Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.119
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35135874

RESUMEN

Bacteria use surface appendages called type IV pili to perform diverse activities including DNA uptake, twitching motility, and attachment to surfaces. The dynamic extension and retraction of pili are often required for these activities, but the stimuli that regulate these dynamics remain poorly characterized. To address this question, we study the bacterial pathogen Vibrio cholerae, which uses mannose-sensitive hemagglutinin (MSHA) pili to attach to surfaces in aquatic environments as the first step in biofilm formation. Here, we use a combination of genetic and cell biological approaches to describe a regulatory pathway that allows V. cholerae to rapidly abort biofilm formation. Specifically, we show that V. cholerae cells retract MSHA pili and detach from a surface in a diffusion-limited, enclosed environment. This response is dependent on the phosphodiesterase CdpA, which decreases intracellular levels of cyclic-di-GMP to induce MSHA pilus retraction. CdpA contains a putative nitric oxide (NO)-sensing NosP domain, and we demonstrate that NO is necessary and sufficient to stimulate CdpA-dependent detachment. Thus, we hypothesize that the endogenous production of NO (or an NO-like molecule) in V. cholerae stimulates the retraction of MSHA pili. These results extend our understanding of how environmental cues can be integrated into the complex regulatory pathways that control pilus dynamic activity and attachment in bacterial species.


Asunto(s)
Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/fisiología , Óxido Nítrico/farmacología , Vibrio cholerae/efectos de los fármacos , Vibrio cholerae/metabolismo , Adhesión Bacteriana/efectos de los fármacos , Adhesión Bacteriana/fisiología , Proteínas Fimbrias/genética , Regulación Bacteriana de la Expresión Génica , Vibrio cholerae/genética
2.
Infect Immun ; 92(5): e0008024, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38534100

RESUMEN

Traditional folk treatments for the prevention and management of urinary tract infections (UTIs) and other infectious diseases often include plants and plant extracts that are rich in phenolic compounds. These have been ascribed a variety of activities, including inhibition of bacterial interactions with host cells. Here, we tested a panel of four well-studied phenolic compounds-caffeic acid phenethyl ester (CAPE), resveratrol, catechin, and epigallocatechin gallate-for the effects on host cell adherence and invasion by uropathogenic Escherichia coli (UPEC). These bacteria, which are the leading cause of UTIs, can bind and subsequently invade bladder epithelial cells via an actin-dependent process. Intracellular UPEC reservoirs within the bladder are often protected from antibiotics and host defenses and likely contribute to the development of chronic and recurrent infections. In cell culture-based assays, only resveratrol had a notable negative effect on UPEC adherence to bladder cells. However, both CAPE and resveratrol significantly inhibited UPEC entry into the host cells, coordinate with attenuated phosphorylation of the host actin regulator Focal Adhesion Kinase (FAK or PTK2) and marked increases in the numbers of focal adhesion structures. We further show that the intravesical delivery of resveratrol inhibits UPEC infiltration of the bladder mucosa in a murine UTI model and that resveratrol and CAPE can disrupt the ability of other invasive pathogens to enter host cells. Together, these results highlight the therapeutic potential of molecules like CAPE and resveratrol, which could be used to augment antibiotic treatments by restricting pathogen access to protective intracellular niches.IMPORTANCEUrinary tract infections (UTIs) are exceptionally common and increasingly difficult to treat due to the ongoing rise and spread of antibiotic-resistant pathogens. Furthermore, the primary cause of UTIs, uropathogenic Escherichia coli (UPEC), can avoid antibiotic exposure and many host defenses by invading the epithelial cells that line the bladder surface. Here, we identified two plant-derived phenolic compounds that disrupt activation of the host machinery needed for UPEC entry into bladder cells. One of these compounds, resveratrol, effectively inhibited UPEC invasion of the bladder mucosa in a mouse UTI model, and both phenolic compounds significantly reduced host cell entry by other invasive pathogens. These findings suggest that select phenolic compounds could be used to supplement existing antibacterial therapeutics by denying uropathogens shelter within host cells and tissues and help explain some of the benefits attributed to traditional plant-based medicines.


Asunto(s)
Infecciones por Escherichia coli , Quinasa 1 de Adhesión Focal , Fenoles , Extractos Vegetales , Infecciones Urinarias , Escherichia coli Uropatógena , Animales , Femenino , Humanos , Ratones , Adhesión Bacteriana/efectos de los fármacos , Ácidos Cafeicos/farmacología , Catequina/farmacología , Catequina/análogos & derivados , Línea Celular , Células Epiteliales/microbiología , Células Epiteliales/efectos de los fármacos , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Fenoles/farmacología , Alcohol Feniletílico/análogos & derivados , Extractos Vegetales/farmacología , Resveratrol/farmacología , Vejiga Urinaria/microbiología , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/patología , Infecciones Urinarias/microbiología , Infecciones Urinarias/tratamiento farmacológico , Escherichia coli Uropatógena/efectos de los fármacos
3.
Small ; 20(26): e2310149, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38233200

RESUMEN

Bioinspired nanotopography is a promising approach to generate antimicrobial surfaces to combat implant-associated infection. Despite efforts to develop bactericidal 1D structures, the antibacterial capacity of 2D structures and their mechanism of action remains uncertain. Here, hydrothermal synthesis is utilized to generate two 2D nanoflake surfaces on titanium (Ti) substrates and investigate the physiological effects of nanoflakes on bacteria. The nanoflakes impair the attachment and growth of Escherichia coli and trigger the accumulation of intracellular reactive oxygen species (ROS), potentially contributing to the killing of adherent bacteria. E. coli surface appendages type-1 fimbriae and flagella are not implicated in the nanoflake-mediated modulation of bacterial attachment but do influence the bactericidal effects of nanoflakes. An E. coli ΔfimA mutant lacking type-1 fimbriae is more susceptible to the bactericidal effects of nanoflakes than the parent strain, while E. coli cells lacking flagella (ΔfliC) are more resistant. The results suggest that type-1 fimbriae confer a cushioning effect that protects bacteria upon initial contact with the nanoflake surface, while flagella-mediated motility can lead to elevated membrane abrasion. This finding offers a better understanding of the antibacterial properties of nanoflake structures that can be applied to the design of antimicrobial surfaces for future medical applications.


Asunto(s)
Escherichia coli , Propiedades de Superficie , Titanio , Titanio/química , Titanio/farmacología , Escherichia coli/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Especies Reactivas de Oxígeno/metabolismo , Nanoestructuras/química , Adhesión Bacteriana/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Antiinfecciosos/química , Fimbrias Bacterianas/efectos de los fármacos , Fimbrias Bacterianas/metabolismo
4.
Arch Microbiol ; 206(7): 322, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38907754

RESUMEN

Limosilactobacillus reuteri DSM17938 is one of the most pivotal probiotics, whose general beneficial effects on the intestinal microbiota are well recognized. Enhancing their growth and metabolic activity can effectively regulate the equilibrium of intestinal microbiota, leading to improved physical health. A common method to promote the growth of Lactobacillus is the addition of prebiotics. Current research suggests that proteins and their hydrolysates from different sources with potential prebiotic activity can also promote the growth of probiotics. In this study, soybean proteins and peptides were effective in promoting the growth, organic acid secretion, and adhesive properties of Limosilactobacillus reuteri DSM17938 to Caco-2 cells. These results illustrate the feasibility of soybean proteins and peptides as prebiotics, providing theoretical and practical advantages for their application.


Asunto(s)
Adhesión Bacteriana , Limosilactobacillus reuteri , Péptidos , Probióticos , Proteínas de Soja , Limosilactobacillus reuteri/crecimiento & desarrollo , Limosilactobacillus reuteri/metabolismo , Proteínas de Soja/farmacología , Proteínas de Soja/metabolismo , Proteínas de Soja/química , Humanos , Células CACO-2 , Adhesión Bacteriana/efectos de los fármacos , Péptidos/farmacología , Prebióticos , Microbioma Gastrointestinal/efectos de los fármacos , Glycine max/microbiología
5.
Arch Microbiol ; 206(7): 289, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847838

RESUMEN

Staphylococcus epidermidis is an opportunistic pathogen commonly implicated in medical device-related infections. Its propensity to form biofilms not only leads to chronic infections but also exacerbates the issue of antibiotic resistance, necessitating high-dose antimicrobial treatments. In this study, we explored the use of diclofenac sodium, a non-steroidal anti-inflammatory drug, as an anti-biofilm agent against S. epidermidis. In this study, crystal violet staining and confocal laser scanning microscope analysis showed that diclofenac sodium, at subinhibitory concentration (0.4 mM), significantly inhibited biofilm formation in both methicillin-susceptible and methicillin-resistant S. epidermidis isolates. MTT assays demonstrated that 0.4 mM diclofenac sodium reduced the metabolic activity of biofilms by 25.21-49.01% compared to untreated controls. Additionally, the treatment of diclofenac sodium resulted in a significant decrease (56.01-65.67%) in initial bacterial adhesion, a crucial early phase of biofilm development. Notably, diclofenac sodium decreased the production of polysaccharide intercellular adhesin (PIA), a key component of the S. epidermidis biofilm matrix, in a dose-dependent manner. Real-time quantitative PCR analysis revealed that diclofenac sodium treatment downregulated biofilm-associated genes icaA, fnbA, and sigB and upregulated negative regulatory genes icaR and luxS, providing potential mechanistic insights. These findings indicate that diclofenac sodium inhibits S. epidermidis biofilm formation by affecting initial bacterial adhesion and the PIA synthesis. This underscores the potential of diclofenac sodium as a supplementary antimicrobial agent in combating staphylococcal biofilm-associated infections.


Asunto(s)
Antibacterianos , Biopelículas , Diclofenaco , Staphylococcus epidermidis , Biopelículas/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/fisiología , Diclofenaco/farmacología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Antiinflamatorios no Esteroideos/farmacología , Adhesión Bacteriana/efectos de los fármacos , Humanos , Polisacáridos Bacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos
6.
Langmuir ; 40(17): 9197-9204, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38639710

RESUMEN

Waterborne coatings with intrinsic antibacterial attributes have attracted significant attention due to their potential in mitigating microbial contamination while simultaneously addressing the environmental drawbacks of their solvent-based counterparts. Typically, antimicrobial coatings are designed to resist and eliminate microbial threats, encompassing challenges such as biofilm formation, fungal contamination, and proliferation of black mold. Iodine, when solubilized using ethylene glycol and incorporated as a complex into waterborne latex dispersions, has shown remarkable antimicrobial activity. Here, we demonstrate the effect of the film formation process of these iodinated latex dispersions on their antimicrobial properties. The effect of iodine on the surface morphology and mechanical, adhesion, and antimicrobial properties of the generated films was investigated. Complete integration and uniform distribution of iodine in the films were confirmed through UV-vis spectrophotometry and a laser Raman imaging system (LRIS). In terms of properties, iodinated films showed improved mechanical strength and adhesion compared with blank films. Further, the presence of iodine rendered the films rougher, making them susceptible to bacterial adhesion, but interestingly provided enhanced antibiofilm activity. Moreover, thicker films had a lower surface roughness and reduced biofilm growth. These observations are elucidated through the complex interplay among film thickness, surface morphology, and iodine properties. The insights into the interlink between the film formation process and antimicrobial properties of iodinated latex dispersions will facilitate their enhanced application as sustainable alternatives to solvent-based coatings.


Asunto(s)
Biopelículas , Yodo , Látex , Látex/química , Látex/farmacología , Yodo/química , Yodo/farmacología , Biopelículas/efectos de los fármacos , Propiedades de Superficie , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Adhesión Bacteriana/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Halogenación
7.
Langmuir ; 40(21): 10957-10965, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38752656

RESUMEN

Zwitterionic coatings provide a promising antifouling strategy against biofouling adhesion. Quaternary ammonium cationic polymers can effectively kill bacteria on the surface, owing to their positive charges. This strategy can avoid the release of toxic biocides, which is highly desirable for constructing coatings for biomedical devices. The present work aims to develop a facile method by covalently grafting zwitterionic and cationic copolymers containing aldehydes to the remaining amine groups of self-polymerized dopamine. Reversible addition-fragmentation chain transfer polymerization was used to copolymerize either zwitterionic 2-methacryloyloxyethyl phosphorylcholine monomer (MPC) or cationic 2-(methacryloyloxy)ethyl trimethylammonium monomer (META) with 4-formyl phenyl methacrylate monomer (FPMA), and the formed copolymers poly(MPC-st-FPMA) and poly(META-st-FPMA) are denoted as MPF and MTF, respectively. MPF and MTF copolymers were then covalently grafted onto the amino groups of polydopamine-coated surfaces. PDA/MPF/MTF-coated surfaces exhibited antibacterial and antifouling properties against S. aureus, E. coli, and bovine serum albumin protein. In addition, they showed excellent viability of normal human lung fibroblast cells MRC-5. We expect the facile surface modification strategy discussed here to be applicable to medical device manufacturing.


Asunto(s)
Antibacterianos , Polímeros , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Polímeros/química , Polímeros/farmacología , Staphylococcus aureus/efectos de los fármacos , Animales , Incrustaciones Biológicas/prevención & control , Escherichia coli/efectos de los fármacos , Bivalvos/química , Propiedades de Superficie , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Fosforilcolina/farmacología , Albúmina Sérica Bovina/química , Humanos , Metacrilatos/química , Metacrilatos/farmacología , Adhesión Bacteriana/efectos de los fármacos , Indoles
8.
Biomacromolecules ; 25(5): 2728-2739, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38563621

RESUMEN

Myopia is a global public health issue. Rigid contact lenses (RCLs) are an effective way to correct or control myopia. However, bioadhesion issues remain one of the significant obstacles limiting its clinical application. Although enhancing hydrophilicity through various surface treatments can mitigate this problem, the duration of effectiveness is short-lived and the processing involved is complex and costly. Herein, an antiadhesive RCLs material was designed via 8-armed methacrylate-POSS (8MA-POSS), and poly(ethylene glycol) methacrylate (PEGMA) copolymerization with 3-[tris(trimethylsiloxy)silyl] propyl methacrylate (TRIS). The POSS and PEG segments incorporated P(TRIS-co-PEGMA-co-8MA-POSS) (PTPM) material was obtained and their optical transparency, refractive index, resolution, hardness, surface charge, thermal features, and wettability were tested and optimized. The antibioadhesion activities, including protein, lipid, and bacteria, were evaluated as well. In vitro and in vivo results indicated that the optimized antibioadhesive PTPM materials present good biocompatibility and biosafety. Thus, such POSS and PEG segments containing material were a potential antibioadhesive RCL material option.


Asunto(s)
Lentes de Contacto , Metacrilatos , Compuestos de Organosilicio , Polietilenglicoles , Polietilenglicoles/química , Metacrilatos/química , Animales , Compuestos de Organosilicio/química , Compuestos de Organosilicio/farmacología , Adhesión Bacteriana/efectos de los fármacos , Ratones , Materiales Biocompatibles/química , Humanos , Miopía/tratamiento farmacológico
9.
Analyst ; 149(9): 2637-2646, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38529543

RESUMEN

Silver nanoparticles (AgNPs) conjugated with polymers are well-known for their powerful and effective antimicrobial properties. In particular, the incorporation of AgNPs in biocompatible catecholamine-based polymers, such as polydopamine (PDA), has recently shown promising antimicrobial activity, due to the synergistic effects of the AgNPs, silver(I) ions released and PDA. In this study, we generated AgNPs-PDA-patterned surfaces by localised electrochemical depositions, using a double potentiostatic method via scanning electrochemical cell microscopy (SECCM). This technique enabled the assessment of a wide parameter space in a high-throughput manner. The optimised electrodeposition process resulted in stable and homogeneously distributed AgNP-microspots, and their antimicrobial activity against Escherichia coli was assessed using atomic force microscopy (AFM)-based force spectroscopy, in terms of bacterial adhesion and cell elasticity. We observed that the bacterial outer membrane underwent significant structural changes, when in close proximity to the AgNPs, namely increased hydrophilicity and stiffness loss. The spatially varied antimicrobial effect found experimentally was rationalised by numerical simulations of silver(I) concentration profiles.


Asunto(s)
Escherichia coli , Nanopartículas del Metal , Plata , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Escherichia coli/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Microscopía de Fuerza Atómica , Polímeros/química , Polímeros/farmacología , Adhesión Bacteriana/efectos de los fármacos , Indoles/química , Indoles/farmacología
10.
Appl Microbiol Biotechnol ; 108(1): 384, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896287

RESUMEN

Bacteriocins have the potential to effectively improve food-borne infections or gastrointestinal diseases and hold promise as viable alternatives to antibiotics. This study aimed to explore the antibacterial activity of three bacteriocins (nisin, enterocin Gr17, and plantaricin RX-8) and their ability to attenuate intestinal barrier dysfunction and inflammatory responses induced by Listeria monocytogenes, respectively. Bacteriocins have shown excellent antibacterial activity against L. monocytogenes without causing any cytotoxicity. Bacteriocins inhibited the adhesion and invasion of L. monocytogenes on Caco-2 cells, lactate dehydrogenase (LDH), trans-epithelial electrical resistance (TEER), and cell migration showed that bacteriocin improved the permeability of Caco-2 cells. These results were attributed to the promotion of tight junction proteins (TJP) assembly, specifically zonula occludens-1 (ZO-1), occludin, and claudin-1. Furthermore, bacteriocins could alleviate inflammation by inhibiting the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) pathways and reducing the secretion of interleukin-6 (IL-6), interleukin-1 ß (IL-1ß) and tumor necrosis factor α (TNF-α). Among three bacteriocins, plantaricin RX-8 showed the best antibacterial activity against L. monocytogenes and the most pronounced protective effect on the intestinal barrier due to its unique structure. Based on our findings, we hypothesized that bacteriocins may inhibit the adhesion and invasion of L. monocytogenes by competing adhesion sites. Moreover, they may further enhance intestinal barrier function by inhibiting the expression of L. monocytogenes virulence factors, increasing the expression of TJP and decreasing the secretion of inflammatory factors. Therefore, bacteriocins will hopefully be an effective alternative to antibiotics, and this study provides valuable insights into food safety concerns. KEY POINTS: • Bacteriocins show excellent antibacterial activity against L. monocytogenes • Bacteriocins improve intestinal barrier damage and inflammatory response • Plantaricin RX-8 has the best protective effect on Caco-2 cells damage.


Asunto(s)
Antibacterianos , Bacteriocinas , Listeria monocytogenes , Listeria monocytogenes/efectos de los fármacos , Bacteriocinas/farmacología , Humanos , Células CACO-2 , Antibacterianos/farmacología , Inflamación , FN-kappa B/metabolismo , Adhesión Bacteriana/efectos de los fármacos , Proteínas de Uniones Estrechas/metabolismo , Citocinas/metabolismo , Listeriosis/microbiología , Listeriosis/tratamiento farmacológico , Movimiento Celular/efectos de los fármacos
11.
Appl Microbiol Biotechnol ; 108(1): 360, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836914

RESUMEN

In the fight against hospital-acquired infections, the challenge posed by methicillin-resistant Staphylococcus aureus (MRSA) necessitates the development of novel treatment methods. This study focused on undermining the virulence of S. aureus, especially by targeting surface proteins crucial for bacterial adherence and evasion of the immune system. A primary aspect of our approach involves inhibiting sortase A (SrtA), a vital enzyme for attaching microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) to the bacterial cell wall, thereby reducing the pathogenicity of S. aureus. Verbascoside, a phenylethanoid glycoside, was found to be an effective SrtA inhibitor in our research. Advanced fluorescence quenching and molecular docking studies revealed a specific interaction between verbascoside and SrtA, pinpointing the critical active sites involved in this interaction. This molecular interaction significantly impedes the SrtA-mediated attachment of MSCRAMMs, resulting in a substantial reduction in bacterial adhesion, invasion, and biofilm formation. The effectiveness of verbascoside has also been demonstrated in vivo, as shown by its considerable protective effects on pneumonia and Galleria mellonella (wax moth) infection models. These findings underscore the potential of verbascoside as a promising component in new antivirulence therapies for S. aureus infections. By targeting crucial virulence factors such as SrtA, agents such as verbascoside constitute a strategic and potent approach for tackling antibiotic resistance worldwide. KEY POINTS: • Verbascoside inhibits SrtA, reducing S. aureus adhesion and biofilm formation. • In vivo studies demonstrated the efficacy of verbascoside against S. aureus infections. • Targeting virulence factors such as SrtA offers new avenues against antibiotic resistance.


Asunto(s)
Aminoaciltransferasas , Antibacterianos , Adhesión Bacteriana , Proteínas Bacterianas , Biopelículas , Cisteína Endopeptidasas , Glucósidos , Staphylococcus aureus Resistente a Meticilina , Simulación del Acoplamiento Molecular , Fenoles , Infecciones Estafilocócicas , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Aminoaciltransferasas/antagonistas & inhibidores , Aminoaciltransferasas/metabolismo , Cisteína Endopeptidasas/metabolismo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Glucósidos/farmacología , Animales , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Fenoles/farmacología , Adhesión Bacteriana/efectos de los fármacos , Biopelículas/efectos de los fármacos , Antibacterianos/farmacología , Mariposas Nocturnas/microbiología , Virulencia/efectos de los fármacos , Modelos Animales de Enfermedad , Factores de Virulencia/metabolismo , Inhibidores Enzimáticos/farmacología , Polifenoles
12.
Med Sci Monit ; 30: e944255, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38843112

RESUMEN

Orthodontic treatments, while essential for achieving optimal oral health, present challenges in infection control due to the propensity for bacterial adhesion and biofilm formation on orthodontic appliances. Silver-coated orthodontic materials have emerged as a promising solution, leveraging the potent antimicrobial properties of silver nanoparticles (AgNPs). Antibacterial coatings are used in orthodontics to prevent the formation of bacterial biofilms. This systematic review evaluated the literature on antimicrobial silver coatings on fixed orthodontic appliances, including archwires, brackets, and microimplants. Two evaluators, working independently, rigorously conducted a comprehensive search of various databases, including PubMed, PubMed Central, Embase, Scopus and Web of Science. This systematic review comprehensively examined in vitro studies investigating the antimicrobial efficacy of silver-coated orthodontic archwires, brackets, and microimplants. The review registered in PROSPERO CRD42024509189 synthesized findings from 18 diverse studies, revealing consistent and significant reductions in bacterial adhesion, biofilm formation, and colony counts with the incorporation of AgNPs. Key studies demonstrated the effectiveness of silver-coated archwires and brackets against common oral bacteria, such as Streptococcus mutans and Staphylococcus aureus. Microimplants coated with AgNPs also exhibited notable antimicrobial activity against a range of microorganisms. The systematic review revealed potential mechanisms underlying these antimicrobial effects, highlighted implications for infection prevention in orthodontic practice, and suggested future research avenues. Despite some study heterogeneity and limitations, the collective evidence supports the potential of silver-coated orthodontic materials in mitigating bacterial complications, emphasizing their relevance in advancing infection control measures in orthodontics.


Asunto(s)
Biopelículas , Nanopartículas del Metal , Soportes Ortodóncicos , Plata , Plata/farmacología , Humanos , Biopelículas/efectos de los fármacos , Soportes Ortodóncicos/microbiología , Alambres para Ortodoncia/microbiología , Aparatos Ortodóncicos Fijos , Antiinfecciosos/farmacología , Materiales Biocompatibles Revestidos/farmacología , Antibacterianos/farmacología , Streptococcus mutans/efectos de los fármacos , Adhesión Bacteriana/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
13.
Mar Drugs ; 22(5)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38786623

RESUMEN

Mycoplasma pneumoniae, a notable pathogen behind respiratory infections, employs specialized proteins to adhere to the respiratory epithelium, an essential process for initiating infection. The role of glycosaminoglycans, especially heparan sulfate, is critical in facilitating pathogen-host interactions, presenting a strategic target for therapeutic intervention. In this study, we assembled a glycan library comprising heparin, its oligosaccharide derivatives, and a variety of marine-derived sulfated glycans to screen the potential inhibitors for the pathogen-host interactions. By using Surface Plasmon Resonance spectroscopy, we evaluated the library's efficacy in inhibiting the interaction between M. pneumoniae adhesion proteins and heparin. Our findings offer a promising avenue for developing novel therapeutic strategies against M. pneumoniae infections.


Asunto(s)
Heparina , Mycoplasma pneumoniae , Polisacáridos , Mycoplasma pneumoniae/efectos de los fármacos , Heparina/farmacología , Heparina/química , Polisacáridos/farmacología , Polisacáridos/química , Organismos Acuáticos , Humanos , Adhesinas Bacterianas/metabolismo , Adhesinas Bacterianas/efectos de los fármacos , Adhesión Bacteriana/efectos de los fármacos , Neumonía por Mycoplasma/tratamiento farmacológico , Neumonía por Mycoplasma/microbiología , Antibacterianos/farmacología , Antibacterianos/química , Animales , Interacciones Huésped-Patógeno , Sulfatos/química , Sulfatos/farmacología
14.
Clin Oral Investig ; 28(6): 323, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761310

RESUMEN

OBJECTIVES: White spot lesions are the most common iatrogenic effect observed during orthodontic treatment. This study aimed to compare the surface characteristics and antibacterial action of uncoated and coated orthodontic brackets. MATERIALS AND METHODS: Sixty commercially available stainless steel brackets were coated with TiO2 nanotubes and methacryloyloxyethylphosphorylcholine. The sample was divided into Group 1: uncoated orthodontic brackets, Group 2: Stainless steel brackets with TiO2 nanotubes coating, Group 3: Stainless steel brackets with methacryloyloxyethylphosphorylcholine coating, and Group 4: Stainless steel brackets with TiO2 nanotubes combined with methacryloyloxyethylphosphorylcholine coating. Surface characterization was assessed using atomic force microscopy and scanning electron microscopy. Streptococcus mutans was selected to test the antibacterial ability of the orthodontic brackets, total bacterial adhesion and bacterial viability were assessed. The brackets were subjected to scanning electron microscopy to detect the presence of biofilm. RESULTS: The surface roughness was the greatest in Group 1 and least in Group 2 followed by Group 4 and Group 3 coated brackets. The optical density values were highest in Group 1 and lowest in Group 4. Comparison of colony counts revealed high counts in Group 1 and low counts in Group 4. A positive correlation between surface roughness and colony counts was obtained, however, was not statistically significant. CONCLUSIONS: The coated orthodontic brackets exhibited less surface roughness than the uncoated orthodontic brackets. Group 4 coated orthodontic brackets showed the best antibacterial properties. CLINICAL RELEVANCE: Coated orthodontic brackets prevent adhesion of streptococcus mutans and reduces plaque accumulation around the brackets thereby preventing formation of white spot lesions during orthodontic treatment.


Asunto(s)
Antibacterianos , Adhesión Bacteriana , Microscopía Electrónica de Rastreo , Nanotubos , Soportes Ortodóncicos , Fosforilcolina , Streptococcus mutans , Propiedades de Superficie , Titanio , Titanio/química , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacología , Fosforilcolina/química , Streptococcus mutans/efectos de los fármacos , Antibacterianos/farmacología , Nanotubos/química , Adhesión Bacteriana/efectos de los fármacos , Microscopía de Fuerza Atómica , Ensayo de Materiales , Acero Inoxidable/química , Metacrilatos/farmacología , Metacrilatos/química , Biopelículas/efectos de los fármacos , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/química
15.
Int J Mol Sci ; 25(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38732269

RESUMEN

New antimicrobial molecules effective against Pseudomonas aeruginosa, known as an antibiotic-resistant "high-priority pathogen", are urgently required because of its ability to develop biofilms related to healthcare-acquired infections. In this study, for the first time, the anti-biofilm and anti-virulence activities of a polyphenolic extract of extra-virgin olive oil as well as purified oleocanthal and oleacein, toward P. aeruginosa clinical isolates were investigated. The main result of our study was the anti-virulence activity of the mixture of oleacein and oleocanthal toward multidrug-resistant and intermediately resistant strains of P. aeruginosa isolated from patients with ventilator-associated pneumonia or surgical site infection. Specifically, the mixture of oleacein (2.5 mM)/oleocanthal (2.5 mM) significantly inhibited biofilm formation, alginate and pyocyanin production, and motility in both P. aeruginosa strains (p < 0.05); scanning electron microscopy analysis further evidenced its ability to inhibit bacterial cell adhesion as well as the production of the extracellular matrix. In conclusion, our results suggest the potential application of the oleacein/oleocanthal mixture in the management of healthcare-associated P. aeruginosa infections, particularly in the era of increasing antimicrobial resistance.


Asunto(s)
Aldehídos , Antibacterianos , Biopelículas , Monoterpenos Ciclopentánicos , Aceite de Oliva , Fenoles , Pseudomonas aeruginosa , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Pseudomonas aeruginosa/efectos de los fármacos , Aceite de Oliva/química , Aceite de Oliva/farmacología , Fenoles/farmacología , Fenoles/química , Aldehídos/farmacología , Aldehídos/química , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Adhesión Bacteriana/efectos de los fármacos
16.
Water Sci Technol ; 89(9): 2457-2467, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747960

RESUMEN

To investigate the physicochemical conditions necessary to stably remove antibiotic-resistant bacteria (ARB) via contact with activated sludge (AS), the adhesion of ciprofloxacin (CIP)-resistant and -susceptible Escherichia coli to AS was simulated by contact tests in the laboratory. The CIP-resistant E. coli and susceptible E. coli were removed by a 3 log smaller concentration by a 5 h contact test at maximum. Considering the hydraulic retention time of a reaction tank (∼5 h) and step-feeding operation, we considered the removal rate of E. coli in the current simulated contact test to be in agreement with the actual situation where 1-2 log concentrations of E. coli were reported to be removed from an AS reaction tank. With the increase in the AS concentration and/or dissolved oxygen, the removal rate of E. coli increased. The removal rate of CIP-resistant E. coli was greater than that of susceptible E. coli under all experimental conditions. Although the mechanism by which CIP-resistant E. coli preferably adhered to AS was not clearly understood in detail, finding optimum conditions under which bacteria, including ARB, were efficiently removed by the AS process may be possible.


Asunto(s)
Adhesión Bacteriana , Ciprofloxacina , Farmacorresistencia Bacteriana , Escherichia coli , Aguas del Alcantarillado , Ciprofloxacina/farmacología , Escherichia coli/efectos de los fármacos , Aguas del Alcantarillado/microbiología , Adhesión Bacteriana/efectos de los fármacos , Antibacterianos/farmacología
17.
BMC Oral Health ; 24(1): 633, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811903

RESUMEN

BACKGROUND: In this study, the antimicrobial activity of three different cleanser tablets on S. mutans and C. albicans adhesion to PMMA, polyamide and 3D printed resin was investigated. METHODS: 40 samples were prepared for PMMA (SR Triplex Hot), polyamide (Deflex) and 3D printed resin (PowerResins Denture) materials and divided into four subgroups for cleansers (Aktident™, Protefix™, Corega™ tablets and distilled water) (n = 5). After the surface preparations were completed, the samples were immersed separately in tubes containing the prepared microorganism suspension and incubated at 37˚C for 24 h. After the incubation, the samples were kept in the cleanser solutions. The samples were then transferred to sterile saline tubes. All the tubes were vortexed and 10 µl was taken from each of them. Sheep blood agar was inoculated for colony counting. The inoculated plates were incubated for 48 h for S. mutans and 24 h for C. albicans. After incubation, colonies observed on all plates were counted. Statistical analyses were done with three-way ANOVA and Tukey's multiple comparison test. RESULTS: Polyamide material registered the highest colony count of S. mutans, whereas PMMA registered the lowest. Significant differences in S. mutans adherence (p = 0.002) were found between the three denture base materials, but no such difference in C. albicans adherence (p = 0.221) was identified between the specimens. All three cleanser tablets eliminated 98% of S. mutans from all the material groups. In all these groups, as well, the antifungal effect of Corega™ on C. albicans was significantly higher than those of the other two cleanser tablets. CONCLUSIONS: According to the study's results, it may be better to pay attention to surface smoothness when using polyamide material to prevent microorganism retention. Cleanser tablets are clinically recommended to help maintain hygiene in removable denture users, especially Corega tablets that are more effective on C. albicans.


Asunto(s)
Candida albicans , Bases para Dentadura , Limpiadores de Dentadura , Polimetil Metacrilato , Streptococcus mutans , Candida albicans/efectos de los fármacos , Streptococcus mutans/efectos de los fármacos , Bases para Dentadura/microbiología , Limpiadores de Dentadura/farmacología , Polimetil Metacrilato/química , Nylons/farmacología , Comprimidos , Recuento de Colonia Microbiana , Materiales Dentales/farmacología , Adhesión Bacteriana/efectos de los fármacos , Antiinfecciosos/farmacología , Ensayo de Materiales
18.
J Contemp Dent Pract ; 25(3): 260-266, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38690700

RESUMEN

AIM AND BACKGROUND: This study aimed to explore the potential synergistic interaction of virgin coconut oil (VCO) and virgin olive oil (VOO) mixture against Streptococcus sanguinis, Streptococcus mutans, and Lactobacillus casei in a single and mixture species through the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), antiadherence, and antibiofilm activities. MATERIALS AND METHODS: The broth microdilution technique was used to individually determine the MIC of both oils and an oil mixture (in the ratio of 1:1) in a 96-well microtiter plate. As for the MBC, the subcultured method was used. The fractional inhibitory concentration index (ΣFIC) was determined to identify the interaction types between both oils. The oil mixture at its MIC was then tested on its antibiofilm and antiadherence effect. RESULTS: The MIC of the oil mixture against the tested microbiota was 50-100%. The oil mixture was bactericidal at 100% concentration for all the mentioned microbes except S. mutans. The ΣFIC value was 2 to 4, indicating that the VCO and VOO acted additively against the microbiota. Meanwhile, the oil mixture at MIC (50% for S. sanguinis and L. casei; 100% for S. mutans and mixture species) exhibited antiadherence and antibiofilm activity toward the microbiota in mixture species. CONCLUSION: The oil mixture possesses antibacterial, antibiofilm, and antiadherence properties toward the tested microbiota, mainly at 50-100% concentration of oil mixture. There was no synergistic interaction found between VCO and VOO. CLINICAL SIGNIFICANCE: Children and individuals with special care may benefit from using the oil mixture, primarily to regulate the biofilm formation and colonization of the bacteria. Furthermore, the oil mixture is natural and nontoxic compared to chemical-based oral healthcare products. How to cite this article: Ng YM, Sockalingam SNMP, Shafiei Z, et al. Biological Activities of Virgin Coconut and Virgin Olive Oil Mixture against Oral Primary Colonizers: An In Vitro Study. J Contemp Dent Pract 2024;25(3):260-266.


Asunto(s)
Biopelículas , Aceite de Coco , Lacticaseibacillus casei , Pruebas de Sensibilidad Microbiana , Aceite de Oliva , Streptococcus mutans , Streptococcus sanguis , Aceite de Oliva/farmacología , Streptococcus mutans/efectos de los fármacos , Biopelículas/efectos de los fármacos , Aceite de Coco/farmacología , Técnicas In Vitro , Streptococcus sanguis/efectos de los fármacos , Lacticaseibacillus casei/efectos de los fármacos , Humanos , Antibacterianos/farmacología , Adhesión Bacteriana/efectos de los fármacos
19.
Nat Chem Biol ; 17(5): 576-584, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33664521

RESUMEN

Cariogenic Streptococcus mutans is known as a predominant etiological agent of dental caries due to its exceptional capacity to form biofilms. From strains of S. mutans isolated from dental plaque, we discovered, in the present study, a polyketide/nonribosomal peptide biosynthetic gene cluster, muf, which directly correlates with a strong biofilm-forming capability. We then identified the muf-associated bioactive product, mutanofactin-697, which contains a new molecular scaffold, along with its biosynthetic logic. Further mode-of-action studies revealed that mutanofactin-697 binds to S. mutans cells and also extracellular DNA, increases bacterial hydrophobicity, and promotes bacterial adhesion and subsequent biofilm formation. Our findings provided an example of a microbial secondary metabolite promoting biofilm formation via a physicochemical approach, highlighting the importance of secondary metabolism in mediating critical processes related to the development of dental caries.


Asunto(s)
Biopelículas/efectos de los fármacos , Factores Biológicos/biosíntesis , Genes Bacterianos , Metabolismo Secundario/genética , Streptococcus mutans/metabolismo , Adhesión Bacteriana/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Factores Biológicos/aislamiento & purificación , Factores Biológicos/farmacología , Biología Computacional/métodos , ADN/genética , ADN/metabolismo , Caries Dental/microbiología , Caries Dental/patología , Regulación Bacteriana de la Expresión Génica , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Familia de Multigenes , Biosíntesis de Péptidos Independientes de Ácidos Nucleicos , Unión Proteica , Streptococcus mutans/genética , Streptococcus mutans/crecimiento & desarrollo , Streptococcus mutans/patogenicidad
20.
Proc Natl Acad Sci U S A ; 117(29): 17249-17259, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32641516

RESUMEN

Control of infections caused by carbapenem-resistant Klebsiella pneumoniae continues to be challenging. The success of this pathogen is favored by its ability to acquire antimicrobial resistance and to spread and persist in both the environment and in humans. The emergence of clinically important clones, such as sequence types 11, 15, 101, and 258, has been reported worldwide. However, the mechanisms promoting the dissemination of such high-risk clones are unknown. Unraveling the factors that play a role in the pathobiology and epidemicity of K. pneumoniae is therefore important for managing infections. To address this issue, we studied a carbapenem-resistant ST-15 K. pneumoniae isolate (Kp3380) that displayed a remarkable adherent phenotype with abundant pilus-like structures. Genome sequencing enabled us to identify a chaperone-usher pili system (Kpi) in Kp3380. Analysis of a large K. pneumoniae population from 32 European countries showed that the Kpi system is associated with the ST-15 clone. Phylogenetic analysis of the operon revealed that Kpi belongs to the little-characterized γ2-fimbrial clade. We demonstrate that Kpi contributes positively to the ability of K. pneumoniae to form biofilms and adhere to different host tissues. Moreover, the in vivo intestinal colonizing capacity of the Kpi-defective mutant was significantly reduced, as was its ability to infect Galleria mellonella The findings provide information about the pathobiology and epidemicity of Kpi+K. pneumoniae and indicate that the presence of Kpi may explain the success of the ST-15 clone. Disrupting bacterial adherence to the intestinal surface could potentially target gastrointestinal colonization.


Asunto(s)
Fimbrias Bacterianas/genética , Klebsiella pneumoniae/genética , Chaperonas Moleculares/genética , Células A549 , Animales , Antibacterianos , Adhesión Bacteriana/efectos de los fármacos , Adhesión Bacteriana/genética , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Carbapenémicos/farmacología , Línea Celular , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana Múltiple/genética , Células Epiteliales/microbiología , Europa (Continente) , Femenino , Eliminación de Gen , Genes Bacterianos/genética , Humanos , Infecciones por Klebsiella , Klebsiella pneumoniae/citología , Klebsiella pneumoniae/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Tipificación de Secuencias Multilocus , Operón , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA