Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.900
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Microbiol ; 77: 131-148, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37040790

RESUMEN

The ChvG-ChvI two-component system is conserved among multiple Alphaproteobacteria. ChvG is a canonical two-component system sensor kinase with a single large periplasmic loop. Active ChvG directs phosphotransfer to its cognate response regulator ChvI, which controls transcription of target genes. In many alphaproteobacteria, ChvG is regulated by a third component, a periplasmic protein called ExoR, that maintains ChvG in an inactive state through direct interaction. Acidic pH stimulates proteolysis of ExoR, unfettering ChvG-ChvI to control its regulatory targets. Activated ChvI among different alphaproteobacteria controls a broad range of cellular processes, including symbiosis and virulence, exopolysaccharide production, biofilm formation, motility, type VI secretion, cellular metabolism, envelope composition, and growth. Low pH is a virulence signal in Agrobacterium tumefaciens, but in other systems, conditions that cause envelope stress may also generally activate ChvG-ChvI. There is mounting evidence that these regulators influence diverse aspects of bacterial physiology, including but not limited to host interactions.


Asunto(s)
Agrobacterium tumefaciens , Proteínas Bacterianas , Proteínas Bacterianas/metabolismo , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Transducción de Señal/genética , Simbiosis
2.
Proc Natl Acad Sci U S A ; 121(25): e2319903121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38870058

RESUMEN

Biofilm formation and surface attachment in multiple Alphaproteobacteria is driven by unipolar polysaccharide (UPP) adhesins. The pathogen Agrobacterium tumefaciens produces a UPP adhesin, which is regulated by the intracellular second messenger cyclic diguanylate monophosphate (c-di-GMP). Prior studies revealed that DcpA, a diguanylate cyclase-phosphodiesterase, is crucial in control of UPP production and surface attachment. DcpA is regulated by PruR, a protein with distant similarity to enzymatic domains known to coordinate the molybdopterin cofactor (MoCo). Pterins are bicyclic nitrogen-rich compounds, several of which are produced via a nonessential branch of the folate biosynthesis pathway, distinct from MoCo. The pterin-binding protein PruR controls DcpA activity, fostering c-di-GMP breakdown and dampening its synthesis. Pterins are excreted, and we report here that PruR associates with these metabolites in the periplasm, promoting interaction with the DcpA periplasmic domain. The pteridine reductase PruA, which reduces specific dihydro-pterin molecules to their tetrahydro forms, imparts control over DcpA activity through PruR. Tetrahydromonapterin preferentially associates with PruR relative to other related pterins, and the PruR-DcpA interaction is decreased in a pruA mutant. PruR and DcpA are encoded in an operon with wide conservation among diverse Proteobacteria including mammalian pathogens. Crystal structures reveal that PruR and several orthologs adopt a conserved fold, with a pterin-specific binding cleft that coordinates the bicyclic pterin ring. These findings define a pterin-responsive regulatory mechanism that controls biofilm formation and related c-di-GMP-dependent phenotypes in A. tumefaciens and potentially acts more widely in multiple proteobacterial lineages.


Asunto(s)
Agrobacterium tumefaciens , Proteínas Bacterianas , Biopelículas , GMP Cíclico , Pterinas , Biopelículas/crecimiento & desarrollo , Agrobacterium tumefaciens/metabolismo , Agrobacterium tumefaciens/genética , Pterinas/metabolismo , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteobacteria/metabolismo , Proteobacteria/genética , Cofactores de Molibdeno , Periplasma/metabolismo , Proteínas Periplasmáticas/metabolismo , Proteínas Periplasmáticas/genética , Proteínas de Unión Periplasmáticas/metabolismo , Proteínas de Unión Periplasmáticas/genética , Regulación Bacteriana de la Expresión Génica
3.
PLoS Genet ; 20(10): e1011449, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39432536

RESUMEN

Peptidoglycan (PG), a mesh-like structure which is the primary component of the bacterial cell wall, is crucial to maintain cell integrity and shape. While most bacteria rely on penicillin binding proteins (PBPs) for crosslinking, some species also employ LD-transpeptidases (LDTs). Unlike PBPs, the essentiality and biological functions of LDTs remain largely unclear. The Hyphomicrobiales order of the Alphaproteobacteria, known for their polar growth, have PG which is unusually rich in LD-crosslinks, suggesting that LDTs may play a more significant role in PG synthesis in these bacteria. Here, we investigated LDTs in the plant pathogen Agrobacterium tumefaciens and found that LD-transpeptidation, resulting from at least one of 14 putative LDTs present in this bacterium, is essential for its survival. Notably, a mutant lacking a distinctive group of 7 LDTs which are broadly conserved among the Hyphomicrobiales exhibited reduced LD-crosslinking and tethering of PG to outer membrane ß-barrel proteins. Consequently, this mutant suffered severe fitness loss and cell shape rounding, underscoring the critical role played by these Hyphomicrobiales-specific LDTs in maintaining cell wall integrity and promoting elongation. Tn-sequencing screens further revealed non-redundant functions for A. tumefaciens LDTs. Specifically, Hyphomicrobiales-specific LDTs exhibited synthetic genetic interactions with division and cell cycle proteins, and a single LDT from another group. Additionally, our findings demonstrate that strains lacking all LDTs except one displayed distinctive phenotypic profiles and genetic interactions. Collectively, our work emphasizes the critical role of LD-crosslinking in A. tumefaciens cell wall integrity and growth and provides insights into the functional specialization of these crosslinking activities.


Asunto(s)
Agrobacterium tumefaciens , Proteínas Bacterianas , Pared Celular , Peptidoglicano , Agrobacterium tumefaciens/genética , Peptidoglicano/metabolismo , Pared Celular/metabolismo , Pared Celular/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Peptidil Transferasas/metabolismo , Peptidil Transferasas/genética , Aptitud Genética , Mutación
4.
Nucleic Acids Res ; 52(19): 11519-11535, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39228370

RESUMEN

The cell cycle-regulated DNA methyltransferase CcrM is conserved in most Alphaproteobacteria, but its role in bacteria with complex or multicentric genomes remains unexplored. Here, we compare the methylome, the transcriptome and the phenotypes of wild-type and CcrM-depleted Agrobacterium tumefaciens cells with a dicentric chromosome with two essential replication origins. We find that DNA methylation has a pleiotropic impact on motility, biofilm formation and viability. Remarkably, CcrM promotes the expression of the repABCCh2 operon, encoding proteins required for replication initiation/partitioning at ori2, and represses gcrA, encoding a conserved global cell cycle regulator. Imaging ori1 and ori2 in live cells, we show that replication from ori2 is often delayed in cells with a hypo-methylated genome, while ori2 over-initiates in cells with a hyper-methylated genome. Further analyses show that GcrA promotes the expression of the RepCCh2 initiator, most likely through the repression of a RepECh2 anti-sense RNA. Altogether, we propose that replication at ori1 leads to a transient hemi-methylation and activation of the gcrA promoter, allowing repCCh2 activation by GcrA and contributing to initiation at ori2. This study then uncovers a novel and original connection between CcrM-dependent DNA methylation, a conserved epigenetic regulator and genome maintenance in an Alphaproteobacterial pathogen.


Asunto(s)
Agrobacterium tumefaciens , Proteínas Bacterianas , Metilación de ADN , Replicación del ADN , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Origen de Réplica , Agrobacterium tumefaciens/genética , Replicación del ADN/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Origen de Réplica/genética , Regiones Promotoras Genéticas , Biopelículas/crecimiento & desarrollo , Operón/genética , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)
5.
J Biol Chem ; 300(2): 105611, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159848

RESUMEN

During growth, bacteria remodel and recycle their peptidoglycan (PG). A key family of PG-degrading enzymes is the lytic transglycosylases, which produce anhydromuropeptides, a modification that caps the PG chains and contributes to bacterial virulence. Previously, it was reported that the polar-growing Gram-negative plant pathogen Agrobacterium tumefaciens lacks anhydromuropeptides. Here, we report the identification of an enzyme, MdaA (MurNAc deacetylase A), which specifically removes the acetyl group from anhydromuropeptide chain termini in A. tumefaciens, resolving this apparent anomaly. A. tumefaciens lacking MdaA accumulates canonical anhydromuropeptides, whereas MdaA was able to deacetylate anhydro-N-acetyl muramic acid in purified sacculi that lack this modification. As for other PG deacetylases, MdaA belongs to the CE4 family of carbohydrate esterases but harbors an unusual Cys residue in its active site. MdaA is conserved in other polar-growing bacteria, suggesting a possible link between PG chain terminus deacetylation and polar growth.


Asunto(s)
Agrobacterium tumefaciens , Proteínas Bacterianas , Agrobacterium tumefaciens/clasificación , Agrobacterium tumefaciens/enzimología , Agrobacterium tumefaciens/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pared Celular , Peptidoglicano , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Secuencia Conservada/genética , Eliminación de Gen
6.
Plant J ; 117(2): 342-363, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37831618

RESUMEN

Attenuated strains of the naturally occurring plant pathogen Agrobacterium tumefaciens can transfer virtually any DNA sequence of interest to model plants and crops. This has made Agrobacterium-mediated transformation (AMT) one of the most commonly used tools in agricultural biotechnology. Understanding AMT, and its functional consequences, is of fundamental importance given that it sits at the intersection of many fundamental fields of study, including plant-microbe interactions, DNA repair/genome stability, and epigenetic regulation of gene expression. Despite extensive research and use of AMT over the last 40 years, the extent of genomic disruption associated with integrating exogenous DNA into plant genomes using this method remains underappreciated. However, new technologies like long-read sequencing make this disruption more apparent, complementing previous findings from multiple research groups that have tackled this question in the past. In this review, we cover progress on the molecular mechanisms involved in Agrobacterium-mediated DNA integration into plant genomes. We also discuss localized mutations at the site of insertion and describe the structure of these DNA insertions, which can range from single copy insertions to large concatemers, consisting of complex DNA originating from different sources. Finally, we discuss the prevalence of large-scale genomic rearrangements associated with the integration of DNA during AMT with examples. Understanding the intended and unintended effects of AMT on genome stability is critical to all plant researchers who use this methodology to generate new genetic variants.


Asunto(s)
Epigénesis Genética , Plantas , Plantas/genética , Plantas/microbiología , Agrobacterium tumefaciens/genética , Genómica , ADN , Inestabilidad Genómica/genética , Transformación Genética , ADN Bacteriano/genética , Plantas Modificadas Genéticamente/genética
7.
Plant J ; 119(4): 2116-2132, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38923048

RESUMEN

Maize (Zea mays L.) is an important crop that has been widely studied for its agronomic and industrial applications and is one of the main classical model organisms for genetic research. Agrobacterium-mediated transformation of immature maize embryos is a commonly used method to introduce transgenes, but a low transformation frequency remains a bottleneck for many gene-editing applications. Previous approaches to enhance transformation included the improvement of tissue culture media and the use of morphogenic regulators such as BABY BOOM and WUSCHEL2. Here, we show that the frequency can be increased using a pVS1-VIR2 virulence helper plasmid to improve T-DNA delivery, and/or expressing a fusion protein between a GROWTH-REGULATING FACTOR (GRF) and GRF-INTERACTING FACTOR (GIF) protein to improve regeneration. Using hygromycin as a selection agent to avoid escapes, the transformation frequency in the maize inbred line B104 significantly improved from 2.3 to 8.1% when using the pVS1-VIR2 helper vector with no effect on event quality regarding T-DNA copy number. Combined with a novel fusion protein between ZmGRF1 and ZmGIF1, transformation frequencies further improved another 3.5- to 6.5-fold with no obvious impact on plant growth, while simultaneously allowing efficient CRISPR-/Cas9-mediated gene editing. Our results demonstrate how a GRF-GIF chimera in conjunction with a ternary vector system has the potential to further improve the efficiency of gene-editing applications and molecular biology studies in maize.


Asunto(s)
Vectores Genéticos , Plantas Modificadas Genéticamente , Transformación Genética , Zea mays , Zea mays/genética , Zea mays/crecimiento & desarrollo , Edición Génica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ADN Bacteriano/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Agrobacterium tumefaciens/genética , Plásmidos/genética
8.
Mol Microbiol ; 121(1): 26-39, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37985428

RESUMEN

Agrobacterium tumefaciens is a plant pathogen, broadly known as the causal agent of the crown gall disease. The soil bacterium is naturally resistant to beta-lactam antibiotics by utilizing the inducible beta-lactamase AmpC. Our picture on the condition-dependent regulation of ampC expression is incomplete. A known regulator is AmpR controlling the transcription of ampC in response to unrecycled muropeptides as a signal for cell wall stress. In our study, we uncovered the global transcriptional regulator LsrB as a critical player acting upstream of AmpR. Deletion of lsrB led to severe ampicillin and penicillin sensitivity, which could be restored to wild-type levels by lsrB complementation. By transcriptome profiling via RNA-Seq and qRT-PCR and by electrophoretic mobility shift assays, we show that ampD coding for an anhydroamidase involved in peptidoglycan recycling is under direct negative control by LsrB. Controlling AmpD levels by the LysR-type regulator in turn impacts the cytoplasmic concentration of cell wall degradation products and thereby the AmpR-mediated regulation of ampC. Our results substantially expand the existing model of inducible beta-lactam resistance in A. tumefaciens by establishing LsrB as higher-level transcriptional regulator.


Asunto(s)
Agrobacterium tumefaciens , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , beta-Lactamasas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación de la Expresión Génica , Resistencia betalactámica/genética
9.
PLoS Pathog ; 19(4): e1011346, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37083862

RESUMEN

Oomycetes are a group of filamentous microorganisms that include some of the biggest threats to food security and natural ecosystems. However, much of the molecular basis of the pathogenesis and the development in these organisms remains to be learned, largely due to shortage of efficient genetic manipulation methods. In this study, we developed modified transformation methods for two important oomycete species, Phytophthora infestans and Plasmopara viticola, that bring destructive damage in agricultural production. As part of the study, we established an improved Agrobacterium-mediated transformation (AMT) method by prokaryotic expression in Agrobacterium tumefaciens of AtVIP1 (VirE2-interacting protein 1), an Arabidopsis bZIP gene required for AMT but absent in oomycetes genomes. Using the new method, we achieved an increment in transformation efficiency in two P. infestans strains. We further obtained a positive GFP transformant of P. viticola using the modified AMT method. By combining this method with the CRISPR/Cas12a genome editing system, we successfully performed targeted mutagenesis and generated loss-of-function mutations in two P. infestans genes. We edited a MADS-box transcription factor-encoding gene and found that a homozygous mutation in MADS-box results in poor sporulation and significantly reduced virulence. Meanwhile, a single-copy avirulence effector-encoding gene Avr8 in P. infestans was targeted and the edited transformants were virulent on potato carrying the cognate resistance gene R8, suggesting that loss of Avr8 led to successful evasion of the host immune response by the pathogen. In summary, this study reports on a modified genetic transformation and genome editing system, providing a potential tool for accelerating molecular genetic studies not only in oomycetes, but also other microorganisms.


Asunto(s)
Ecosistema , Phytophthora infestans , Phytophthora infestans/genética , Agrobacterium tumefaciens/genética , Virulencia/genética , Mutación
10.
EMBO Rep ; 24(6): e56849, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37066763

RESUMEN

Type VI secretion systems (T6SSs) can deliver diverse toxic effectors into eukaryotic and bacterial cells. Although much is known about the regulation and assembly of T6SS, the translocation mechanism of effectors into the periplasm and/or cytoplasm of target cells remains elusive. Here, we use the Agrobacterium tumefaciens DNase effector Tde1 to unravel the mechanism of translocation from attacker to prey. We demonstrate that Tde1 binds to its adaptor Tap1 through the N-terminus, which harbors continuous copies of GxxxG motifs resembling the glycine zipper structure found in proteins involved in the membrane channel formation. Amino acid substitutions on G39 xxxG43 motif do not affect Tde1-Tap1 interaction and secretion but abolish its membrane permeability and translocation of its fluorescent fusion protein into prey cells. The data suggest that G39 xxxG43 governs the delivery of Tde1 into target cells by permeabilizing the cytoplasmic membrane. Considering the widespread presence of GxxxG motifs in bacterial effectors and pore-forming toxins, we propose that glycine zipper-mediated permeabilization is a conserved mechanism used by bacterial effectors for translocation across target cell membranes.


Asunto(s)
Proteínas Bacterianas , Sistemas de Secreción Tipo VI , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Tipo VI/química , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Bacterias/metabolismo , Membrana Celular/metabolismo
11.
Biochem J ; 481(2): 93-117, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38058289

RESUMEN

Plants genetically modified by the pathogenic Agrobacterium strain C58 synthesize agrocinopines A and B, whereas those modified by the pathogenic strain Bo542 produce agrocinopines C and D. The four agrocinopines (A, B, C and D) serve as nutrients by agrobacteria and signaling molecule for the dissemination of virulence genes. They share the uncommon pyranose-2-phosphate motif, represented by the l-arabinopyranose moiety in agrocinopines A/B and the d-glucopyranose moiety in agrocinopines C/D, also found in the antibiotic agrocin 84. They are imported into agrobacterial cytoplasm via the Acc transport system, including the solute-binding protein AccA coupled to an ABC transporter. We have previously shown that unexpectedly, AccA from strain C58 (AccAC58) recognizes the pyranose-2-phosphate motif present in all four agrocinopines and agrocin 84, meaning that strain C58 is able to import agrocinopines C/D, originating from the competitor strain Bo542. Here, using agrocinopine derivatives and combining crystallography, affinity and stability measurements, modeling, molecular dynamics, in vitro and vivo assays, we show that AccABo542 and AccAC58 behave differently despite 75% sequence identity and a nearly identical ligand binding site. Indeed, strain Bo542 imports only compounds containing the d-glucopyranose-2-phosphate moiety, and with a lower affinity compared with strain C58. This difference in import efficiency makes C58 more competitive than Bo542 in culture media. We can now explain why Agrobacterium/Allorhizobium vitis strain S4 is insensitive to agrocin 84, although its genome contains a conserved Acc transport system. Overall, our work highlights AccA proteins as a case study, for which stability and dynamics drive specificity.


Asunto(s)
Agrobacterium tumefaciens , Antibacterianos , Plásmidos , Antibacterianos/farmacología , Antibacterianos/metabolismo , Ligandos , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Sitios de Unión , Fosfatos/metabolismo , Proteínas Bacterianas/metabolismo
12.
PLoS Genet ; 18(12): e1010274, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36480495

RESUMEN

A core component of nearly all bacteria, the cell wall is an ideal target for broad spectrum antibiotics. Many bacteria have evolved strategies to sense and respond to antibiotics targeting cell wall synthesis, especially in the soil where antibiotic-producing bacteria compete with one another. Here we show that cell wall stress caused by both chemical and genetic inhibition of the essential, bifunctional penicillin-binding protein PBP1a prevents microcolony formation and activates the canonical host-invasion two-component system ChvG-ChvI in Agrobacterium tumefaciens. Using RNA-seq, we show that depletion of PBP1a for 6 hours results in a downregulation in transcription of flagellum-dependent motility genes and an upregulation in transcription of type VI secretion and succinoglycan biosynthesis genes, a hallmark of the ChvG-ChvI regulon. Depletion of PBP1a for 16 hours, results in differential expression of many additional genes and may promote a stress response, resembling those of sigma factors in other bacteria. Remarkably, the overproduction of succinoglycan causes cell spreading and deletion of the succinoglycan biosynthesis gene exoA restores microcolony formation. Treatment with cefsulodin phenocopies depletion of PBP1a and we correspondingly find that chvG and chvI mutants are hypersensitive to cefsulodin. This hypersensitivity only occurs in response to treatment with ß-lactam antibiotics, suggesting that the ChvG-ChvI pathway may play a key role in resistance to antibiotics targeting cell wall synthesis. Finally, we provide evidence that ChvG-ChvI likely has a conserved role in conferring resistance to cell wall stress within the Alphaproteobacteria that is independent of the ChvG-ChvI repressor ExoR.


Asunto(s)
Agrobacterium tumefaciens , Pared Celular , Agrobacterium tumefaciens/genética , Pared Celular/genética , beta-Lactamas/farmacología
13.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35101983

RESUMEN

Bacterial species from diverse phyla contain multiple replicons, yet how these multipartite genomes are organized and segregated during the cell cycle remains poorly understood. Agrobacterium tumefaciens has a 2.8-Mb circular chromosome (Ch1), a 2.1-Mb linear chromosome (Ch2), and two large plasmids (pAt and pTi). We used this alpha proteobacterium as a model to investigate the global organization and temporal segregation of a multipartite genome. Using chromosome conformation capture assays, we demonstrate that both the circular and the linear chromosomes, but neither of the plasmids, have their left and right arms juxtaposed from their origins to their termini, generating interarm interactions that require the broadly conserved structural maintenance of chromosomes complex. Moreover, our study revealed two types of interreplicon interactions: "ori-ori clustering" in which the replication origins of all four replicons interact, and "Ch1-Ch2 alignment" in which the arms of Ch1 and Ch2 interact linearly along their lengths. We show that the centromeric proteins (ParB1 for Ch1 and RepBCh2 for Ch2) are required for both types of interreplicon contacts. Finally, using fluorescence microscopy, we validated the clustering of the origins and observed their frequent colocalization during segregation. Altogether, our findings provide a high-resolution view of the conformation of a multipartite genome. We hypothesize that intercentromeric contacts promote the organization and maintenance of diverse replicons.


Asunto(s)
Agrobacterium tumefaciens/genética , Proteínas Bacterianas/genética , Ciclo Celular/genética , Cromosomas Bacterianos , Genoma Bacteriano , Replicón
14.
BMC Plant Biol ; 24(1): 104, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38336608

RESUMEN

BACKGROUND: Crown gall disease caused by Agrobacterium tumefaciens is a very destructive affliction that affects grapevines. Endophytic bacteria have been discovered to control plant diseases via the use of several mechanisms. This research examined the potential for controlling crown gall by three endophytic bacteria that were previously isolated from healthy cultivated and wild grapevines including Pseudomonas kilonensis Ba35, Pseudomonas chlororaphis Ba47, and Serratia liquefaciens Ou55. RESULT: At various degrees, three endophytic bacteria suppressed the populations of A. tumefaciens Gh1 and greatly decreased the symptoms of crown gall. Furthermore, biofilm production and motility behaviors of A. tumefaciens Gh1were greatly inhibited by the Cell-free Culture Supernatant (CFCS) of endophytic bacteria. According to our findings, CFCS may reduce the adhesion of A. tumefaciens Gh1 cells to grapevine cv. Rashe root tissues as well as their chemotaxis motility toward the extract of the roots. When compared to the untreated control, statistical analysis showed that CFCS significantly reduced the swimming, twitching, and swarming motility of A. tumefaciens Gh1. The findings demonstrated that the endophytic bacteria effectively stimulated the production of plant defensive enzymes including superoxide dismutase (SOD), polyphenol oxidase (PPO), peroxidase (POD), phenylalanine ammonia lyase (PAL), and total soluble phenols at different time intervals in grapevine inoculated with A. tumefaciens Gh1. The Ba47 strain markedly increased the expression levels of defense genes associated with plant resistance. The up-regulation of PR1, PR2, VvACO1, and GAD1 genes in grapevine leaves indicates the activation of SA and JA pathways, which play a role in enhancing resistance to pathogen invasion. The results showed that treating grapevine with Ba47 increased antioxidant defense activities and defense-related gene expression, which reduced oxidative damage caused by A. tumefaciens and decreased the incidence of crown gall disease. CONCLUSION: This is the first study on how A. tumefaciens, the grapevine crown gall agent, is affected by CFCS generated by endophytic bacteria in terms of growth and virulence features. To create safer plant disease management techniques, knowledge of the biocontrol processes mediated by CFCS during microbial interactions is crucial.


Asunto(s)
Agrobacterium tumefaciens , Tumores de Planta , Agrobacterium tumefaciens/genética , Enfermedades de las Plantas/microbiología , Bacterias
15.
Mol Genet Genomics ; 299(1): 82, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39196386

RESUMEN

Blue mold, caused by Penicillium italicum, is one of the main postharvest diseases of citrus fruits during storage and marketing. The pathogenic mechanism remains largely unclear. To explore the potential pathogenesis-related genes of this pathogen, a T-DNA insertion library of P. italicum PI5 was established via Agrobacterium tumefaciens-mediated transformation (ATMT). The system yielded 200-250 transformants per million conidia, and the transformants were genetically stable after five generations of successive subcultures on hygromycin-free media. 2700 transformants were obtained to generate a T-DNA insertion library of P. italicum. Only a few of the 200 randomly selected mutants exhibited significantly weakened virulence on citrus fruits, with two mutants displaying attenuated sporulation. The T-DNA in the two mutants existed as a single copy. Moreover, the mutant genes PiBla (PITC_048370) and PiFTF1 (PITC_077280) identified may be involved in conidia production by regulating expressions of the key regulatory components for conidiogenesis. These results demonstrated that the ATMT system is useful to obtain mutants of P. italicum for further investigation of the molecular mechanisms of pathogenicity and the obtained two pathogenesis-related genes might be novel loci associated with pathogenesis and conidia production.


Asunto(s)
Agrobacterium tumefaciens , Penicillium , Transformación Genética , Penicillium/genética , Penicillium/patogenicidad , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/patogenicidad , Citrus/microbiología , Virulencia/genética , Mutación , Esporas Fúngicas/genética , Esporas Fúngicas/patogenicidad , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , ADN Bacteriano/genética , Mutagénesis Insercional , Genes Fúngicos/genética
16.
Planta ; 260(1): 18, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837044

RESUMEN

MAIN CONCLUSION: We have developed and optimized a rapid, versatile Agrobacterium-mediated transient expression system for cannabis seedlings that can be used in functional genomics studies of both hemp-type and drug-type cannabis. Cannabis (Cannabis sativa L.) holds great promise in the medical and food industries due to its diverse chemical composition, including specialized cannabinoids. However, the study of key genes involved in various biological processes, including secondary metabolite biosynthesis, has been hampered by the lack of efficient in vivo functional analysis methods. Here, we present a novel, short-cycle, high-efficiency transformation method for cannabis seedlings using Agrobacterium tumefaciens. We used the RUBY reporter system to monitor transformation results without the need for chemical treatments or specialized equipment. Four strains of A. tumefaciens (GV3101, EHA105, LBA4404, and AGL1) were evaluated for transformation efficiency, with LBA4404 and AGL1 showing superior performance. The versatility of the system was further demonstrated by successful transformation with GFP and GUS reporter genes. In addition, syringe infiltration was explored as an alternative to vacuum infiltration, offering simplicity and efficiency for high-throughput applications. Our method allows rapid and efficient in vivo transformation of cannabis seedlings, facilitating large-scale protein expression and high-throughput characterization studies.


Asunto(s)
Agrobacterium tumefaciens , Cannabis , Genómica , Plantones , Transformación Genética , Agrobacterium tumefaciens/genética , Plantones/genética , Genómica/métodos , Cannabis/genética , Cannabis/metabolismo , Plantas Modificadas Genéticamente , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo
17.
Plant Biotechnol J ; 22(8): 2248-2266, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38516995

RESUMEN

The need for therapeutics to treat a plethora of medical conditions and diseases is on the rise and the demand for alternative approaches to mammalian-based production systems is increasing. Plant-based strategies provide a safe and effective alternative to produce biological drugs but have yet to enter mainstream manufacturing at a competitive level. Limitations associated with batch consistency and target protein production levels are present; however, strategies to overcome these challenges are underway. In this study, we apply state-of-the-art mass spectrometry-based proteomics to define proteome remodelling of the plant following agroinfiltration with bacteria grown under shake flask or bioreactor conditions. We observed distinct signatures of bacterial protein production corresponding to the different growth conditions that directly influence the plant defence responses and target protein production on a temporal axis. Our integration of proteomic profiling with small molecule detection and quantification reveals the fluctuation of secondary metabolite production over time to provide new insight into the complexities of dual system modulation in molecular pharming. Our findings suggest that bioreactor bacterial growth may promote evasion of early plant defence responses towards Agrobacterium tumefaciens (updated nomenclature to Rhizobium radiobacter). Furthermore, we uncover and explore specific targets for genetic manipulation to suppress host defences and increase recombinant protein production in molecular pharming.


Asunto(s)
Agrobacterium tumefaciens , Reactores Biológicos , Nicotiana , Proteómica , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiología , Nicotiana/crecimiento & desarrollo , Reactores Biológicos/microbiología , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Agricultura Molecular/métodos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteoma/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Plant Biotechnol J ; 22(5): 1078-1100, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38041470

RESUMEN

The production of influenza vaccines in plants is achieved through transient expression of viral hemagglutinins (HAs), a process mediated by the bacterial vector Agrobacterium tumefaciens. HA proteins are then produced and matured through the secretory pathway of plant cells, before being trafficked to the plasma membrane where they induce formation of virus-like particles (VLPs). Production of VLPs unavoidably impacts plant cells, as do viral suppressors of RNA silencing (VSRs) that are co-expressed to increase recombinant protein yields. However, little information is available on host molecular responses to foreign protein expression. This work provides a comprehensive overview of molecular changes occurring in Nicotiana benthamiana leaf cells transiently expressing the VSR P19, or co-expressing P19 and an influenza HA. Our data identifies general responses to Agrobacterium-mediated expression of foreign proteins, including shutdown of chloroplast gene expression, activation of oxidative stress responses and reinforcement of the plant cell wall through lignification. Our results also indicate that P19 expression promotes salicylic acid (SA) signalling, a process dampened by co-expression of the HA protein. While reducing P19 level, HA expression also induces specific signatures, with effects on lipid metabolism, lipid distribution within membranes and oxylipin-related signalling. When producing VLPs, dampening of P19 responses thus likely results from lower expression of the VSR, crosstalk between SA and oxylipin pathways, or a combination of both outcomes. Consistent with the upregulation of oxidative stress responses, we finally show that reduction of oxidative stress damage through exogenous application of ascorbic acid improves plant biomass quality during production of VLPs.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Orthomyxoviridae , Humanos , Nicotiana/genética , Plantas Modificadas Genéticamente/genética , Oxilipinas/metabolismo , Agrobacterium tumefaciens/genética , Orthomyxoviridae/genética , Hojas de la Planta/genética
19.
Microb Pathog ; 193: 106787, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38992510

RESUMEN

A unique approach is imperative for the development of drugs aimed at inhibiting various stages of infection, rather than solely focusing on bacterial viability. Among the array of unconventional targets explored for formulating novel antimicrobial medications, blocking the quorum-sensing (QS) system emerges as a highly effective and promising strategy against a variety of pathogenic microbes. In this investigation, we have successfully assessed nine α-aminoamides for their anti-QS activity using Agrobacterium tumefaciensNT1 as a biosensor strain. Among these compounds, three (2, 3and, 4) have been identified as potential anti-QS candidates. Molecular docking studies have further reinforced these findings, indicating that these compounds exhibit favorable pharmacokinetic profiles. Additionally, we have assessed the ligand's stability within the protein's binding pocket using molecular dynamics (MD) simulations and MMGBSA analysis. Further, combination of antiquorum sensing properties with antibiotics viaself-assembly represents a promising approach to enhance antibacterial efficacy, overcome resistance, and mitigate the virulence of bacterial pathogens. The release study also reflects a slow and gradual release of the metronidazole at both pH 6.5 and pH 7.4, avoiding the peaks and troughs associated with more immediate release formulations.


Asunto(s)
Agrobacterium tumefaciens , Antibacterianos , Metronidazol , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Percepción de Quorum , Agrobacterium tumefaciens/efectos de los fármacos , Percepción de Quorum/efectos de los fármacos , Metronidazol/farmacología , Metronidazol/química , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Geles/química , Sinergismo Farmacológico , Liberación de Fármacos
20.
Microb Pathog ; 192: 106680, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38729380

RESUMEN

Biocontrol of phytopathogens involving the use of bioactive compounds produced by lactic acid bacteria (LAB), is a promising approach to manage many diseases in agriculture. In this study, a lactic acid bacterium designated YB1 was isolated from fermented olives and selected for its antagonistic activity against Verticillium dahliae (V. dahliae) and Agrobacterium tumefaciens (A. tumefaciens). Based on the 16S rRNA gene nucleotide sequence analysis (1565 pb, accession number: OR714267), the new isolate YB1 bacterium was assigned as Leuconostoc mesenteroides YB1 (OR714267) strain. This bacterium produces an active peptide "bacteriocin" called BacYB1, which was purified in four steps. Matrix-assisted lasers desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) based approach was performed to identify and characterize BacYB1. The exact mass was 5470.75 Da, and the analysis of the N-terminal sequence (VTRASGASTPPGTASPFKTL) of BacYB1 revealed no significant similarity to currently available antimicrobial peptides. The BacYB1 displayed a bactericidal mode of action against A. tumefaciens. The potentiel role of BacYB1 to supress the growth of A. tumefaciens was confirmed by live-dead cells viability assay. In pot experiments, the biocontrol efficacy of BacYB1 against V. dahliae wilt on young olive trees was studied. The percentage of dead plants (PDP) and the final mean symptomes severity (FMS) of plants articifialy infected by V. dahliae and treated with the pre-purified peptide BacYB1 (preventive and curative treatments) were significantly inferior to untreated plants. Biochemical analysis of leaves of the plants has shown that polyophenols contents were highly detected in plants infected by V. dahliae and the highest contents of chlorophyl a, b and total chlorophyll were recorded in plants treated with the combination of BacYB1 with the biofertilisant Humivital. BacYB1 presents a promising alternative for the control of Verticillium wilt and crown gall diseases.


Asunto(s)
Agrobacterium tumefaciens , Bacteriocinas , Leuconostoc mesenteroides , Olea , Enfermedades de las Plantas , ARN Ribosómico 16S , Agrobacterium tumefaciens/metabolismo , Bacteriocinas/farmacología , Bacteriocinas/metabolismo , Olea/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , ARN Ribosómico 16S/genética , Leuconostoc mesenteroides/metabolismo , Leuconostoc mesenteroides/genética , Agentes de Control Biológico/metabolismo , Agentes de Control Biológico/farmacología , Verticillium/efectos de los fármacos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Antibiosis , Filogenia , Antibacterianos/farmacología , Antibacterianos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA