Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 889
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 164(4): 644-55, 2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26871630

RESUMEN

Repair of DNA double-strand breaks (DSBs) by non-homologous end joining is critical for neural development, and brain cells frequently contain somatic genomic variations that might involve DSB intermediates. We now use an unbiased, high-throughput approach to identify genomic regions harboring recurrent DSBs in primary neural stem/progenitor cells (NSPCs). We identify 27 recurrent DSB clusters (RDCs), and remarkably, all occur within gene bodies. Most of these NSPC RDCs were detected only upon mild, aphidicolin-induced replication stress, providing a nucleotide-resolution view of replication-associated genomic fragile sites. The vast majority of RDCs occur in long, transcribed, and late-replicating genes. Moreover, almost 90% of identified RDC-containing genes are involved in synapse function and/or neural cell adhesion, with a substantial fraction also implicated in tumor suppression and/or mental disorders. Our characterization of NSPC RDCs reveals a basis of gene fragility and suggests potential impacts of DNA breaks on neurodevelopment and neural functions.


Asunto(s)
Roturas del ADN , Células-Madre Neurales/metabolismo , Animales , Afidicolina/farmacología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Encéfalo/citología , Adhesión Celular , Moléculas de Adhesión Celular Neuronal/metabolismo , Roturas del ADN/efectos de los fármacos , Reparación del ADN por Unión de Extremidades , Reparación del ADN , Proteínas Ligadas a GPI/metabolismo , Genoma , Humanos , Ratones , Proteínas del Tejido Nervioso/metabolismo , Sinapsis , Factores de Transcripción/metabolismo , Translocación Genética
2.
Mol Cell ; 82(18): 3382-3397.e7, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36002001

RESUMEN

Aberrant replication causes cells lacking BRCA2 to enter mitosis with under-replicated DNA, which activates a repair mechanism known as mitotic DNA synthesis (MiDAS). Here, we identify genome-wide the sites where MiDAS reactions occur when BRCA2 is abrogated. High-resolution profiling revealed that these sites are different from MiDAS at aphidicolin-induced common fragile sites in that they map to genomic regions replicating in the early S-phase, which are close to early-firing replication origins, are highly transcribed, and display R-loop-forming potential. Both transcription inhibition in early S-phase and RNaseH1 overexpression reduced MiDAS in BRCA2-deficient cells, indicating that transcription-replication conflicts (TRCs) and R-loops are the source of MiDAS. Importantly, the MiDAS sites identified in BRCA2-deficient cells also represent hotspots for genomic rearrangements in BRCA2-mutated breast tumors. Thus, our work provides a mechanism for how tumor-predisposing BRCA2 inactivation links transcription-induced DNA damage with mitotic DNA repair to fuel the genomic instability characteristic of cancer cells.


Asunto(s)
Replicación del ADN , Mitosis , Afidicolina/farmacología , Proteína BRCA2/genética , Sitios Frágiles del Cromosoma/genética , ADN/genética , Daño del ADN , Inestabilidad Genómica , Humanos , Mitosis/genética
3.
PLoS Biol ; 19(9): e3001377, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34491983

RESUMEN

Forming an embryo from a zygote poses an apparent conflict for epigenetic regulation. On the one hand, the de novo induction of cell fate identities requires the establishment and subsequent maintenance of epigenetic information to harness developmental gene expression. On the other hand, the embryo depends on cell proliferation, and every round of DNA replication dilutes preexisting histone modifications by incorporation of new unmodified histones into chromatin. Here, we investigated the possible relationship between the propagation of epigenetic information and the developmental cell proliferation during Xenopus embryogenesis. We systemically inhibited cell proliferation during the G1/S transition in gastrula embryos and followed their development until the tadpole stage. Comparing wild-type and cell cycle-arrested embryos, we show that the inhibition of cell proliferation is principally compatible with embryo survival and cellular differentiation. In parallel, we quantified by mass spectrometry the abundance of a large set of histone modification states, which reflects the developmental maturation of the embryonic epigenome. The arrested embryos developed abnormal stage-specific histone modification profiles (HMPs), in which transcriptionally repressive histone marks were overrepresented. Embryos released from the cell cycle block during neurulation reverted toward normality on morphological, molecular, and epigenetic levels. These results suggest that the cell cycle block by HUA alters stage-specific HMPs. We propose that this influence is strong enough to control developmental decisions, specifically in cell populations that switch between resting and proliferating states such as stem cells.


Asunto(s)
Epigénesis Genética , Código de Histonas , Xenopus laevis/embriología , Animales , Afidicolina/farmacología , Ciclo Celular , Proliferación Celular/efectos de los fármacos , Embrión no Mamífero/embriología , Inhibidores Enzimáticos/farmacología , Hidroxiurea/farmacología
4.
Chromosome Res ; 31(3): 23, 2023 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-37597021

RESUMEN

Substantial background level of replication stress is a feature of embryonic and induced pluripotent stem cells (iPSCs), which can predispose to numerical and structural chromosomal instability, including recurrent aberrations of chromosome 12. In differentiated cells, replication stress-sensitive genomic regions, including common fragile sites, are widely mapped through mitotic chromosome break induction by mild aphidicolin treatment, an inhibitor of replicative polymerases. IPSCs exhibit lower apoptotic threshold and higher repair capacity hindering fragile site mapping. Caffeine potentiates genotoxic effects and abrogates G2/M checkpoint delay induced by chemical and physical mutagens. Using 5-ethynyl-2'-deoxyuridine (EdU) for replication labeling, we characterized the mitotic entry dynamics of asynchronous iPSCs exposed to aphidicolin and/or caffeine. Under the adjusted timing of replication stress exposure accounting revealed cell cycle delay, higher metaphase chromosome breakage rate was observed in iPSCs compared to primary lymphocytes. Using differential chromosome staining and subsequent locus-specific fluorescent in situ hybridization, we mapped the FRA12L fragile site spanning the large neuronal ANKS1B gene at 12q23.1, which may contribute to recurrent chromosome 12 missegregation and rearrangements in iPSCs. Publicly available data on the ANKS1B genetic alterations and their possible functional impact are reviewed. Our study provides the first evidence of common fragile site induction in iPSCs and reveals potential somatic instability of a clinically relevant gene during early human development and in vitro cell expansion.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Afidicolina/farmacología , Cafeína , Cromosomas Humanos Par 12 , Hibridación Fluorescente in Situ , Péptidos y Proteínas de Señalización Intracelular
5.
Nucleic Acids Res ; 49(13): 7507-7524, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34181717

RESUMEN

Impaired replication progression leads to de novo copy number variant (CNV) formation at common fragile sites (CFSs). We previously showed that these hotspots for genome instability reside in late-replicating domains associated with large transcribed genes and provided indirect evidence that transcription is a factor in their instability. Here, we compared aphidicolin (APH)-induced CNV and CFS frequency between wild-type and isogenic cells in which FHIT gene transcription was ablated by promoter deletion. Two promoter-deletion cell lines showed reduced or absent CNV formation and CFS expression at FHIT despite continued instability at the NLGN1 control locus. APH treatment led to critical replication delays that remained unresolved in G2/M in the body of many, but not all, large transcribed genes, an effect that was reversed at FHIT by the promoter deletion. Altering RNase H1 expression did not change CNV induction frequency and DRIP-seq showed a paucity of R-loop formation in the central regions of large genes, suggesting that R-loops are not the primary mediator of the transcription effect. These results demonstrate that large gene transcription is a determining factor in replication stress-induced genomic instability and support models that CNV hotspots mainly result from the transcription-dependent passage of unreplicated DNA into mitosis.


Asunto(s)
Ácido Anhídrido Hidrolasas/genética , Variaciones en el Número de Copia de ADN , Replicación del ADN , Proteínas de Neoplasias/genética , Transcripción Genética , Ácido Anhídrido Hidrolasas/biosíntesis , Animales , Afidicolina/farmacología , Línea Celular , Sitios Frágiles del Cromosoma , Sitios Genéticos , Humanos , Ratones , Mutación , Proteínas de Neoplasias/biosíntesis , Regiones Promotoras Genéticas , Estructuras R-Loop , Ribonucleasa H/metabolismo , Estrés Fisiológico
6.
Nucleic Acids Res ; 49(1): 244-256, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33290559

RESUMEN

The human genome contains hundreds of large, structurally diverse blocks that are insufficiently represented in the reference genome and are thus not amenable to genomic analyses. Structural diversity in the human population suggests that these blocks are unstable in the germline; however, whether or not these blocks are also unstable in the cancer genome remains elusive. Here we report that the 500 kb block called KRTAP_region_1 (KRTAP-1) on 17q12-21 recurrently demarcates the amplicon of the ERBB2 (HER2) oncogene in breast tumors. KRTAP-1 carries numerous tandemly-duplicated segments that exhibit diversity within the human population. We evaluated the fragility of the block by cytogenetically measuring the distances between the flanking regions and found that spontaneous distance outliers (i.e DNA breaks) appear more frequently at KRTAP-1 than at the representative common fragile site (CFS) FRA16D. Unlike CFSs, KRTAP-1 is not sensitive to aphidicolin. The exonuclease activity of DNA repair protein Mre11 protects KRTAP-1 from breaks, whereas CtIP does not. Breaks at KRTAP-1 lead to the palindromic duplication of the ERBB2 locus and trigger Breakage-Fusion-Bridge cycles. Our results indicate that an insufficiently investigated area of the human genome is fragile and could play a crucial role in cancer genome evolution.


Asunto(s)
Neoplasias de la Mama/genética , Sitios Frágiles del Cromosoma/genética , Reparación del ADN , Amplificación de Genes , Duplicación de Gen/genética , Genes erbB-2 , Queratinas Específicas del Pelo/fisiología , Afidicolina/farmacología , Mama/metabolismo , Neoplasias de la Mama/metabolismo , Células Cultivadas , Inestabilidad Cromosómica , Roturas del ADN , Variaciones en el Número de Copia de ADN , ADN de Neoplasias/genética , Células Epiteliales/metabolismo , Femenino , Variación Genética , Inestabilidad Genómica , Humanos , Proteína Homóloga de MRE11/fisiología , Proteínas de Neoplasias/fisiología , Secuenciación Completa del Genoma
7.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35216252

RESUMEN

Mosaicism is the most important limitation for one-step gene editing in embryos by CRISPR/Cas9 because cuts and repairs sometimes take place after the first DNA replication of the zygote. To try to minimize the risk of mosaicism, in this study a reversible DNA replication inhibitor was used after the release of CRISPR/Cas9 in the cell. There is no previous information on the use of aphidicolin in porcine embryos, so the reversible inhibition of DNA replication and the effect on embryo development of different concentrations of this drug was first evaluated. The effect of incubation with aphidicolin was tested with CRISPR/Cas9 at different concentrations and different delivery methodologies. As a result, the reversible inhibition of DNA replication was observed, and it was concentration dependent. An optimal concentration of 0.5 µM was established and used for subsequent experiments. Following the use of this drug with CRISPR/Cas9, a halving of mosaicism was observed together with a detrimental effect on embryo development. In conclusion, the use of reversible inhibition of DNA replication offers a way to reduce mosaicism. Nevertheless, due to the reduction in embryo development, it would be necessary to reach a balance for its use to be feasible.


Asunto(s)
Afidicolina/farmacología , Sistemas CRISPR-Cas/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Embrión de Mamíferos/efectos de los fármacos , Eucariontes/efectos de los fármacos , Animales , Animales Modificados Genéticamente , Desarrollo Embrionario/efectos de los fármacos , Edición Génica/métodos , Mosaicismo/efectos de los fármacos , Porcinos , Cigoto/efectos de los fármacos
8.
Nitric Oxide ; 109-110: 12-19, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33592314

RESUMEN

Aphidicolin represses DNA replication by inhibiting DNA polymerase α and δ, which leads to cell cycle arrest and cell damage. Nitric oxide (NO) generated by endothelial NO synthase (eNOS) plays an essential role in maintenance of endothelial integrity including endothelial cell (EC) survival. Previously, we reported that aphidicolin increases NO production in bovine aortic ECs (BAECs). However, the role of aphidicolin-induced NO on EC viability and its molecular mechanism remain to be elucidated. Treatment with 20 µM aphidicolin for 24 h reduced BAEC viability by ~40%, which was accompanied by increased NO production, phosphorylation of eNOS at Ser1179 (p-eNOS-Ser1179), and eNOS protein expression. The aphidicolin-increased eNOS expression and p-eNOS-Ser1179 were not altered by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM), a cell permeable and specific intracellular Ca2+ chelator. Co-treatment with 2-phenyl-4, 4, 5, 5,-tetramethylimidazoline-1-oxyl 3-oxide (PTIO), an NO scavenger, or Nω-Nitro-l-arginine methyl ester hydrochloride (l-NAME), a NOS inhibitor, exacerbated aphidicolin-stimulated BAEC death. Knockdown of eNOS gene expression using siRNA aggravated aphidicolin-induced BAEC death. However, exogenous NO donors including S-nitroso-l-glutathione (GSNO) or diethylenetriamine NONOate (DETA NO) had no effect on aphidicolin-decreased BAEC viability and aggravated BAEC viability at higher doses. Interestingly, aphidicolin accumulated eNOS protein in the active form, p-eNOS-Ser1179, in the nucleus. When cells were ectopically transfected with a wild-type (WT)-eNOS gene, aphidicolin induced significant localization of the protein product in the nucleus. Additionally, aphidicolin-elicited cell death was significantly reversed in WT-eNOS gene-transfected BAECs. Furthermore, overexpression of the eNOS gene containing nuclear localization signal (NLS) but not nuclear export signal (NES) significantly attenuated aphidicolin-induced BAEC death. When G2A-eNOS mutant lacking myristoylation at Gly2 was transfected, its intracellular distribution became diffuse and included the nucleus. Finally, expression of N-myristoyltransferase 2 (NMT2) but not NMT1 significantly decreased in aphidicolin-treated BAECs. Taken together, our results suggest that aphidicolin attenuates BAEC death in part by increasing nuclear eNOS localization and NO production.


Asunto(s)
Afidicolina/farmacología , Muerte Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Células Endoteliales/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo , Aciltransferasas/metabolismo , Animales , Aorta/citología , Bovinos , Supervivencia Celular/efectos de los fármacos , Células Endoteliales/metabolismo
9.
Nucleic Acids Res ; 47(7): 3485-3502, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30657978

RESUMEN

Werner syndrome (WS) is a cancer-prone disease caused by deficiency of Werner protein (WRN). WRN maintains genome integrity by promoting replication-fork stability after various forms of replication stress. Under mild replication stress, WS cells show impaired ATR-mediated CHK1 activation. However, it remains unclear if WS cells elicit other repair pathway. We demonstrate that loss of WRN leads to enhanced ATM phosphorylation upon prolonged exposure to aphidicolin, a specific inhibitor of DNA polymerases, resulting in CHK1 activation. Moreover, we find that loss of WRN sensitises cells to replication-transcription collisions and promotes accumulation of R-loops, which undergo XPG-dependent cleavage responsible for ATM signalling activation. Importantly, we observe that ATM pathway limits chromosomal instability in WS cells. Finally, we prove that, in WS cells, genomic instability enhanced upon chemical inhibition of ATM kinase activity is counteracted by direct or indirect suppression of R-loop formation or by XPG abrogation. Together, these findings suggest a potential role of WRN as regulator of R-loop-associated genomic instability, strengthening the notion that conflicts between replication and transcription can affect DNA replication, leading to human disease and cancer.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Helicasa del Síndrome de Werner/genética , Síndrome de Werner/genética , Afidicolina/farmacología , Daño del ADN/efectos de los fármacos , Replicación del ADN/genética , Fibroblastos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Inestabilidad Genómica/genética , Humanos , Fosforilación/efectos de los fármacos , Transducción de Señal , Síndrome de Werner/patología
10.
Int J Mol Sci ; 22(9)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34066960

RESUMEN

DNA replication timing (RT), reflecting the temporal order of origin activation, is known as a robust and conserved cell-type specific process. Upon low replication stress, the slowing of replication forks induces well-documented RT delays associated to genetic instability, but it can also generate RT advances that are still uncharacterized. In order to characterize these advanced initiation events, we monitored the whole genome RT from six independent human cell lines treated with low doses of aphidicolin. We report that RT advances are cell-type-specific and involve large heterochromatin domains. Importantly, we found that some major late to early RT advances can be inherited by the unstressed next-cellular generation, which is a unique process that correlates with enhanced chromatin accessibility, as well as modified replication origin landscape and gene expression in daughter cells. Collectively, this work highlights how low replication stress may impact cellular identity by RT advances events at a subset of chromosomal domains.


Asunto(s)
Momento de Replicación del ADN , Estrés Fisiológico , Afidicolina/farmacología , Línea Celular Tumoral , Cromatina/metabolismo , Daño del ADN , Momento de Replicación del ADN/genética , Epigénesis Genética/efectos de los fármacos , Sitios Genéticos , Código de Histonas , Humanos , Modelos Biológicos , Estrés Fisiológico/genética
11.
Nucleic Acids Res ; 46(6): 2932-2944, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29394375

RESUMEN

During mild replication stress provoked by low dose aphidicolin (APH) treatment, the key Fanconi anemia protein FANCD2 accumulates on common fragile sites, observed as sister foci, and protects genome stability. To gain further insights into FANCD2 function and its regulatory mechanisms, we examined the genome-wide chromatin localization of FANCD2 in this setting by ChIP-seq analysis. We found that FANCD2 mostly accumulates in the central regions of a set of large transcribed genes that were extensively overlapped with known CFS. Consistent with previous studies, we found that this FANCD2 retention is R-loop-dependent. However, FANCD2 monoubiquitination and RPA foci formation were still induced in cells depleted of R-loops. Interestingly, we detected increased Proximal Ligation Assay dots between FANCD2 and R-loops following APH treatment, which was suppressed by transcriptional inhibition. Collectively, our data suggested that R-loops are required to retain FANCD2 in chromatin at the middle intronic region of large genes, while the replication stress-induced upstream events leading to the FA pathway activation are not triggered by R-loops.


Asunto(s)
Cromatina/genética , Sitios Frágiles del Cromosoma/genética , Replicación del ADN/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Inestabilidad Genómica/genética , Afidicolina/farmacología , Línea Celular Tumoral , Cromatina/metabolismo , ADN/química , ADN/genética , ADN/metabolismo , Daño del ADN , Reparación del ADN , Replicación del ADN/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Conformación de Ácido Nucleico , Transducción de Señal/genética , Ubiquitinación/efectos de los fármacos
12.
J Biol Chem ; 293(33): 12855-12861, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-29959228

RESUMEN

In growing cells, DNA replication precedes mitotic cell division to transmit genetic information to the next generation. The slowing or stalling of DNA replication forks at natural or exogenous obstacles causes "replicative stress" that promotes genomic instability and affects cellular fitness. Replicative stress phenotypes can be characterized at the single-molecule level with DNA combing or stretched DNA fibers, but interpreting the results obtained with these approaches is complicated by the fact that the speed of replication forks is connected to the frequency of origin activation. Primary alterations in fork speed trigger secondary responses in origins, and, conversely, primary alterations in the number of active origins induce compensatory changes in fork speed. Here, by employing interventions that temporally restrict either fork speed or origin firing while still allowing interrogation of the other variable, we report a set of experimental conditions to separate cause and effect in any manipulation that affects DNA replication dynamics. Using HeLa cells and chemical inhibition of origin activity (through a CDC7 kinase inhibitor) and of DNA synthesis (via the DNA polymerase inhibitor aphidicolin), we found that primary effects of replicative stress on velocity of replisomes (fork rate) can be readily distinguished from primary effects on origin firing. Identifying the primary cause of replicative stress in each case as demonstrated here may facilitate the design of methods to counteract replication stress in primary cells or to enhance it in cancer cells to increase their susceptibility to therapies that target DNA repair.


Asunto(s)
Afidicolina/farmacología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Senescencia Celular/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , ADN/biosíntesis , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Origen de Réplica , Proteínas de Ciclo Celular/metabolismo , Reparación del ADN/efectos de los fármacos , Células HeLa , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo
13.
BMC Genomics ; 20(1): 579, 2019 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-31299901

RESUMEN

BACKGROUND: Replication stress (RS) gives rise to DNA damage that threatens genome stability. RS can originate from different sources that stall replication by diverse mechanisms. However, the mechanism underlying how different types of RS contribute to genome instability is unclear, in part due to the poor understanding of the distribution and characteristics of damage sites induced by different RS mechanisms. RESULTS: We use ChIP-seq to map γH2AX binding sites genome-wide caused by aphidicolin (APH), hydroxyurea (HU), and methyl methanesulfonate (MMS) treatments in human lymphocyte cells. Mapping of γH2AX ChIP-seq reveals that APH, HU, and MMS treatments induce non-random γH2AX chromatin binding at discrete regions, suggesting that there are γH2AX binding hotspots in the genome. Characterization of the distribution and sequence/epigenetic features of γH2AX binding sites reveals that the three treatments induce γH2AX binding at largely non-overlapping regions, suggesting that RS may cause damage at specific genomic loci in a manner dependent on the fork stalling mechanism. Nonetheless, γH2AX binding sites induced by the three treatments share common features including compact chromatin, coinciding with larger-than-average genes, and depletion of CpG islands and transcription start sites. Moreover, we observe significant enrichment of SINEs in γH2AX sites in all treatments, indicating that SINEs may be a common barrier for replication polymerases. CONCLUSIONS: Our results identify the location and common features of genome instability hotspots induced by different types of RS, and help in deciphering the mechanisms underlying RS-induced genetic diseases and carcinogenesis.


Asunto(s)
Mapeo Cromosómico , Replicación del ADN/genética , Histonas/metabolismo , Estrés Fisiológico/genética , Afidicolina/farmacología , Sitios de Unión , Línea Celular , Genoma Humano/genética , Inestabilidad Genómica/efectos de los fármacos , Humanos , Hidroxiurea/farmacología , Estrés Fisiológico/efectos de los fármacos , Ácidos Sulfínicos/farmacología
14.
Nucleic Acids Res ; 44(14): 6803-16, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27179029

RESUMEN

Microsatellite DNAs that form non-B structures are implicated in replication fork stalling, DNA double strand breaks (DSBs) and human disease. Fanconi anemia (FA) is an inherited disorder in which mutations in at least nineteen genes are responsible for the phenotypes of genome instability and cancer predisposition. FA pathway proteins are active in the resolution of non-B DNA structures including interstrand crosslinks, G quadruplexes and DNA triplexes. In FANCJ helicase depleted cells, we show that hydroxyurea or aphidicolin treatment leads to loss of microsatellite polymerase chain reaction signals and to chromosome recombination at an ectopic hairpin forming CTG/CAG repeat in the HeLa genome. Moreover, diverse endogenous microsatellite signals were also lost upon replication stress after FANCJ depletion, and in FANCJ null patient cells. The phenotype of microsatellite signal instability is specific for FANCJ apart from the intact FA pathway, and is consistent with DSBs at microsatellites genome-wide in FANCJ depleted cells following replication stress.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Replicación del ADN/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Genoma Humano , Repeticiones de Microsatélite/genética , Estrés Fisiológico/genética , Afidicolina/farmacología , Cromosomas Humanos/genética , Replicación del ADN/efectos de los fármacos , Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/deficiencia , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Reacción en Cadena de la Polimerasa , Recombinación Genética/genética , Estrés Fisiológico/efectos de los fármacos , Expansión de Repetición de Trinucleótido/genética
15.
Molecules ; 22(7)2017 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-28704971

RESUMEN

Inflatin G (1), a new aphidicolin analogue, together with seven known compounds inflatin A (2), inflatin B (3), aphidicolin (4), aphidicolin-17-monoacetate (5), gulypyrone A (6), pyridoxatin rotamers A (7) and B (8), were isolated from the ascomycete fungus Tolypocladium inflatum. Their structures were determined through NMR analyses and the circular dichroism data of the in situ formed [Rh2(OCOCF3)4] complexes. Compounds 1, 4, 5, 7, and 8 showed modest cytotoxicity against four human cancer cell lines A549, CNE1-MP1, A375, and MCF-7.


Asunto(s)
Antineoplásicos/aislamiento & purificación , Afidicolina/análogos & derivados , Afidicolina/aislamiento & purificación , Hypocreales/química , Antineoplásicos/química , Antineoplásicos/farmacología , Afidicolina/química , Afidicolina/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos
16.
Hum Mol Genet ; 23(14): 3695-705, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24556218

RESUMEN

Fanconi anemia (FA) is a chromosome instability syndrome characterized by increased cancer predisposition. Within the FA pathway, an upstream FA core complex mediates monoubiquitination and recruitment of the central FANCD2 protein to sites of stalled replication forks. Once recruited, FANCD2 fulfills a dual role towards replication fork recovery: (i) it cooperates with BRCA2 and RAD51 to protect forks from nucleolytic degradation and (ii) it recruits the BLM helicase to promote replication fork restart while suppressing new origin firing. Intriguingly, FANCD2 and its interaction partners are also involved in homologous recombination (HR) repair of DNA double-strand breaks, hinting that FANCD2 utilizes HR proteins to mediate replication fork recovery. One such candidate is CtIP (CtBP-interacting protein), a key HR repair factor that functions in complex with BRCA1 and MRE11, but has not been investigated as putative player in the replication stress response. Here, we identify CtIP as a novel interaction partner of FANCD2. CtIP binds and stabilizes FANCD2 in a DNA damage- and FA core complex-independent manner, suggesting that FANCD2 monoubiquitination is dispensable for its interaction with CtIP. Following cellular treatment with a replication inhibitor, aphidicolin, FANCD2 recruits CtIP to transiently stalled, as well as collapsed, replication forks on chromatin. At stalled forks, CtIP cooperates with FANCD2 to promote fork restart and the suppression of new origin firing. Both functions are dependent on BRCA1 that controls the step-wise recruitment of MRE11, FANCD2 and finally CtIP to stalled replication forks, followed by their concerted actions to promote fork recovery.


Asunto(s)
Proteína BRCA1/metabolismo , Proteínas Portadoras/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Anemia de Fanconi/genética , Proteínas Nucleares/metabolismo , Afidicolina/farmacología , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Daño del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Endodesoxirribonucleasas , Anemia de Fanconi/metabolismo , Regulación de la Expresión Génica , Humanos , Proteína Homóloga de MRE11 , Ubiquitinación
17.
Bioorg Med Chem Lett ; 26(4): 1205-8, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26810263

RESUMEN

Chagas disease continues to be a difficult disease to eradicate, largely because of the widespread populations it affects as well as the highly toxic effects of current therapies. Thus, the exploration of innovative scaffolds, ideally with distinct mechanisms of action, is urgently needed. The natural product aphidicolin and its effects on cell cycle division have been widely studied; it is a potent inhibitor of parasitic cells. In the present study, we report for the first time the semisynthesis of a series of aphidicolin derivatives, their unique structural features, and demonstration of their activity against Trypanosoma cruzi cells. Two demonstrated high potency and selectivity against parasitic amastigote cells, and thus show promise as new leads for Chagas disease treatment.


Asunto(s)
Afidicolina/química , Afidicolina/farmacología , Tripanocidas/síntesis química , Trypanosoma cruzi/efectos de los fármacos , Afidicolina/uso terapéutico , Enfermedad de Chagas/tratamiento farmacológico , Humanos , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad , Tripanocidas/farmacología , Tripanocidas/uso terapéutico
18.
Nucleic Acids Res ; 42(20): 12628-39, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25352544

RESUMEN

Werner syndrome (WS) is a human chromosomal instability disorder associated with cancer predisposition and caused by mutations in the WRN gene. WRN helicase activity is crucial in limiting breakage at common fragile sites (CFS), which are the preferential targets of genome instability in precancerous lesions. However, the precise function of WRN in response to mild replication stress, like that commonly used to induce breaks at CFS, is still missing. Here, we establish that WRN plays a role in mediating CHK1 activation under moderate replication stress. We provide evidence that phosphorylation of CHK1 relies on the ATR-mediated phosphorylation of WRN, but not on WRN helicase activity. Analysis of replication fork dynamics shows that loss of WRN checkpoint mediator function as well as of WRN helicase activity hamper replication fork progression, and lead to new origin activation to allow recovery from replication slowing upon replication stress. Furthermore, bypass of WRN checkpoint mediator function through overexpression of a phospho-mimic form of CHK1 restores fork progression and chromosome stability to the wild-type levels. Together, these findings are the first demonstration that WRN regulates the ATR-checkpoint activation upon mild replication stress, preventing chromosome fragility.


Asunto(s)
Replicación del ADN , Exodesoxirribonucleasas/fisiología , RecQ Helicasas/fisiología , Afidicolina/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Puntos de Control del Ciclo Celular/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Genoma , Células HEK293 , Humanos , Mutación , Proteínas Quinasas/genética , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Transducción de Señal , Estrés Fisiológico/genética , Helicasa del Síndrome de Werner
19.
Hum Mol Genet ; 22(24): 4901-13, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23863462

RESUMEN

SNM1B/Apollo is a DNA nuclease that has important functions in telomere maintenance and repair of DNA interstrand crosslinks (ICLs) within the Fanconi anemia (FA) pathway. SNM1B is required for efficient localization of key repair proteins, such as the FA protein, FANCD2, to sites of ICL damage and functions epistatically to FANCD2 in cellular survival to ICLs and homology-directed repair. The FA pathway is also activated in response to replication fork stalling. Here, we sought to determine the importance of SNM1B in cellular responses to stalled forks in the absence of a blocking lesion, such as ICLs. We found that depletion of SNM1B results in hypersensitivity to aphidicolin, a DNA polymerase inhibitor that causes replication stress. We observed that the SNM1B nuclease is required for efficient localization of the DNA repair proteins, FANCD2 and BRCA1, to subnuclear foci upon aphidicolin treatment, thereby indicating SNM1B facilitates direct repair of stalled forks. Consistent with a role for SNM1B subsequent to recognition of the lesion, we found that SNM1B is dispensable for upstream events, including activation of ATR-dependent signaling and localization of RPA, γH2AX and the MRE11/RAD50/NBS1 complex to aphidicolin-induced foci. We determined that a major consequence of SNM1B depletion is a marked increase in spontaneous and aphidicolin-induced chromosomal gaps and breaks, including breakage at common fragile sites. Thus, this study provides evidence that SNM1B functions in resolving replication stress and preventing accumulation of genomic damage.


Asunto(s)
Sitios Frágiles del Cromosoma , Enzimas Reparadoras del ADN/metabolismo , Replicación del ADN , Inestabilidad Genómica , Proteínas Nucleares/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Afidicolina/farmacología , Proteína BRCA1/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Cromatina/metabolismo , Daño del ADN , Reparación del ADN , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/genética , Exodesoxirribonucleasas , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Expresión Génica , Histonas/metabolismo , Humanos , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Proteína de Replicación A/metabolismo , Transducción de Señal/efectos de los fármacos , Ubiquitinación
20.
Genome Res ; 22(6): 993-1005, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22456607

RESUMEN

Chromosomal common fragile sites (CFSs) are unstable genomic regions that break under replication stress and are involved in structural variation. They frequently are sites of chromosomal rearrangements in cancer and of viral integration. However, CFSs are undercharacterized at the molecular level and thus difficult to predict computationally. Newly available genome-wide profiling studies provide us with an unprecedented opportunity to associate CFSs with features of their local genomic contexts. Here, we contrasted the genomic landscape of cytogenetically defined aphidicolin-induced CFSs (aCFSs) to that of nonfragile sites, using multiple logistic regression. We also analyzed aCFS breakage frequencies as a function of their genomic landscape, using standard multiple regression. We show that local genomic features are effective predictors both of regions harboring aCFSs (explaining ∼77% of the deviance in logistic regression models) and of aCFS breakage frequencies (explaining ∼45% of the variance in standard regression models). In our optimal models (having highest explanatory power), aCFSs are predominantly located in G-negative chromosomal bands and away from centromeres, are enriched in Alu repeats, and have high DNA flexibility. In alternative models, CpG island density, transcription start site density, H3K4me1 coverage, and mononucleotide microsatellite coverage are significant predictors. Also, aCFSs have high fragility when colocated with evolutionarily conserved chromosomal breakpoints. Our models are predictive of the fragility of aCFSs mapped at a higher resolution. Importantly, the genomic features we identified here as significant predictors of fragility allow us to draw valuable inferences on the molecular mechanisms underlying aCFSs.


Asunto(s)
Inestabilidad Cromosómica , Sitios Frágiles del Cromosoma , Genoma Humano , Modelos Genéticos , Elementos Alu , Animales , Afidicolina/farmacología , Centrómero , Rotura Cromosómica , Cromosomas Humanos/efectos de los fármacos , Islas de CpG , Análisis Citogenético , Humanos , Modelos Logísticos , Ratones , Repeticiones de Microsatélite , Reproducibilidad de los Resultados , Sitio de Iniciación de la Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA