, stabilized oligonucleotides called antagomirs or anti-siRNAs. Using APOE as a model target, we show that undesired di-siRNA-induced silencing in the liver can be mitigated through administration of liver targeting GalNAc-conjugated anti-siRNAs, without impacting CNS activity. Blocking unwanted hepatic APOE silencing achieves fully CNS-selective silencing, essential for potential clinical translation. While we focus on CNS/liver selectivity, coadministration of differentially targeting siRNA and anti-siRNAs can be adapted as a strategy to achieve tissue selectivity in different organ combinations.


Asunto(s)
Sistema Nervioso Central , Interferencia de ARN , Animales , Humanos , Masculino , Ratones , Acetilgalactosamina/química , Antagomirs/genética , Antagomirs/metabolismo , Apolipoproteínas E/genética , Sistema Nervioso Central/metabolismo , Silenciador del Gen , Hígado/metabolismo , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
6.
Mol Ther ; 32(3): 637-645, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38204163

RESUMEN

N-Acetylgalactosamine (GalNAc)-conjugated small interfering RNA (siRNA) therapies have received approval for treating both orphan and prevalent diseases. To improve in vivo efficacy and streamline the chemical synthesis process for efficient and cost-effective manufacturing, we conducted this study to identify better designs of GalNAc-siRNA conjugates for therapeutic development. Here, we present data on redesigned GalNAc-based ligands conjugated with siRNAs against angiopoietin-like 3 (ANGPTL3) and lipoprotein (a) (Lp(a)), two target molecules with the potential to address large unmet medical needs in atherosclerotic cardiovascular diseases. By attaching a novel pyran-derived scaffold to serial monovalent GalNAc units before solid-phase oligonucleotide synthesis, we achieved increased GalNAc-siRNA production efficiency with fewer synthesis steps compared to the standard triantennary GalNAc construct L96. The improved GalNAc-siRNA conjugates demonstrated equivalent or superior in vivo efficacy compared to triantennary GalNAc-conjugated siRNAs.


Asunto(s)
Enfermedades Cardiovasculares , Hepatocitos , Humanos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/química , Análisis Costo-Beneficio , ARN Bicatenario , Acetilgalactosamina/química , Proteína 3 Similar a la Angiopoyetina
7.
J Bacteriol ; 206(5): e0004824, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38712944

RESUMEN

Whole genome sequencing has revealed that the genome of Staphylococcus aureus possesses an uncharacterized 5-gene operon (SAOUHSC_00088-00092 in strain 8325 genome) that encodes factors with functions related to polysaccharide biosynthesis and export, indicating the existence of a new extracellular polysaccharide species. We designate this locus as ssc for staphylococcal surface carbohydrate. We found that the ssc genes were weakly expressed and highly repressed by the global regulator MgrA. To characterize Ssc, Ssc was heterologously expressed in Escherichia coli and extracted by heat treatment. Ssc was also conjugated to AcrA from Campylobacter jejuni in E. coli using protein glycan coupling technology (PGCT). Analysis of the heat-extracted Ssc and the purified Ssc-AcrA glycoconjugate by tandem mass spectrometry revealed that Ssc is likely a polymer consisting of N-acetylgalactosamine. We further demonstrated that the expression of the ssc genes in S. aureus affected phage adsorption and susceptibility, suggesting that Ssc is surface-exposed. IMPORTANCE: Surface polysaccharides play crucial roles in the biology and virulence of bacterial pathogens. Staphylococcus aureus produces four major types of polysaccharides that have been well-characterized. In this study, we identified a new surface polysaccharide containing N-acetylgalactosamine (GalNAc). This marks the first report of GalNAc-containing polysaccharide in S. aureus. Our discovery lays the groundwork for further investigations into the chemical structure, surface location, and role in pathogenesis of this new polysaccharide.


Asunto(s)
Acetilgalactosamina , Polisacáridos Bacterianos , Staphylococcus aureus , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Acetilgalactosamina/metabolismo , Polisacáridos Bacterianos/metabolismo , Polisacáridos Bacterianos/genética , Polisacáridos Bacterianos/química , Regulación Bacteriana de la Expresión Génica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo
8.
J Biol Chem ; 299(4): 103053, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36813232

RESUMEN

Simple organisms are often considered to have simple glycomes, but plentiful paucimannosidic and oligomannosidic glycans overshadow the less abundant N-glycans with highly variable core and antennal modifications; Caenorhabditis elegans is no exception. By use of optimized fractionation and assessing wildtype in comparison to mutant strains lacking either the HEX-4 or HEX-5 ß-N-acetylgalactosaminidases, we conclude that the model nematode has a total N-glycomic potential of 300 verified isomers. Three pools of glycans were analyzed for each strain: either PNGase F released and eluted from a reversed-phase C18 resin with either water or 15% methanol or PNGase Ar released. While the water-eluted fractions were dominated by typical paucimannosidic and oligomannosidic glycans and the PNGase Ar-released pools by glycans with various core modifications, the methanol-eluted fractions contained a huge range of phosphorylcholine-modified structures with up to three antennae, sometimes with four N-acetylhexosamine residues in series. There were no major differences between the C. elegans wildtype and hex-5 mutant strains, but the hex-4 mutant strains displayed altered sets of methanol-eluted and PNGase Ar-released pools. In keeping with the specificity of HEX-4, there were more glycans capped with N-acetylgalactosamine in the hex-4 mutants, as compared with isomeric chito-oligomer motifs in the wildtype. Considering that fluorescence microscopy showed that a HEX-4::enhanced GFP fusion protein colocalizes with a Golgi tracker, we conclude that HEX-4 plays a significant role in late-stage Golgi processing of N-glycans in C. elegans. Furthermore, finding more "parasite-like" structures in the model worm may facilitate discovery of glycan-processing enzymes occurring in other nematodes.


Asunto(s)
Caenorhabditis elegans , beta-N-Acetilhexosaminidasas , Animales , Acetilgalactosamina/metabolismo , beta-N-Acetilhexosaminidasas/metabolismo , Caenorhabditis elegans/metabolismo , Glicosilación , Hexosaminidasas/metabolismo , Metanol , Polisacáridos/metabolismo
9.
J Biol Chem ; 299(7): 104905, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37302553

RESUMEN

A primary pathology of Alzheimer's disease (AD) is amyloid ß (Aß) deposition in brain parenchyma and blood vessels, the latter being called cerebral amyloid angiopathy (CAA). Parenchymal amyloid plaques presumably originate from neuronal Aß precursor protein (APP). Although vascular amyloid deposits' origins remain unclear, endothelial APP expression in APP knock-in mice was recently shown to expand CAA pathology, highlighting endothelial APP's importance. Furthermore, two types of endothelial APP-highly O-glycosylated APP and hypo-O-glycosylated APP-have been biochemically identified, but only the former is cleaved for Aß production, indicating the critical relationship between APP O-glycosylation and processing. Here, we analyzed APP glycosylation and its intracellular trafficking in neurons and endothelial cells. Although protein glycosylation is generally believed to precede cell surface trafficking, which was true for neuronal APP, we unexpectedly observed that hypo-O-glycosylated APP is externalized to the endothelial cell surface and transported back to the Golgi apparatus, where it then acquires additional O-glycans. Knockdown of genes encoding enzymes initiating APP O-glycosylation significantly reduced Aß production, suggesting this non-classical glycosylation pathway contributes to CAA pathology and is a novel therapeutic target.


Asunto(s)
Acetilgalactosamina , Enfermedad de Alzheimer , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide , Angiopatía Amiloide Cerebral , Glicosilación , Animales , Ratones , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/biosíntesis , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Angiopatía Amiloide Cerebral/complicaciones , Angiopatía Amiloide Cerebral/metabolismo , Angiopatía Amiloide Cerebral/patología , Células Endoteliales/metabolismo , Transporte de Proteínas , Neuronas/metabolismo , Aparato de Golgi/metabolismo , Acetilgalactosamina/metabolismo
10.
Arterioscler Thromb Vasc Biol ; 43(12): 2256-2264, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37855126

RESUMEN

Blood pressure management involves antihypertensive therapies blocking the renin-angiotensin system (RAS). Yet, it might be inadequate due to poor patient adherence or the so-called RAS escape phenomenon, elicited by the compensatory renin elevation upon RAS blockade. Recently, evidence points toward targeting hepatic AGT (angiotensinogen) as a novel approach to block the RAS pathway that could circumvent the RAS escape phenomenon. Removing AGT, from which all angiotensins originate, should prevent further angiotensin generation, even when renin rises. Furthermore, by making use of a trivalent N-acetylgalactosamine ligand-conjugated small interfering RNA that specifically targets the degradation of hepatocyte-produced mRNAs in a highly potent and specific manner, it may be possible in the future to manage hypertension with therapy that is administered 1 to 2× per year, thereby supporting medication adherence. This review summarizes all current findings on AGT small interfering RNA in preclinical models, making a comparison versus classical RAS blockade with either ACE (angiotensin-converting enzyme) inhibitors or AT1 (angiotensin II type 1) receptor antagonists and AGT suppression with antisense oligonucleotides. It ends with discussing the first-in-human study with AGT small interfering RNA.


Asunto(s)
Angiotensinógeno , Hipertensión , Humanos , Acetilgalactosamina , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Angiotensinógeno/genética , Angiotensinógeno/metabolismo , Presión Sanguínea , Hipertensión/terapia , Hipertensión/tratamiento farmacológico , Renina/metabolismo , Sistema Renina-Angiotensina/fisiología , ARN Interferente Pequeño/farmacología
11.
Mar Drugs ; 22(3)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38535445

RESUMEN

Sulfation is gaining increased interest due to the role of sulfate in the bioactivity of many polysaccharides of marine origin. Hence, sulfatases, enzymes that control the degree of sulfation, are being more extensively researched. In this work, a novel sulfatase (SulA1) encoded by the gene sulA1 was characterized. The sulA1-gene is located upstream of a chondroitin lyase encoding gene in the genome of the marine Arthrobacter strain (MAT3885). The sulfatase was produced in Escherichia coli. Based on the primary sequence, the enzyme is classified under sulfatase family 1 and the two catalytic residues typical of the sulfatase 1 family-Cys57 (post-translationally modified to formyl glycine for function) and His190-were conserved. The enzyme showed increased activity, but not improved stability, in the presence of Ca2+, and conserved residues for Ca2+ binding were identified (Asp17, Asp18, Asp277, and Asn278) in a structural model of the enzyme. The temperature and pH activity profiles (screened using p-nitrocatechol sulfate) were narrow, with an activity optimum at 40-50 °C and a pH optimum at pH 5.5. The Tm was significantly higher (67 °C) than the activity optimum. Desulfation activity was not detected on polymeric substrates, but was found on GalNAc4S, which is a sulfated monomer in the repeated disaccharide unit (GlcA-GalNAc4S) of, e.g., chondroitin sulfate A. The position of the sulA1 gene upstream of a chondroitin lyase gene and combined with the activity on GalNAc4S suggests that there is an involvement of the enzyme in the chondroitin-degrading cascade reaction, which specifically removes sulfate from monomeric GalNAc4S from chondroitin sulfate degradation products.


Asunto(s)
Arthrobacter , Sulfatos , Acetilgalactosamina , Sulfatasas , Escherichia coli , Galactosamina , Condroitín Liasas , Clonación Molecular
12.
Mar Drugs ; 22(4)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38667801

RESUMEN

Fucosylated chondroitin sulfate is a unique glycosaminoglycan isolated from sea cucumbers, with excellent anticoagulant activity. The fucosyl branch in FCS is generally located at the 3-OH of D-glucuronic acid but, recently, a novel structure with α-L-fucose linked to the 6-OH of N-acetyl-galactosamine has been found. Here, using functionalized monosaccharide building blocks, we prepared novel FCS tetrasaccharides with fucosyl branches both at the 6-OH of GalNAc and 3-OH of GlcA. In the synthesis, the protective group strategy of selective O-sulfation, as well as stereoselective glycosylation, was established, which enabled the efficient synthesis of the specific tetrasaccharide compounds. This research enriches knowledge on the structural types of FCS oligosaccharides and facilitates the exploration of the structure-activity relationship in the future.


Asunto(s)
Sulfatos de Condroitina , Oligosacáridos , Pepinos de Mar , Sulfatos de Condroitina/química , Sulfatos de Condroitina/síntesis química , Sulfatos de Condroitina/farmacología , Animales , Oligosacáridos/síntesis química , Oligosacáridos/química , Pepinos de Mar/química , Glicosilación , Fucosa/química , Anticoagulantes/farmacología , Anticoagulantes/química , Anticoagulantes/síntesis química , Relación Estructura-Actividad , Acetilgalactosamina/química , Acetilgalactosamina/análogos & derivados
13.
Angew Chem Int Ed Engl ; 63(25): e202405161, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38606873

RESUMEN

Nucleic acids in the form of siRNA, antisense oligonucleotides or mRNA are currently explored as new promising modalities in the pharmaceutical industry. Particularly, the success of mRNA-vaccines against SARS-CoV-2, along with the successful development of the first sugar-modified siRNA therapeutics has inspired the field. The development of nucleic acid therapeutics requires efficient chemistry to link oligonucleotides to chemical structures that can improve stability, boost cellular uptake, or enable specific targeting. For the siRNA therapeutics currently in use, modification of the 3'-end of the oligonucleotides with triple-N-acetylgalactosamine (GalNAc)3 was shown to be of significance. This modification is currently achieved through cumbersome multistep synthesis and subsequent loading onto the solid support material. Herein, we report the development of a bifunctional click-reactive linker that allows the modification of oligonucleotides in a tandem click reaction with multiple sugars, regardless of the position within the oligonucleotide, with remarkable efficiency and in a one-pot reaction.


Asunto(s)
Química Clic , Cobre , Oligonucleótidos , Cobre/química , Oligonucleótidos/química , Oligonucleótidos/síntesis química , Catálisis , Acetilgalactosamina/química , SARS-CoV-2 , ARN Interferente Pequeño/química , ARN Interferente Pequeño/síntesis química
14.
J Biol Chem ; 298(3): 101720, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35151686

RESUMEN

Glycosylphosphatidylinositol (GPI) is a posttranslational glycolipid modification of proteins that anchors proteins in lipid rafts on the cell surface. Although some GPI-anchored proteins (GPI-APs), including the prion protein PrPC, have a glycan side chain composed of N-acetylgalactosamine (GalNAc)-galactose-sialic acid on the core structure of GPI glycolipid, in vivo functions of this GPI-GalNAc side chain are largely unresolved. Here, we investigated the physiological and pathological roles of the GPI-GalNAc side chain in vivo by knocking out its initiation enzyme, PGAP4, in mice. We show that Pgap4 mRNA is highly expressed in the brain, particularly in neurons, and mass spectrometry analysis confirmed the loss of the GalNAc side chain in PrPC GPI in PGAP4-KO mouse brains. Furthermore, PGAP4-KO mice exhibited various phenotypes, including an elevated blood alkaline phosphatase level, impaired bone formation, decreased locomotor activity, and impaired memory, despite normal expression levels and lipid raft association of various GPI-APs. Thus, we conclude that the GPI-GalNAc side chain is required for in vivo functions of GPI-APs in mammals, especially in bone and the brain. Moreover, PGAP4-KO mice were more vulnerable to prion diseases and died earlier after intracerebral inoculation of the pathogenic prion strains than wildtype mice, highlighting the protective roles of the GalNAc side chain against prion diseases.


Asunto(s)
Acetilgalactosamina , Glicosilfosfatidilinositoles , Enfermedades por Prión , Priones , Acetilgalactosamina/química , Acetilgalactosamina/metabolismo , Animales , Encéfalo/metabolismo , Glicosilfosfatidilinositoles/química , Glicosilfosfatidilinositoles/metabolismo , Ratones , Osteogénesis , Enfermedades por Prión/metabolismo , Priones/metabolismo , Relación Estructura-Actividad
15.
J Am Chem Soc ; 145(36): 19691-19706, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37638886

RESUMEN

Chemical modifications are necessary to ensure the metabolic stability and efficacy of oligonucleotide-based therapeutics. Here, we describe analyses of the α-(l)-threofuranosyl nucleic acid (TNA) modification, which has a shorter 3'-2' internucleotide linkage than the natural DNA and RNA, in the context of small interfering RNAs (siRNAs). The TNA modification enhanced nuclease resistance more than 2'-O-methyl or 2'-fluoro ribose modifications. TNA-containing siRNAs were prepared as triantennary N-acetylgalactosamine conjugates and were tested in cultured cells and mice. With the exceptions of position 2 of the antisense strand and position 11 of the sense strand, the TNA modification did not inhibit the activity of the RNA interference machinery. In a rat toxicology study, TNA placed at position 7 of the antisense strand of the siRNA mitigated off-target effects, likely due to the decrease in the thermodynamic binding affinity relative to the 2'-O-methyl residue. Analysis of the crystal structure of an RNA octamer with a single TNA on each strand showed that the tetrose sugar adopts a C4'-exo pucker. Computational models of siRNA antisense strands containing TNA bound to Argonaute 2 suggest that TNA is well accommodated in the region kinked by the enzyme. The combined data indicate that the TNA nucleotides are promising modifications expected to increase the potency, duration of action, and safety of siRNAs.


Asunto(s)
Ácidos Nucleicos , Animales , Ratones , Ratas , ARN Interferente Pequeño , Nucleótidos , Interferencia de ARN , Acetilgalactosamina
16.
N Engl J Med ; 382(24): 2289-2301, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32521132

RESUMEN

BACKGROUND: Up-regulation of hepatic delta-aminolevulinic acid synthase 1 (ALAS1), with resultant accumulation of delta-aminolevulinic acid (ALA) and porphobilinogen, is central to the pathogenesis of acute attacks and chronic symptoms in acute hepatic porphyria. Givosiran, an RNA interference therapy, inhibits ALAS1 expression. METHODS: In this double-blind, placebo-controlled, phase 3 trial, we randomly assigned symptomatic patients with acute hepatic porphyria to receive either subcutaneous givosiran (2.5 mg per kilogram of body weight) or placebo monthly for 6 months. The primary end point was the annualized rate of composite porphyria attacks among patients with acute intermittent porphyria, the most common subtype of acute hepatic porphyria. (Composite porphyria attacks resulted in hospitalization, an urgent health care visit, or intravenous administration of hemin at home.) Key secondary end points were levels of ALA and porphobilinogen and the annualized attack rate among patients with acute hepatic porphyria, along with hemin use and daily worst pain scores in patients with acute intermittent porphyria. RESULTS: A total of 94 patients underwent randomization (48 in the givosiran group and 46 in the placebo group). Among the 89 patients with acute intermittent porphyria, the mean annualized attack rate was 3.2 in the givosiran group and 12.5 in the placebo group, representing a 74% lower rate in the givosiran group (P<0.001); the results were similar among the 94 patients with acute hepatic porphyria. Among the patients with acute intermittent porphyria, givosiran led to lower levels of urinary ALA and porphobilinogen, fewer days of hemin use, and better daily scores for pain than placebo. Key adverse events that were observed more frequently in the givosiran group were elevations in serum aminotransferase levels, changes in serum creatinine levels and the estimated glomerular filtration rate, and injection-site reactions. CONCLUSIONS: Among patients with acute intermittent porphyria, those who received givosiran had a significantly lower rate of porphyria attacks and better results for multiple other disease manifestations than those who received placebo. The increased efficacy was accompanied by a higher frequency of hepatic and renal adverse events. (Funded by Alnylam Pharmaceuticals; ENVISION ClinicalTrials.gov number, NCT03338816.).


Asunto(s)
Acetilgalactosamina/análogos & derivados , Ácido Aminolevulínico/orina , Porfobilinógeno/orina , Porfiria Intermitente Aguda/tratamiento farmacológico , Pirrolidinas/uso terapéutico , Tratamiento con ARN de Interferencia , Acetilgalactosamina/efectos adversos , Acetilgalactosamina/uso terapéutico , Adulto , Método Doble Ciego , Fatiga/etiología , Femenino , Humanos , Inyecciones Subcutáneas , Análisis de los Mínimos Cuadrados , Hígado/efectos de los fármacos , Masculino , Náusea/etiología , Dolor/etiología , Evaluación del Resultado de la Atención al Paciente , Porfiria Intermitente Aguda/complicaciones , Porfiria Intermitente Aguda/orina , Pirrolidinas/efectos adversos , Insuficiencia Renal Crónica/inducido químicamente , Transaminasas/sangre
17.
Anal Chem ; 95(14): 6122-6129, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36971831

RESUMEN

Approaches for the detection of targets in the cellular microenvironment have been extensively developed. However, developing a method with sensitive and accurate analysis for noninvasive cancer diagnosis has remained challenging until now. Here, we reported a sensitive and universal electrochemical platform that integrates a self-serviced-track 3D DNA walker and catalytic hairpin assembly (CHA) triggering G-Quadruplex/Hemin DNAzyme assembly signal amplification. In the presence of a target, the aptamer recognition initiated the 3D DNA walker on the cell surface autonomous running and releasing DNA (C) from the triple helix. The released DNA C as the target-triggered CHA moiety, and then G-quadruplex/hemin, was formed on the surface of electrode. Eventually, a large amount of G-quadruplex/hemin was formed on the sensor surface to generate an amplified electrochemical signal. Using N-acetylgalactosamine as a model, benefiting from the high selectivity and sensitivity of the self-serviced-track 3D DNA walker and the CHA, this designed method showed a detection limit of 39 cell/mL and 2.16 nM N-acetylgalactosamine. Furthermore, this detection strategy was enzyme free and exhibited highly sensitive, accurate, and universal detection of a variety of targets by using the corresponding DNA aptamer in clinical sample analysis, showing potential for early and prognostic diagnostic application.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , G-Cuádruplex , Acetilgalactosamina , Técnicas Biosensibles/métodos , ADN , ADN Catalítico/metabolismo , Técnicas Electroquímicas/métodos , Glicoproteínas , Hemina , Límite de Detección , Catálisis
18.
Drug Metab Dispos ; 51(10): 1350-1361, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37429729

RESUMEN

AZD8233, a liver-targeting antisense oligonucleotide (ASO), inhibits subtilisin/kexin type 9 protein synthesis. It is a phosphorothioated 3-10-3 gapmer with a central DNA sequence flanked by constrained 2'-O-ethyl 2',4'-bridged nucleic acid (cEt-BNA) wings and conjugated to a triantennary N-acetylgalactosamine (GalNAc) ligand at the 5'-end. Herein we report the biotransformation of AZD8233, as given by liver, kidney, plasma and urine samples, after repeated subcutaneous administration to humans, mice, rats, rabbits, and monkeys. Metabolite profiles were characterized using liquid chromatography high-resolution mass spectrometry. Metabolite formation was consistent across species, mainly comprising hydrolysis of GalNAc sugars, phosphodiester-linker hydrolysis releasing the full-length ASO, and endonuclease-mediated hydrolysis within the central DNA gap followed by exonuclease-mediated 5'- or 3'-degradation. All metabolites contained the 5'- or 3'-cEt-BNA terminus. Most shortmer metabolites had the free terminal alcohol at 5'- and 3'-positions of ribose, although six were found retaining the terminal 5'-phosphorothioate group. GalNAc conjugated shortmer metabolites were also observed in urine. Synthesized metabolite standards were applied for (semi)quantitative metabolite assessment. Intact AZD8233 was the major component in plasma, whereas the unconjugated full-length ASO was predominant in tissues. In plasma, most metabolites were shortmers retaining the 3'-cEt-BNA terminus, whereas metabolites containing the 5'- or 3'-cEt-BNA terminus were detected in both tissues and urine. All metabolites in human plasma were also detected in all nonclinical species, and all human urine metabolites were detected in monkey urine. In general, metabolite profiles in animal species were qualitatively similar and quantitatively exceeded the exposures of the circulating metabolites in humans at the doses studied. SIGNIFICANCE STATEMENT: This study presents metabolite identification and profiling of AZD8233, an N-acetylgalactosamine-conjugated antisense oligonucleotide (ASO), across species. A biotransformation strategy for ASOs was established by utilizing biologic samples collected from toxicology and/or clinical studies and liquid chromatography high-resolution mass spectrometry analysis without conducting bespoke radiolabeled absorption, distribution, metabolism, and excretion studies. The generated biotransformation package was considered adequate by health authorities to progress AZD8233 into a phase 3 program, proving its applicability to future metabolism studies of ASOs in drug development.


Asunto(s)
Acetilgalactosamina , Oligonucleótidos Antisentido , Humanos , Ratas , Ratones , Animales , Conejos , Oligonucleótidos Antisentido/química , Oligonucleótidos Antisentido/metabolismo , Oligonucleótidos , Cromatografía Liquida , Espectrometría de Masas/métodos
19.
Nat Chem Biol ; 17(9): 937-946, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33767387

RESUMEN

Selective protein degradation platforms have afforded new development opportunities for therapeutics and tools for biological inquiry. The first lysosome-targeting chimeras (LYTACs) targeted extracellular and membrane proteins for degradation by bridging a target protein to the cation-independent mannose-6-phosphate receptor (CI-M6PR). Here, we developed LYTACs that engage the asialoglycoprotein receptor (ASGPR), a liver-specific lysosome-targeting receptor, to degrade extracellular proteins in a cell-type-specific manner. We conjugated binders to a triantenerrary N-acetylgalactosamine (tri-GalNAc) motif that engages ASGPR to drive the downregulation of proteins. Degradation of epidermal growth factor receptor (EGFR) by GalNAc-LYTAC attenuated EGFR signaling compared to inhibition with an antibody. Furthermore, we demonstrated that a LYTAC consisting of a 3.4-kDa peptide binder linked to a tri-GalNAc ligand degrades integrins and reduces cancer cell proliferation. Degradation with a single tri-GalNAc ligand prompted site-specific conjugation on antibody scaffolds, which improved the pharmacokinetic profile of GalNAc-LYTACs in vivo. GalNAc-LYTACs thus represent an avenue for cell-type-restricted protein degradation.


Asunto(s)
Receptor de Asialoglicoproteína/metabolismo , Lisosomas/metabolismo , Acetilgalactosamina/metabolismo , Humanos , Células Tumorales Cultivadas
20.
Biomacromolecules ; 24(5): 2327-2341, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37036902

RESUMEN

Acid-degradable polyrotaxanes (PRXs) containing threading ß-cyclodextrins (ß-CDs) are promising candidates for therapeutic applications of ß-CDs in metabolic diseases with cholesterol overload or imbalance. To improve cellular uptake specificity and efficiency of PRXs in hepatocytes, N-acetyl-d-galactosamine (GalNAc)-modified PRXs were developed to facilitate asialoglycoprotein receptor (ASGR)-mediated endocytosis. Binding affinity studies revealed that the dissociation constant (KD) values between recombinant ASGR and GalNAc-PRXs decreased with an increase in the number of modified GalNAc units. Additionally, the KD values for GalNAc-PRXs were smaller than those for GalNAc-modified ß-CD and amylose, suggesting that the PRX backbone structure improves the binding affinity with ASGR. However, the intracellular uptake levels of GalNAc-PRXs in HepG2 cells increased with a decrease in the number of modified GalNAc units, which was opposite to the trend observed in the binding affinity study. We found that GalNAc-PRXs had a large number of GalNAc units localized in recycling endosomes, resulting in the low intracellular uptake. The cholesterol-reducing abilities of GalNAc-PRXs were assessed using cholesterol-overloaded HepG2 cells. GalNAc-PRXs with a small number of GalNAc units were demonstrated to show superior cholesterol-reducing effects compared to previously designed acid-degradable PRX and clinically tested ß-CD derivatives. Thus, we conclude that GalNAc modification is a promising molecular design for the therapeutic application of ß-CD-threaded PRXs in various metabolic diseases with cholesterol overload or imbalance in the liver.


Asunto(s)
Rotaxanos , beta-Ciclodextrinas , Rotaxanos/química , Acetilgalactosamina , Galactosamina , beta-Ciclodextrinas/química , Hepatocitos/metabolismo , Hígado/metabolismo , Ácidos , Receptor de Asialoglicoproteína , Colesterol/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA