Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 755
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(14): 7666-7674, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37351632

RESUMEN

The 26-mer DNA aptamer (AF26) that specifically binds aflatoxin B1 (AFB1) with nM-level high affinity is rare among hundreds of aptamers for small molecules. Despite its predicted stem-loop structure, the molecular basis of its high-affinity recognition of AFB1 remains unknown. Here, we present the first high-resolution nuclear magnetic resonance structure of AFB1-AF26 aptamer complex in solution. AFB1 binds to the 16-residue loop region of the aptamer, inducing it to fold into a compact structure through the assembly of two bulges and one hairpin structure. AFB1 is tightly enclosed within a cavity formed by the bulges and hairpin, held in a place between the G·C base pair, G·G·C triple and multiple T bases, mainly through strong π-π stacking, hydrophobic and donor atom-π interactions, respectively. We further revealed the mechanism of the aptamer in recognizing AFB1 and its analogue AFG1 with only one-atom difference and introduced a single base mutation at the binding site of the aptamer to increase the discrimination between AFB1 and AFG1 based on the structural insights. This research provides an important structural basis for understanding high-affinity recognition of the aptamer, and for further aptamer engineering, modification and applications.


Asunto(s)
Aflatoxina B1 , Aptámeros de Nucleótidos , Aflatoxina B1/química , Aflatoxina B1/metabolismo , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Técnicas Biosensibles , Límite de Detección
2.
Appl Microbiol Biotechnol ; 108(1): 348, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809353

RESUMEN

Mycotoxin production by aflatoxin B1 (AFB1) -producing Aspergillus flavus Zt41 and sterigmatocystin (ST) -hyperproducer Aspergillus creber 2663 mold strains on corn and rice starch, both of high purity and nearly identical amylose-amylopectin composition, as the only source of carbon, was studied. Scanning electron microscopy revealed average starch particle sizes of 4.54 ± 0.635 µm and 10.9 ± 2.78 µm, corresponding to surface area to volume ratios of 127 1/µm for rice starch and 0.49 1/µm for corn starch. Thus, a 2.5-fold difference in particle size correlated to a larger, 259-fold difference in surface area. To allow starch, a water-absorbing powder, to be used as a sole food source for Aspergillus strains, a special glass bead system was applied. AFB1 production of A. flavus Zt41 was determined to be 437.6 ± 128.4 ng/g and 90.0 ± 44.8 ng/g on rice and corn starch, respectively, while corresponding ST production levels by A. creber 2663 were 72.8 ± 10.0 µg/g and 26.8 ± 11.6 µg/g, indicating 3-fivefold higher mycotoxin levels on rice starch than on corn starch as sole carbon and energy sources. KEY POINTS: • A glass bead system ensuring the flow of air when studying powders was developed. • AFB1 and ST production of A. flavus and A. creber on rice and corn starches were studied. • 3-fivefold higher mycotoxin levels on rice starch than on corn starch were detected.


Asunto(s)
Oryza , Almidón , Zea mays , Oryza/química , Zea mays/química , Almidón/metabolismo , Aspergillus/metabolismo , Aspergillus flavus/metabolismo , Aflatoxina B1/biosíntesis , Aflatoxina B1/metabolismo , Esterigmatocistina/biosíntesis , Esterigmatocistina/metabolismo , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Micotoxinas/metabolismo , Micotoxinas/biosíntesis , Vidrio
3.
BMC Vet Res ; 20(1): 108, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500117

RESUMEN

BACKGROUND: Camel milk and silymarin have many different beneficial effects on several animal species. Meanwhile, Aflatoxins are mycotoxins with extraordinary potency that pose major health risks to several animal species. Additionally, it has been documented that aflatoxins harm the reproductive systems of a variety of domestic animals. The present design aimed to investigate the impact of aflatoxin B1 (AFB1) on rat body weight and reproductive organs and the ameliorative effects of camel milk and silymarin through measured serum testosterone, testes pathology, and gene expression of tumor necrosis factor (TNF-α), luteinizing hormone receptor (LHR), and steroidogenic acute regulatory protein (StAR) in the testes. A total of sixty mature male Wister white rats, each weighing an average of 83.67 ± 0.21 g, were used. There were six groups created from the rats. Each division had ten rats. The groups were the control (without any treatment), CM (1 ml of camel milk/kg body weight orally), S (20 mg silymarin/kg b. wt. suspension, orally), A (1.4 mg aflatoxin/kg diet), ACM (aflatoxin plus camel milk), and AS (aflatoxin plus silymarin). RESULTS: The results indicated the positive effects of camel milk and silymarin on growth, reproductive organs, and gene expression of TNF-α, LHR, and StAR with normal testicular architecture. Also, the negative effect of AFB1 on the rat's body weight and reproductive organs, as indicated by low body weight and testosterone concentration, was confirmed by the results of histopathology and gene expression. However, these negative effects were ameliorated by the ingestion of camel milk and silymarin. CONCLUSION: In conclusion, camel milk and silymarin could mitigate the negative effect of AFB1 on rat body weight and reproductive organs.


Asunto(s)
Aflatoxinas , Silimarina , Masculino , Ratas , Animales , Aflatoxina B1/toxicidad , Aflatoxina B1/metabolismo , Silimarina/farmacología , Camelus , Leche , Factor de Necrosis Tumoral alfa/metabolismo , Ratas Wistar , Testículo/metabolismo , Testosterona/metabolismo , Peso Corporal
4.
Food Microbiol ; 121: 104524, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637086

RESUMEN

Aspergillus flavus colonization on agricultural products during preharvest and postharvest results in tremendous economic losses. Inspired by the synergistic antifungal effects of essential oils, the aims of this study were to explore the mechanism of combined cinnamaldehyde and nonanal (SCAN) against A. flavus and to evaluate the antifungal activity of SCAN loading into diatomite (DM). Shriveled mycelia were observed by scanning electron microscopy, especially in the SCAN treatment group. Calcofluor white staining, transmission electron microscopy, dichloro-dihydro-fluorescein diacetate staining and the inhibition of key enzymes in tricarboxylic acid cycle indicated that the antifungal mechanism of SCAN against A. flavus was related to the cell wall damage, reactive oxygen species accumulation and energy metabolism interruption. RNA sequencing revealed that some genes involved in antioxidation were upregulated, whereas genes responsible for cell wall biosynthesis, oxidative stress, cell cycle and spore development were significantly downregulated, supporting the occurrence of cellular apoptosis. In addition, compared with the control group, conidia production in 1.5 mg/mL DM/cinnamaldehyde, DM/nonanal and DM/SCAN groups were decreased by 27.16%, 48.22% and 76.66%, respectively, and the aflatoxin B1 (AFB1) contents decreased by 2.00%, 73.02% and 84.15%, respectively. These finding suggest that DM/SCAN complex has potential uses in food preservation.


Asunto(s)
Acroleína/análogos & derivados , Aldehídos , Antifúngicos , Aspergillus flavus , Antifúngicos/farmacología , Antifúngicos/metabolismo , Aflatoxina B1/metabolismo , Conservación de Alimentos
5.
Ecotoxicol Environ Saf ; 279: 116449, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38759532

RESUMEN

Over the past few years, there has been growing interest in the ability of insect larvae to convert various organic side-streams containing mycotoxins into insect biomass that can be used as animal feed. Various studies have examined the effects of exposure to aflatoxin B1 (AFB1) on a variety of insect species, including the larvae of the black soldier fly (BSFL; Hermetia illucens L.; Diptera: Stratiomyidae) and the housefly (HFL; Musca domestica L.; Diptera: Muscidae). Most of these studies demonstrated that AFB1 degradation takes place, either enzymatic and/or non-enzymatic. The possible role of feed substrate microorganisms (MOs) in this process has thus far not been investigated. The main objective of this study was therefore to investigate whether biotransformation of AFB1 occurred and whether it is caused by insect-enzymes and/or by microbial enzymes of MOs in the feed substrate. In order to investigate this, sterile and non-sterile feed substrates were spiked with AFB1 and incubated either with or without insect larvae (BSFL or HFL). The AFB1 concentration was determined via LC-MS/MS analyses and recorded over time. Approximately 50% of the initially present AFB1 was recovered in the treatment involving BSFL, which was comparable to the treatment without BSFL (60%). Similar patterns were observed for HFL. The molar mass balance of AFB1 for the sterile feed substrates with BSFL and HFL was 73% and 78%, respectively. We could not establish whether non-enzymatic degradation of AFB1 in the feed substrates occurred. The results showed that both BSFL and substrate-specific MOs play a role in the biotransformation of AFB1 as well as in conversion of AFB1 into aflatoxin P1 and aflatoxicol, respectively. In contrast, HFL did not seem to contribute to AFB1 degradation. The obtained results contribute to our understanding of aflatoxin metabolism by different insect species. This information is crucial for assessing the safety of feeding fly larvae with feed substrates contaminated with AFB1 with the purpose of subsequent use as animal feed.


Asunto(s)
Aflatoxina B1 , Alimentación Animal , Biotransformación , Dípteros , Moscas Domésticas , Larva , Animales , Aflatoxina B1/metabolismo , Moscas Domésticas/metabolismo , Alimentación Animal/análisis , Espectrometría de Masas en Tándem
6.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928160

RESUMEN

Aflatoxin B1 (AFB1) contamination is a serious threat to nutritional safety and public health. The CotA-laccase from Bacillus licheniformis ANSB821 previously reported by our laboratory showed great potential to degrade AFB1 without redox mediators. However, the use of this CotA-laccase to remove AFB1 in animal feed is limited because of its low catalytic efficiency and low expression level. In order to make better use of this excellent enzyme to effectively degrade AFB1, twelve mutants of CotA-laccase were constructed by site-directed mutagenesis. Among these mutants, E186A and E186R showed the best degradation ability of AFB1, with degradation ratios of 82.2% and 91.8% within 12 h, which were 1.6- and 1.8-times higher than those of the wild-type CotA-laccase, respectively. The catalytic efficiencies (kcat/Km) of E186A and E186R were found to be 1.8- and 3.2-times higher, respectively, than those of the wild-type CotA-laccase. Then the expression vectors pPICZαA-N-E186A and pPICZαA-N-E186R with an optimized signal peptide were constructed and transformed into Pichia pastoris GS115. The optimized signal peptide improved the secretory expressions of E186A and E186R in P. pastoris GS115. Collectively, the current study provided ideal candidate CotA-laccase mutants for AFB1 detoxification in food and animal feed and a feasible protocol, which was desperately needed for the industrial production of CotA-laccases.


Asunto(s)
Aflatoxina B1 , Bacillus licheniformis , Proteínas Bacterianas , Lacasa , Aflatoxina B1/metabolismo , Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Bacillus licheniformis/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Lacasa/metabolismo , Lacasa/genética , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Saccharomycetales
7.
J Sci Food Agric ; 104(4): 2215-2224, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37938140

RESUMEN

BACKGROUND: Laboratory-scale experiments have shown that treatment with selective lignin-degrading white-rot fungi improves the nutritional value and ruminal degradability of lignocellulosic biomass (LCB). However, the lack of effective field-applicable pasteurization methods has long been recognized as a major obstacle for scaling up the technique for fungal treatment of large quantities of LCB for animal feeding. In this study, wheat straw (an LCB substrate) was subjected to four field-applicable pasteurization methods - hot-water, formaldehyde fumigation, steam, and hydrated lime - and cultured with Pleurotus ostreatus grain spawn for 10, 20, and 30 days under solid-state fermentation. Samples of untreated, pasteurized but non-inoculated and fungus-treated straws were analyzed for chemical composition, aflatoxin B1 (AFB1 ), and in vitro dry matter digestibility (IVDMD), in vitro total gas (IVGP), methane (CH4 ), and volatile fatty acid (VFA) production. RESULTS: During the 30-day fungal treatment, steam and lime pasteurized straws had the greatest loss of lignin, resulting in marked improvements in crude protein (CP), IVDMD, IVGP, and total VFAs. Irrespective of the pasteurization method, the increase in IVDMD during fungal treatment was linearly (R2 = 0.77-0.92) related to lignin-loss in the substrate during fungal treatment. The CH4 production of the fungus-treated straw was not affected by the pasteurization methods. Aflatoxin B1 was within the safe level (<5 µg kg-1 ) in all pasteurized, fungus treated straws. CONCLUSION: Steam and lime were promising field-applicable pasteurization techniques to produce nutritionally improved fungus-treated wheat straw to feed ruminants. Lime pasteurization was more economical and did not require expensive energy inputs. © 2023 Society of Chemical Industry.


Asunto(s)
Compuestos de Calcio , Lignina , Óxidos , Pleurotus , Animales , Lignina/metabolismo , Biomasa , Aflatoxina B1/metabolismo , Vapor , Rumiantes/metabolismo , Pleurotus/metabolismo , Alimentación Animal/análisis , Fermentación
8.
Toxicol Appl Pharmacol ; 481: 116750, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37980962

RESUMEN

Aflatoxin B1 (AFB1) is the most hazardous aflatoxin that causes significant damage to the male reproductive system. Genkwanin (GNK) is a bioactive flavonoid that shows antioxidant and anti-inflammatory potential. Therefore, the current study was planned to evaluate the effects of GNK against AFB1-induced testicular toxicity. Forty-eight male rats were distributed into four groups (n = 12 rats). AFB1 (50 µg/kg) and GNK (20 mg/kg) were administered to the rats for eight weeks. Results of the current study revealed that AFB1 exposure induced adverse effects on the Nrf2/Keap1 pathway and reduced the expressions and activities of antioxidant enzymes. Additionally, it increased the levels of oxidative stress markers. Furthermore, expressions of steroidogenic enzymes were down-regulated by AFB1 intoxication. Besides, AFB1 exposure reduced the levels of gonadotropins and plasma testosterone, which subsequently reduced the epididymal sperm count, motility, and hypo-osmotic swelled (HOS) sperms, while increasing the number of dead sperms and causing morphological anomalies of the head, midpiece, and tail of the sperms. In addition, AFB1 decreased the activities of testicular function marker enzymes and the levels of inflammatory markers. Moreover, it severely affected the apoptotic profile by up-regulating the expressions of Bax and Casp3, while down-regulating the Bcl2 expression. Besides, AFB1 significantly damaged the histoarchitecture of testicular tissues. However, GNK treatment reversed all the AFB1-induced damages in the rats. Taken together, the current study reports the potential use of GNK as a therapeutic agent to prevent AFB1-induced testicular toxicity due to its antioxidant, anti-inflammatory, and anti-apoptotic properties.


Asunto(s)
Aflatoxina B1 , Antioxidantes , Masculino , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Aflatoxina B1/toxicidad , Aflatoxina B1/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Semen/metabolismo , Estrés Oxidativo , Antiinflamatorios/farmacología
9.
Mol Biol Rep ; 50(10): 8237-8247, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37572211

RESUMEN

BACKGROUND: Aflatoxin B1 (AFB1), one of the most prevalent contaminants in human and animal food, impairs the immune system, but information on the mechanisms of AFB1-mediated macrophage toxicity is still lacking. METHODS AND RESULTS: In this study, for the first time, we employed whole transcriptome sequencing technology to explore the molecular mechanism by which AFB1 affects the growth of porcine alveolar macrophages (PAM). We found that AFB1 exposure reduced the proliferative capacity of PAM and prevented cell cycle progression. Based on whole transcriptome analysis, RT-qPCR, ICC and RNAi, we verified the role and regulatory mechanism of the competing endogenous RNA (ceRNA) network in the process of AFB1 exposure affecting the growth of PAM. CONCLUSIONS: We found that AFB1 induced MSTRG.43,583, MSTRG.67,490, MSTRG.84,995, and MSTRG.89,935 to competitively bind miR-219a, miR-30b-3p, and miR-30c-1-3p, eliminating the inhibition of its target genes CACNA1S, RYR3, and PRKCG. This activated the calcium signaling pathway to regulate the growth of PAM. These results provide valuable information on the mechanism of AFB1 exposure induced impairment of macrophage function in humans and animals.


Asunto(s)
Aflatoxina B1 , MicroARNs , Humanos , Animales , Porcinos , Aflatoxina B1/toxicidad , Aflatoxina B1/metabolismo , Macrófagos Alveolares/metabolismo , Señalización del Calcio , Macrófagos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
10.
J Appl Microbiol ; 134(9)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37634085

RESUMEN

AIMS: This study aimed to screen a bacterial strain with high detoxifying capability for aflatoxin B1 (AFB1), verify its biotransformation efficiency, and detoxification process. METHODS AND RESULTS: A total of 350 samples collected from different environmental niche were screened using coumarin as the sole carbon source. High Performance Liquid Chromatography (HPLC) was used to detect residues of AFB1, and 16S rRNA sequencing was performed on the isolated strain with the highest AFB1 removal ratio for identification. The detoxified products of this strain were tested for toxicity in Escherichia coli as well as LO2, Caco-2, and HaCaT human cell lines. HPLC-MS was applied to further confirm the AFB1 removal and detoxification process. CONCLUSIONS: We identified a strain from plant leaf designated as DT with high AFB1-detoxifying ability that is highly homologous to Bacillus aryabhattai. The optimum detoxification conditions of this strain were 37°C and pH 8.0, resulting in 82.92% removal ratio of 2 µg mL-1 AFB1 in 72 h. The detoxified products were nontoxic for E. coli and significantly less toxic for the LO2, Caco-2, and HaCaT human cell lines. HPLC-MS analysis also confirmed the significant drop of the AFB1 characteristic peak. Two possible metabolic products, C19H15O8 (m/z 371) and C19H19O8 (m/z 375), were observed by mass spectrometry. Potential biotransformation pathway was based on the cleavage of double bond in the terminal furan of AFB1. These generated components had different chemical structures with AFB1, manifesting that the attenuation of AFB1 toxicity would be attributed to the destruction of lactone structure of AFB1 during the conversion process.


Asunto(s)
Aflatoxina B1 , Escherichia coli , Humanos , Aflatoxina B1/metabolismo , Células CACO-2 , Escherichia coli/genética , Escherichia coli/metabolismo , ARN Ribosómico 16S/genética
11.
Environ Res ; 239(Pt 1): 117294, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37832762

RESUMEN

Aflatoxin B1 (AFB1), a ubiquitous and toxic mycotoxin in human food and animal feedstuff, can impair the function and health of some organs, especially the liver. However, the knowledge about the potential mechanisms of AFB1-induced hepatotoxicity in chickens is limited. Therefore, we analyzed the gene expression data of chicken embryo primary hepatocytes (CEPHs) treated with and without AFB1 at the dose of 0.1 µg/mL which were cultured at 37 °C in Medium 199 (Life Technologies, Shanghai, China) with 5.0% CO2 for 48 h. Totally 1,711 differentially expressed genes (DEGs) were identified, in which 1,170 and 541 genes were up- and down-regulated in AFB1-administrated CEPHs compared to the control, respectively. Biological process analysis suggested that these DEGs might take part in angiogenesis, cell adhesion, immune response, cell differentiation, inflammatory response, cell migration regulation, and blood coagulation. Signaling pathways analysis revealed that these DEGs were mainly linked to metabolic pathways, MAPK, TLR2, and actin cytoskeleton regulation pathways. Moreover, the hub genes, including GYS2, NR1H4, ALDH8A1, and ANGPTL3, might participate in AFB1-induced hepatotoxicity. Taken together, our study offers a new insight into the mechanisms of the AFB1-induced hepatotoxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Pollos , Embrión de Pollo , Animales , Humanos , Pollos/genética , Aflatoxina B1/toxicidad , Aflatoxina B1/metabolismo , China , Hígado/metabolismo , Proteína 3 Similar a la Angiopoyetina
12.
J Sci Food Agric ; 103(2): 792-798, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36054708

RESUMEN

BACKGROUND: Aflatoxin B1 (AFB1 ) poses a severe threat to human and animal health. Countries worldwide have invested considerable manpower and material resources in degrading aflatoxins. Enzyme degradation is the most efficient and environmentally friendly approach for modifying aflatoxin into less toxic molecules. Catalase is commonly used as a detoxification agent to decrease the contamination levels of aflatoxins in animal feeds. This study aimed to obtain recombinant catalase via gene engineering and determined whether a recombinant catalase could degrade AFB1 . RESULTS: The catalase gene (KatA) from Pseudomonas aeruginosa was cloned and expressed in Escherichia coli, and the expression conditions of this recombinant catalase were optimized. The recombinant catalase was isolated and purified using Ni-chelating affinity chromatography, and its ability to degrade AFB1 was evaluated. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the expressed of catalase was approximately 55.6 kDa, which was subsequently purified using Ni-chelating affinity chromatography. The degradation rate of AFB1 by recombinant catalase in the presence of syringaldehyde was 38.79%. CONCLUSION: The degradation of AFB1 by a recombinant catalase has been reported for the first time. This study provides a new paradigm for the use of recombinant catalases in degrading AFB1 in food and feed. © 2022 Society of Chemical Industry.


Asunto(s)
Aflatoxinas , Pseudomonas aeruginosa , Aflatoxina B1/metabolismo , Catalasa/genética , Clonación Molecular , Escherichia coli/genética
13.
Plant J ; 106(1): 185-199, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33421236

RESUMEN

In order to cope with the presence of unfavorable compounds, plants can biotransform xenobiotics, translocate both parent compounds and metabolites, and perform compartmentation and segregation at the cellular or tissue level. Such a scenario also applies to mycotoxins, fungal secondary metabolites with a pre-eminent role in plant infection. In this work, we aimed to describe the effect of the interplay between Zea mays (maize) and aflatoxin B1 (AFB1) at the tissue and organ level. To address this challenge, we used atmospheric pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) to investigate the biotransformation, localization and subsequent effects of AFB1 on primary and secondary metabolism of healthy maize plants, both in situ and from a metabolomics standpoint. High spatial resolution (5 µm) provided fine localization of AFB1, which was located within the root intercellular spaces, and co-localized with its phase-I metabolite aflatoxin M2. We provided a parallel visualization of maize metabolic changes, induced in different organs and tissues by an accumulation of AFB1. According to our untargeted metabolomics investigation, anthocyanin biosynthesis and chlorophyll metabolism in roots are most affected. The biosynthesis of these metabolites appears to be inhibited by AFB1 accumulation. On the other hand, metabolites found in above-ground organs suggest that the presence of AFB1 may also activate the biochemical response in the absence of an actual fungal infection; indeed, several plant secondary metabolites known for their antimicrobial or antioxidant activities were localized in the outer tissues, such as phenylpropanoids, benzoxazinoids, phytohormones and lipids.


Asunto(s)
Aflatoxina B1/metabolismo , Zea mays/metabolismo , Aflatoxina B1/genética , Metabolómica/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Zea mays/genética
14.
Crit Rev Food Sci Nutr ; 62(20): 5395-5412, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34955062

RESUMEN

Aflatoxins are carcinogenic secondary metabolites produced by Aspergillus section Flavi that contaminates a wide variety of food and feed products and is responsible for serious health and economic consequences. Fermented foods are prepared with a wide variety of substrates over a long fermentation time and are thus vulnerable to contamination by aflatoxin-producing fungi, leading to the production of aflatoxin B1. The mitigation and control of aflatoxin is currently a prime focus for developing safe aflatoxin-free food. This review summarizes the role of major aflatoxin-degrading enzymes such as laccase, peroxidase, and lactonase, and microorganisms in the context of their application in food. A putative mechanism of enzyme-mediated aflatoxin degradation and toxicity evaluation of the degraded products are also extensively discussed to evaluate the safety of degradation processes for food applications. The review also describes aflatoxin-degrading microorganisms isolated from fermented products and investigates their applicability in food as aflatoxin preventing agents. Furthermore, a summary of recent technological advancements in protein engineering, nanozymes, in silico and statistical optimization approaches are explored to improve the industrial applicability of aflatoxin-degrading enzymes.


Asunto(s)
Aflatoxinas , Aflatoxina B1/metabolismo , Aflatoxina B1/toxicidad , Aflatoxinas/análisis , Aspergillus/metabolismo , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Hongos/metabolismo , Inactivación Metabólica
15.
BMC Vet Res ; 18(1): 178, 2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35568841

RESUMEN

BACKGROUND: The adverse effect of aflatoxin in broilers is well known. However, dietary supplementation of Saccharomyces cell wall and/or Nanocurcumin may decrease the negative effect of aflatoxin B1 because of the bio-adsorbing feature of the functional ingredients in Yeast Cell Wall and the detoxification effect of curcumin nanoparticles. The goal of this study was to see how Saccharomyces cell wall/Nanocurcumin alone or in combination with the aflatoxin-contaminated diet ameliorated the toxic effects of aflatoxin B1 on broiler development, blood and serum parameters, carcass traits, histology, immune histochemistry, liver gene expression, and aflatoxin residue in the liver and muscle tissue of broilers for 35 days. Moreover, the withdrawal time of aflatoxin was measured after feeding the aflatoxicated group an aflatoxin-free diet. Broiler chicks one day old were distributed into five groups according to Saccharomyces cell wall and/or nanocurcumin with aflatoxin supplementation. The G1 group was given a formulated diet without any supplements. The G2 group was supplemented with aflatoxin (0.25 mg/kg diet) in the formulated diet. The G3 group was supplemented with aflatoxin (0.25 mg/kg diet) and Saccharomyces cell wall (1 kg/ton diet) in the formulated diet. The G4 group was supplemented with aflatoxin (0.25 mg/kg diet) and nanocurcumin (400 mg/kg) in the formulated diet. The G5 group was supplemented with aflatoxin (0.25 mg/kg diet) and Saccharomyces cell wall (1 kg/ton diet) in combination with nanocurcumin (200 mg/kg) in the formulated diet. RESULTS: According to the results of this study, aflatoxin supplementation had a detrimental impact on the growth performance, blood and serum parameters, carcass traits, and aflatoxin residue in the liver and muscle tissue of broilers. In addition, aflatoxin supplementation led to a liver injury that was indicated by serum biochemistry and pathological lesions in the liver tissue. Moreover, the shortening of villi length in aflatoxicated birds resulted in a decrease in both the crypt depth ratio and the villi length ratio. The expression of CYP1A1 and Nrf2 genes in the liver tissue increased and decreased, respectively, in the aflatoxicated group. In addition, the aflatoxin residue was significantly (P ≤ 0.05) decreased in the liver tissue of the aflatoxicated group after 2 weeks from the end of the experiment. CONCLUSION: Saccharomyces cell wall alone or with nanocurcumin attenuated these negative effects and anomalies and improved all of the above-mentioned metrics.


Asunto(s)
Aflatoxinas , Enfermedades Transmitidas por los Alimentos , Saccharomyces , Aflatoxina B1/metabolismo , Aflatoxina B1/toxicidad , Aflatoxinas/toxicidad , Alimentación Animal/análisis , Animales , Pared Celular/metabolismo , Pollos , Dieta/veterinaria , Suplementos Dietéticos , Enfermedades Transmitidas por los Alimentos/veterinaria , Saccharomyces/metabolismo
16.
Adv Exp Med Biol ; 1370: 435-444, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35882817

RESUMEN

Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins, which can cause serious kidney damage after ingestion. Taurine protects the kidney, an effect related to its antioxidation and anti-apoptotic actions. In the present study, taurine was administered to detect the protective effect and mechanism of taurine on AFB1-induced renal injury in rats. The results show that taurine ameliorated the increase in serum blood urea nitrogen (BUN), blood creatinine (CRE), blood uric acid (UA), cystatin c (Cys-c), and urinary protein and AKP levels. Taurine also inhibits the content of superoxide dismutase (SOD), total antioxidant capacity (T-AOC), catalase (CAT), glutathione (GSH), glutathione peroxidase (GSH-Px), succinate dehydrogenase (SDH), and the mRNA expression of SOD, nicotinamide adenine dinucleotide phosphate-quinine oxidoreductase 1 (NQO1), γ-glutamylcysteine synthetase (γ-GCS), heme oxygenase-1 (HO-1), and glutamate cysteine ligase catalytic (GCLC) in rat kidney tissue. The apoptotic rate of renal cells was decreased by taurine through inhibition of a mitochondrial mechanism. In summary, we found that taurine prevents AFB1-induced renal injury via enhanced antioxidant ability and mitochondrial-dependent apoptosis.


Asunto(s)
Aflatoxina B1 , Antioxidantes , Aflatoxina B1/metabolismo , Aflatoxina B1/toxicidad , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Apoptosis , Glutatión/metabolismo , Riñón , Estrés Oxidativo , Ratas , Superóxido Dismutasa/metabolismo , Taurina/metabolismo , Taurina/farmacología
17.
J Dairy Sci ; 105(12): 9552-9563, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36241440

RESUMEN

Aflatoxin contamination of feed poses a great risk to the global dairy industry. Analyzing the aflatoxin B1 (AFB1)-induced metabonomic changes in ruminants and screening potential biomarkers for early diagnosis of AFB1 exposure is urgently needed. Here, the effects of different doses (0, 50, and 500 µg/kg of the diet, dry matter basis) of AFB1 exposure on digestibility and performance of Saanen goats were studied, and a comprehensive untargeted metabolomic analysis was performed to reveal plasma metabonomic changes caused by the AFB1 exposure. In the current study, AFB1 exposure decreased total-tract nutrient digestibilities, nitrogen retention, total weight gain, and average daily gain of Saanen goats in a dose-dependent manner. Untargeted metabolomics revealed alterations in the plasma metabolome. A total of 3,310 and 1,462 ion peaks were obtained in positive and negative ion modes, respectively. Based on the screening criteria, 1,338 differential metabolites were detected between control and low-dose AFB1 (50 µg/kg) groups, 1,358 metabolites differed between control and high-dose AFB1 (500 µg/kg) groups, and 58 metabolites differed among all groups. Pathway analyses showed that choline metabolism in cancer and glycerophospholipid metabolism were significantly affected by the AFB1 treatments. Moreover, dysregulation of amino acid metabolism was also observed in AFB1 treated goats. The findings provided novel insights into the toxicity of AFB1 in ruminants. Exploring the underlying molecular causes of the changes may help the development of rapid diagnostic techniques and effective interventions for AFB1 intoxication.


Asunto(s)
Aflatoxina B1 , Metabolómica , Animales , Aflatoxina B1/toxicidad , Aflatoxina B1/metabolismo , Cabras/metabolismo , Metaboloma , Plasma
18.
Pestic Biochem Physiol ; 187: 105214, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36127040

RESUMEN

This study aimed to improve the stability of Cinnamomum tamala essential oil (CTEO) via encapsulating into chitosan nanoemulsion (CsNe) through an ionic-gelation technique and explore its food preservative efficacy against aflatoxigenic strain of Aspergillus flavus (AFLHPSi-1, isolated from stored millet), aflatoxin B1 (AFB1) contamination, and lipid peroxidation, causing qualitative deterioration of stored millets. The CTEO was characterized through gas chromatography-mass spectrometry (GC-MS) analysis that confirmed the presence of linalool as a major component occupying approximately 82.64% of the total oil. The synthesized nanoparticles were characterized through scanning electron microscopy (SEM), fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) analysis. The encapsulation efficiency (EE) and loading capacity (LC) of CTEO-CsNe were found to be 97.71% and 3.33%, respectively. In vitro release study showed a biphasic release pattern: with an initial burst release followed by a controlled release of CTEO. During investigation of efficacy, the CTEO-CsNe caused complete inhibition of A. flavus growth, and AFB1 biosynthesis at 1.0 and 0.8 µL/mL, respectively. The CTEO-CsNe exhibited its antifungal mode of action by altering fungal plasma membrane integrity (ergosterol inhibition) and permeability (leakage of important cellular constituents), and antiaflatoxigenic mode of action by inhibiting cellular methylglyoxal biosynthesis. CTEO-CsNe showed high free radical scavenging capacity (IC50 = 5.08 and 2.56 µL/mL) against DPPH•+ and ABTS•+ radicals, respectively. In addition, CTEO-CsNe presented remarkable preservative efficacy, inhibiting AFB1 and lipid peroxidation in model food system (Setaria italica) without altering their organoleptic properties. Based on overall results, CTEO-CsNe can be recommended as a novel shelf-life enhancer of stored millet samples.


Asunto(s)
Quitosano , Cinnamomum , Aceites Volátiles , Aflatoxina B1/metabolismo , Antifúngicos/química , Antifúngicos/farmacología , Quitosano/química , Quitosano/farmacología , Cinnamomum/metabolismo , Preparaciones de Acción Retardada , Grano Comestible , Ergosterol , Conservantes de Alimentos/química , Conservantes de Alimentos/farmacología , Radicales Libres , Mijos/metabolismo , Aceites Volátiles/química , Aceites Volátiles/farmacología , Piruvaldehído
19.
Int J Mol Sci ; 23(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35805950

RESUMEN

Fumonisin B1 (FB1) and aflatoxin B1 (AFB1) are frequent contaminants of staple foods such as maize. Oral exposure to these toxins poses health hazards by disrupting cellular signaling. However, little is known regarding the multifaced mitochondrial dysfunction-linked toxicity of FB1 and AFB1. Here, we show that after exposure to FB1 and AFB1, mitochondrial respiration significantly decreased by measuring the oxygen consumption rate (OCR), mitochondrial membrane potential (MMP) and reactive oxygen species (ROS). The current work shows that the integrity of mitochondria (MMP and ROS), that is the central component of cell apoptosis, is disrupted by FB1 and AFB1 in undifferentiated Caco-2 and HepG2 cells as in vitro models for human intestine and liver, respectively. It hypothesizes that FB1 and AFB1 could disrupt the mitochondrial electron transport chain (ETC) to induce mitochondrial dysfunction and break the balance of transferring H+ between the mitochondrial inner membrane and mitochondrial matrix, however, the proton leak is not increasing and, as a result, ATP synthesis is blocked. At the sub-toxic exposure of 1.0 µg/mL for 24 h, i.e., a viability of 95% in Caco-2 and HepG2 cells, the mitochondrial respiration was, however, stimulated. This suggests that the treated cells could reserve energy for mitochondrial respiration with the exposure of FB1 and AFB1, which could be a survival advantage.


Asunto(s)
Aflatoxina B1 , Fumonisinas , Aflatoxina B1/metabolismo , Aflatoxina B1/toxicidad , Células CACO-2 , Metabolismo Energético , Fumonisinas/toxicidad , Hepatocitos/metabolismo , Humanos , Intestinos , Especies Reactivas de Oxígeno/metabolismo
20.
Toxicol Mech Methods ; 32(6): 395-419, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34930097

RESUMEN

Aflatoxins are a class of carcinogenic mycotoxins produced by Aspergillus fungi, which are widely distributed in nature. Aflatoxin B1 (AFB1) is the most toxic of these compounds and its metabolites have a variety of biological activities, including acute toxicity, teratogenicity, mutagenicity and carcinogenicity, which has been well-characterized to lead to the development of hepatocellular carcinoma (HCC) in humans and animals. This review focuses on the metabolism of AFB1, including epoxidation and DNA adduction, as it concerns the initiation of cancer and the underlying mechanisms. In addition to DNA adduction, inflammation and oxidative stress caused by AFB1 can also participate in the occurrence of cancer. Therefore, the main carcinogenic mechanism of AFB1 related ROS is summarized. This review also describes recent reports of AFB1 exposures in occupational settings. It is hoped that people will pay more attention to occupational health, in order to reduce the incidence of cancer caused by occupational exposure.


Asunto(s)
Aflatoxinas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Aflatoxina B1/metabolismo , Aflatoxina B1/toxicidad , Aflatoxinas/metabolismo , Aflatoxinas/toxicidad , Animales , Carcinoma Hepatocelular/inducido químicamente , ADN/metabolismo , Humanos , Neoplasias Hepáticas/inducido químicamente , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA