Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.705
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 593(7858): 261-265, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33911281

RESUMEN

Several enteric pathogens can gain specific metabolic advantages over other members of the microbiota by inducing host pathology and inflammation. The pathogen Clostridium difficile is responsible for a toxin-mediated colitis that causes 450,000 infections and 15,000 deaths in the United States each year1; however, the molecular mechanisms by which C. difficile benefits from this pathology remain unclear. To understand how the metabolism of C. difficile adapts to the inflammatory conditions that its toxins induce, here we use RNA sequencing to define, in a mouse model, the metabolic states of wild-type C. difficile and of an isogenic mutant that lacks toxins. By combining bacterial and mouse genetics, we demonstrate that C. difficile uses sorbitol derived from both diet and host. Host-derived sorbitol is produced by the enzyme aldose reductase, which is expressed by diverse immune cells and is upregulated during inflammation-including during toxin-mediated disease induced by C. difficile. This work highlights a mechanism by which C. difficile can use a host-derived nutrient that is generated during toxin-induced disease by an enzyme that has not previously been associated with infection.


Asunto(s)
Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Clostridioides difficile/patogenicidad , Infecciones por Clostridium/metabolismo , Infecciones por Clostridium/microbiología , Interacciones Huésped-Patógeno , Sorbitol/metabolismo , Aldehído Reductasa/metabolismo , Animales , Toxinas Bacterianas/biosíntesis , Toxinas Bacterianas/genética , Clostridioides difficile/genética , Infecciones por Clostridium/enzimología , Colitis/enzimología , Colitis/metabolismo , Colitis/microbiología , Femenino , Regulación Bacteriana de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación
2.
J Biol Chem ; 300(2): 105598, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159859

RESUMEN

Cofactor imbalance obstructs the productivities of metabolically engineered cells. Herein, we employed a minimally perturbing system, xylose reductase and lactose (XR/lactose), to increase the levels of a pool of sugar phosphates which are connected to the biosynthesis of NAD(P)H, FAD, FMN, and ATP in Escherichia coli. The XR/lactose system could increase the amounts of the precursors of these cofactors and was tested with three different metabolically engineered cell systems (fatty alcohol biosynthesis, bioluminescence light generation, and alkane biosynthesis) with different cofactor demands. Productivities of these cells were increased 2-4-fold by the XR/lactose system. Untargeted metabolomic analysis revealed different metabolite patterns among these cells, demonstrating that only metabolites involved in relevant cofactor biosynthesis were altered. The results were also confirmed by transcriptomic analysis. Another sugar reducing system (glucose dehydrogenase) could also be used to increase fatty alcohol production but resulted in less yield enhancement than XR. This work demonstrates that the approach of increasing cellular sugar phosphates can be a generic tool to increase in vivo cofactor generation upon cellular demand for synthetic biology.


Asunto(s)
Ingeniería Metabólica , Redes y Vías Metabólicas , Aldehído Reductasa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Alcoholes Grasos/metabolismo , Fermentación , Lactosa/metabolismo , Ingeniería Metabólica/métodos , Fosfatos de Azúcar/metabolismo , Xilosa/metabolismo
3.
J Biol Chem ; 300(7): 107479, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38879006

RESUMEN

Glucoselysine (GL) is an unique advanced glycation end-product derived from fructose. The main source of fructose in vivo is the polyol pathway, and an increase in its activity leads to diabetic complications. Here, we aimed to demonstrate that GL can serve as an indicator of the polyol pathway activity. Additionally, we propose a novel approach for detecting GL in peripheral blood samples using liquid chromatography-tandem mass spectrometry and evaluate its clinical usefulness. We successfully circumvent interference from fructoselysine, which shares the same molecular weight as GL, by performing ultrafiltration and hydrolysis without reduction, successfully generating adequate peaks for quantification in serum. Furthermore, using immortalized aldose reductase KO mouse Schwann cells, we demonstrate that GL reflects the downstream activity of the polyol pathway and that GL produced intracellularly is released into the extracellular space. Clinical studies reveal that GL levels in patients with type 2 diabetes are significantly higher than those in healthy participants, while Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)ornithine (MG-H1) levels are significantly lower. Both GL and MG-H1 show higher values among patients with vascular complications; however, GL varies more markedly than MG-H1 as well as hemoglobin A1c, fasting plasma glucose, and estimated glomerular filtration rate. Furthermore, GL remains consistently stable under various existing drug treatments for type 2 diabetes, whereas MG-H1 is impacted. To the best of our knowledge, we provide important insights in predicting diabetic complications caused by enhanced polyol pathway activity via assessment of GL levels in peripheral blood samples from patients.


Asunto(s)
Diabetes Mellitus Tipo 2 , Productos Finales de Glicación Avanzada , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Humanos , Animales , Productos Finales de Glicación Avanzada/metabolismo , Ratones , Masculino , Persona de Mediana Edad , Femenino , Lisina/metabolismo , Ornitina/metabolismo , Ornitina/sangre , Ornitina/análogos & derivados , Aldehído Reductasa/metabolismo , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/sangre , Polímeros/química , Anciano , Ratones Noqueados , Imidazoles
4.
PLoS Biol ; 20(5): e3001610, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35580139

RESUMEN

How double-membraned Gram-negative bacteria overcome lipid peroxidation is virtually unknown. Bactericidal antibiotics and superoxide ion stress stimulate the transcription of the Burkholderia cenocepacia bcnA gene that encodes a secreted lipocalin. bcnA gene orthologs are conserved in bacteria and generally linked to a conserved upstream gene encoding a cytochrome b561 membrane protein (herein named lcoA, lipocalin-associated cytochrome oxidase gene). Mutants in bcnA, lcoA, and in a gene encoding a conserved cytoplasmic aldehyde reductase (peroxidative stress-associated aldehyde reductase gene, psrA) display enhanced membrane lipid peroxidation. Compared to wild type, the levels of the peroxidation biomarker malondialdehyde (MDA) increase in the mutants upon exposure to sublethal concentrations of the bactericidal antibiotics polymyxin B and norfloxacin. Microscopy with lipid peroxidation-sensitive fluorescent probes shows that lipid peroxyl radicals accumulate at the bacterial cell poles and septum and peroxidation is associated with a redistribution of anionic phospholipids and reduced antimicrobial resistance in the mutants. We conclude that BcnA, LcoA, and PsrA are components of an evolutionary conserved, hitherto unrecognized peroxidation detoxification system that protects the bacterial cell envelope from lipid peroxyl radicals.


Asunto(s)
Aldehído Reductasa , Lípidos de la Membrana , Antibacterianos/farmacología , Bacterias Gramnegativas , Lipocalinas
5.
Crit Rev Immunol ; 44(5): 1-13, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38618724

RESUMEN

Gastric cancer (GC) is highly heterogeneous and influenced by aging-related factors. This study aimed to improve individualized prognostic assessment of GC by identifying aging-related genes and subtypes. Immune scores of GC samples from GEO and TCGA databases were calculated using ESTIMATE and scored as high immune (IS_high) and low immune (IS_low). ssGSEA was used to analyze immune cell infiltration. Univariate Cox regression was employed to identify prognosis-related genes. LASSO regression analysis was used to construct a prognostic model. GSVA enrichment analysis was applied to determine pathways. CCK-8, wound healing, and Transwell assays tested the proliferation, migration, and invasion of the GC cell line (AGS). Cell cycle and aging were examined using flow cytometry, ß-galactosidase staining, and Western blotting. Two aging-related GC subtypes were identified. Subtype 2 was characterized as lower survival probability and higher risk, along with a more immune-responsive tumor microenvironment. Three genes (IGFBP5, BCL11B, and AKR1B1) screened from aging-related genes were used to establish a prognosis model. The AUC values of the model were greater than 0.669, exhibiting strong prognostic value. In vitro, IGFBP5 overexpression in AGS cells was found to decrease viability, migration, and invasion, alter the cell cycle, and increase aging biomarkers (SA-ß-galactosidase, p53, and p21). This analysis uncovered the immune characteristics of two subtypes and aging-related prognosis genes in GC. The prognostic model established for three aging-related genes (IGFBP5, BCL11B, and AKR1B1) demonstrated good prognosis performance, providing a foundation for personalized treatment strategies aimed at GC.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Pronóstico , Envejecimiento , beta-Galactosidasa , Proteínas Supresoras de Tumor , Microambiente Tumoral/genética , Proteínas Represoras , Aldehído Reductasa
6.
Nature ; 565(7737): 96-100, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30487609

RESUMEN

Endothelial nitric oxide synthase (eNOS) is protective against kidney injury, but the molecular mechanisms of this protection are poorly understood1,2. Nitric oxide-based cellular signalling is generally mediated by protein S-nitrosylation, the oxidative modification of Cys residues to form S-nitrosothiols (SNOs). S-nitrosylation regulates proteins in all functional classes, and is controlled by enzymatic machinery that includes S-nitrosylases and denitrosylases, which add and remove SNO from proteins, respectively3,4. In Saccharomyces cerevisiae, the classic metabolic intermediate co-enzyme A (CoA) serves as an endogenous source of SNOs through its conjugation with nitric oxide to form S-nitroso-CoA (SNO-CoA), and S-nitrosylation of proteins by SNO-CoA is governed by its cognate denitrosylase, SNO-CoA reductase (SCoR)5. Mammals possess a functional homologue of yeast SCoR, an aldo-keto reductase family member (AKR1A1)5 with an unknown physiological role. Here we report that the SNO-CoA-AKR1A1 system is highly expressed in renal proximal tubules, where it transduces the activity of eNOS in reprogramming intermediary metabolism, thereby protecting kidneys against acute kidney injury. Specifically, deletion of Akr1a1 in mice to reduce SCoR activity increased protein S-nitrosylation, protected against acute kidney injury and improved survival, whereas this protection was lost when Enos (also known as Nos3) was also deleted. Metabolic profiling coupled with unbiased mass spectrometry-based SNO-protein identification revealed that protection by the SNO-CoA-SCoR system is mediated by inhibitory S-nitrosylation of pyruvate kinase M2 (PKM2) through a novel locus of regulation, thereby balancing fuel utilization (through glycolysis) with redox protection (through the pentose phosphate shunt). Targeted deletion of PKM2 from mouse proximal tubules recapitulated precisely the protective and mechanistic effects of S-nitrosylation in Akr1a1-/- mice, whereas Cys-mutant PKM2, which is refractory to S-nitrosylation, negated SNO-CoA bioactivity. Our results identify a physiological function of the SNO-CoA-SCoR system in mammals, describe new regulation of renal metabolism and of PKM2 in differentiated tissues, and offer a novel perspective on kidney injury with therapeutic implications.


Asunto(s)
Lesión Renal Aguda/enzimología , Lesión Renal Aguda/prevención & control , Coenzima A/metabolismo , Ingeniería Metabólica , Oxidorreductasas/metabolismo , Aldehído Reductasa/deficiencia , Aldehído Reductasa/genética , Aldehído Reductasa/metabolismo , Animales , Línea Celular , Femenino , Glucólisis , Células HEK293 , Humanos , Túbulos Renales Proximales/enzimología , Masculino , Ratones , Mutación , Óxido Nítrico Sintasa de Tipo III/metabolismo , Oxidación-Reducción , Vía de Pentosa Fosfato , Multimerización de Proteína , Piruvato Quinasa/antagonistas & inhibidores , Piruvato Quinasa/deficiencia , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo
7.
Am J Physiol Renal Physiol ; 327(3): F489-F503, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38991008

RESUMEN

Fate mapping and genetic manipulation of renin cells have relied on either noninducible Cre lines that can introduce the developmental effects of gene deletion or bacterial artificial chromosome transgene-based inducible models that may be prone to spurious and/or ectopic gene expression. To circumvent these problems, we generated an inducible mouse model in which CreERT2 is under the control of the endogenous Akr1b7 gene, an independent marker of renin cells that is expressed in a few extrarenal tissues. We confirmed the proper expression of Cre using Akr1b7CreERT2/+;R26RmTmG/+ mice in which Akr1b7+/renin+ cells become green fluorescent protein (GFP)+ upon tamoxifen administration. In embryos and neonates, GFP was found in juxtaglomerular cells, along the arterioles, and in the mesangium, and in adults, GFP was present mainly in juxtaglomerular cells. In mice treated with captopril and a low-salt diet to induce recruitment of renin cells, GFP extended along the afferent arterioles and in the mesangium. We generated Akr1b7CreERT2/+;Ren1cFl/-;R26RmTmG/+ mice to conditionally delete renin in adult mice and found a marked reduction in kidney renin mRNA and protein and mean arterial pressure in mutant animals. When subjected to a homeostatic threat, mutant mice were unable to recruit renin+ cells. Most importantly, these mice developed concentric vascular hypertrophy ruling out potential developmental effects on the vasculature due to the lack of renin. We conclude that Akr1b7CreERT2 mice constitute an excellent model for the fate mapping of renin cells and for the spatial and temporal control of gene expression in renin cells.NEW & NOTEWORTHY Fate mapping and genetic manipulation are important tools to study the identity of renin cells. Here, we report on a novel Cre mouse model, Akr1b7CreERT2, for the spatial and temporal regulation of gene expression in renin cells. Cre is properly expressed in renin cells during development and in the adult under basal conditions and under physiological stress. Moreover, renin can be efficiently deleted in the adult, leading to the development of concentric vascular hypertrophy.


Asunto(s)
Ratones Transgénicos , Renina , Animales , Renina/metabolismo , Renina/genética , Ratones , Aparato Yuxtaglomerular/metabolismo , Aldehído Reductasa/genética , Aldehído Reductasa/metabolismo , Captopril/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Regulación de la Expresión Génica , Integrasas/genética , Integrasas/metabolismo
8.
Chembiochem ; 25(8): e202400121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38349346

RESUMEN

Carboxylic acid reductase enzymes (CARs) are well known for the reduction of a wide range of carboxylic acids to the respective aldehydes. One of the essential CAR domains - the reductase domain (R-domain) - was recently shown to catalyze the standalone reduction of carbonyls, including aldehydes, which are typically considered to be the final product of carboxylic acid reduction by CAR. We discovered that the respective full-length CARs were equally able to reduce aldehydes. Herein we aimed to shed light on the impact of this activity on aldehyde production and acid reduction in general. Our data explains previously inexplicable results and a new CAR from Mycolicibacterium wolinskyi is presented.


Asunto(s)
Aldehído Reductasa , Oxidorreductasas , Aldehídos , Ácidos Carboxílicos
9.
Appl Environ Microbiol ; 90(4): e0015024, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38551341

RESUMEN

Avilamycins, which possess potent inhibitory activity against Gram-positive bacteria, are a group of oligosaccharide antibiotics produced by Streptomyces viridochromogenes. Among these structurally related oligosaccharide antibiotics, avilamycin A serves as the main bioactive component in veterinary drugs and animal feed additives, which differs from avilamycin C only in the redox state of the two-carbon branched-chain of the terminal octose moiety. However, the mechanisms underlying assembly and modification of the oligosaccharide chain to diversify individual avilamycins remain poorly understood. Here, we report that AviZ1, an aldo-keto reductase in the avilamycin pathway, can catalyze the redox conversion between avilamycins A and C. Remarkably, the ratio of these two components produced by AviZ1 depends on the utilization of specific redox cofactors, namely NADH/NAD+ or NADPH/NADP+. These findings are inspired by gene disruption and complementation experiments and are further supported by in vitro enzymatic activity assays, kinetic analyses, and cofactor affinity studies on AviZ1-catalyzed redox reactions. Additionally, the results from sequence analysis, structure prediction, and site-directed mutagenesis of AviZ1 validate it as an NADH/NAD+-favored aldo-keto reductase that primarily oxidizes avilamycin C to form avilamycin A by utilizing abundant NAD+ in vivo. Building upon the biological function and catalytic activity of AviZ1, overexpressing AviZ1 in S. viridochromogenes is thus effective to improve the yield and proportion of avilamycin A in the fermentation profile of avilamycins. This study represents, to our knowledge, the first characterization of biochemical reactions involved in avilamycin biosynthesis and contributes to the construction of high-performance strains with industrial value.IMPORTANCEAvilamycins are a group of oligosaccharide antibiotics produced by Streptomyces viridochromogenes, which can be used as veterinary drugs and animal feed additives. Avilamycin A is the most bioactive component, differing from avilamycin C only in the redox state of the two-carbon branched-chain of the terminal octose moiety. Currently, the biosynthetic pathway of avilamycins is not clear. Here, we report that AviZ1, an aldo-keto reductase in the avilamycin pathway, can catalyze the redox conversion between avilamycins A and C. More importantly, AviZ1 exhibits a unique NADH/NAD+ preference, allowing it to efficiently catalyze the oxidation of avilamycin C to form avilamycin A using abundant NAD+ in cells. Thus, overexpressing AviZ1 in S. viridochromogenes is effective to improve the yield and proportion of avilamycin A in the fermentation profile of avilamycins. This study serves as an enzymological guide for rational strain design, and the resulting high-performance strains have significant industrial value.


Asunto(s)
NAD , Streptomyces , Drogas Veterinarias , NAD/metabolismo , Aldo-Ceto Reductasas/metabolismo , Oligosacáridos , Oxidación-Reducción , Antibacterianos , Carbono/metabolismo , NADP/metabolismo , Aldehído Reductasa/metabolismo
10.
FEMS Yeast Res ; 242024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-39009031

RESUMEN

Lignocellulose (dry plant biomass) is an abundant cheap inedible residue of agriculture and wood industry with great potential as a feedstock for biotechnological processes. Lignocellulosic substrates can serve as valuable resources in fermentation processes, allowing the production of a wide array of chemicals, fuels, and food additives. The main obstacle for cost-effective conversion of lignocellulosic hydrolysates to target products is poor metabolism of the major pentoses, xylose and L-arabinose, which are the second and third most abundant sugars of lignocellulose after glucose. We study the oversynthesis of riboflavin in the flavinogenic yeast Candida famata and found that all major lignocellulosic sugars, including xylose and L-arabinose, support robust growth and riboflavin synthesis in the available strains of C. famata. To further increase riboflavin production from xylose and lignocellulose hydrolysate, genes XYL1 and XYL2 coding for xylose reductase and xylitol dehydrogenase were overexpressed. The resulting strains exhibited increased riboflavin production in both shake flasks and bioreactors using diluted hydrolysate, reaching 1.5 g L-1.


Asunto(s)
Candida , Lignina , Ingeniería Metabólica , Riboflavina , Xilosa , Lignina/metabolismo , Riboflavina/metabolismo , Riboflavina/biosíntesis , Candida/metabolismo , Candida/genética , Xilosa/metabolismo , Aldehído Reductasa/metabolismo , Aldehído Reductasa/genética , Fermentación , Reactores Biológicos/microbiología , D-Xilulosa Reductasa/metabolismo , D-Xilulosa Reductasa/genética , Arabinosa/metabolismo
11.
Phys Chem Chem Phys ; 26(12): 9295-9308, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38469695

RESUMEN

Understanding selectivity mechanisms of inhibitors towards highly homologous proteins is of paramount importance in the design of selective candidates. Human aldo-keto reductases (AKRs) pertain to a superfamily of monomeric oxidoreductases, which serve as NADPH-dependent cytosolic enzymes to catalyze the reduction of carbonyl groups to primary and secondary alcohols using electrons from NADPH. Among AKRs, AKR1B1 is emerging as a promising target for cancer treatment and diabetes, despite its high structural similarity with AKR1B10, which leads to severe adverse events. Therefore, it is crucial to understand the selectivity mechanisms of AKR1B1 and AKR1B10 to discover safe anticancer candidates with optimal therapeutic efficacy. In this study, multiple computational strategies, including sequence alignment, structural comparison, Protein Contacts Atlas analysis, molecular docking, molecular dynamics simulation, MM-GBSA calculation, alanine scanning mutagenesis and pharmacophore modeling analysis were employed to comprehensively understand the selectivity mechanisms of AKR1B1/10 inhibition based on selective inhibitor lidorestat and HAHE. This study would provide substantial evidence in the design of potent and highly selective AKR1B1/10 inhibitors in future.


Asunto(s)
Inhibidores Enzimáticos , Simulación de Dinámica Molecular , Humanos , Simulación del Acoplamiento Molecular , NADP/metabolismo , Aldo-Ceto Reductasas/metabolismo , Inhibidores Enzimáticos/farmacología , Aldehído Reductasa/metabolismo
12.
Bioorg Chem ; 145: 107221, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387398

RESUMEN

Despite significant developments in therapeutic strategies, Diabetes Mellitus remains an increasing concern, leading to various complications, e.g., cataracts, neuropathy, retinopathy, nephropathy, and several cardiovascular diseases. The polyol pathway, which involves Aldose reductase (AR) as a critical enzyme, has been focused on by many researchers as a target for intervention. On the other hand, spiroindoline-based compounds possess remarkable biological properties. This guided us to synthesize novel spiroindoline oxadiazolyl-based acetate derivatives and investigate their biological activities. The synthesized molecules' structures were confirmed herein, using IR, NMR (1H and 13C), and Mass spectroscopy. All compounds were potent inhibitors with KI constants spanning from 0.186 ± 0.020 µM to 0.662 ± 0.042 µM versus AR and appeared as better inhibitors than the clinically used drug, Epalrestat (EPR, KI: 0.841 ± 0.051 µM). Besides its remarkable inhibitory profile compared to EPR, compound 6k (KI: 0.186 ± 0.020 µM) was also determined to have an unusual pharmacokinetic profile. The results showed that 6k had less cytotoxic effect on normal mouse fibroblast (L929) cells (IC50 of 569.58 ± 0.80 µM) and reduced the viability of human breast adenocarcinoma (MCF-7) cells (IC50 of 110.87 ± 0.42 µM) more than the reference drug Doxorubicin (IC50s of 98.26 ± 0.45 µM and 158.49 ± 2.73 µM, respectively), thus exhibiting more potent anticancer activity. Moreover, molecular dynamic simulations for 200 ns were conducted to predict the docked complex's stability and reveal significant amino acid residues that 6k interacts with throughout the simulation.


Asunto(s)
Aldehído Reductasa , Diabetes Mellitus , Ratones , Animales , Humanos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Estructura Molecular , Simulación de Dinámica Molecular
13.
Dig Dis Sci ; 69(7): 2502-2521, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38662158

RESUMEN

BACKGROUND: Long noncoding RNAs (lncRNAs) have been shown to be related to the occurrence and development of a variety of cancers including hepatocellular carcinoma (HCC). However, a large number of potential HCC-related lncRNAs remain undiscovered and are yet to be fully understood. METHODS: Differentially expressed lncRNAs were first obtained from the tumor tissues and adjacent normal tissues of five HCC patients using high-throughput microarray chips. Then the expression levels of 10 differentially expressed lncRNAs were verified in 50 pairs of tissue samples from patients with HCC by quantitative real-time PCR (qRT-PCR). The oncogenic effects of lncRNA-4045 (ENST00000524045.6) in HCC cell lines were verified through a series of in vitro experiments including CCK-8 assay, plate clone formation assay, transwell assay, scratch assay, and flow cytometry. Subsequently, the potential target genes of lncRNA-4045 were predicted by bioinformatics analysis, fluorescence in situ hybridization assay, and RNA sequencing. The mechanism of lncRNA-4045 in HCC was explored by WB assay as well as rescue and enhancement experiments. RESULTS: The results from microarray chips showed 1,708 lncRNAs to have been significantly upregulated and 2725 lncRNAs to have been significantly downregulated in HCC tissues. Via validation in 50 HCC patients, a novel lncRNA lncRNA-4045 was found significantly upregulated in HCC tissues. Additionally, a series of in vitro experiments showed that lncRNA-4045 promoted the proliferation, invasion, and migration of HCC cell lines, and inhibited the apoptosis of HCC cell lines. The results of qRT-PCR in HCC tissues showed that the expression levels of AKR1B10 were significantly positively correlated with lncRNA-4045. LncRNA-4045 knockdown significantly down-regulated AKR1B10 protein expression, and overexpression of lncRNA-4045 led to significant up-regulation of AKR1B10 protein in HCC cell lines. Lastly, down-regulation of AKR1B10 could partially eliminate the enhancement of cell proliferation induced by lncRNA-4045 overexpression, while up-regulation of AKR1B10 was shown to enhance those effects. CONCLUSION: LncRNA-4045 may promote HCC via enhancement of the expression of AKR1B10 protein.


Asunto(s)
Aldo-Ceto Reductasas , Carcinoma Hepatocelular , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , ARN Largo no Codificante , Femenino , Humanos , Masculino , Persona de Mediana Edad , Aldehído Reductasa/genética , Aldehído Reductasa/metabolismo , Aldo-Ceto Reductasas/genética , Aldo-Ceto Reductasas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
14.
Arch Toxicol ; 98(3): 807-820, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38175295

RESUMEN

The most important dose-limiting factor of the anthracycline idarubicin is the high risk of cardiotoxicity, in which the secondary alcohol metabolite idarubicinol plays an important role. It is not yet clear which enzymes are most important for the formation of idarubicinol and which inhibitors might be suitable to suppress this metabolic step and thus would be promising concomitant drugs to reduce idarubicin-associated cardiotoxicity. We, therefore, established and validated a mass spectrometry method for intracellular quantification of idarubicin and idarubicinol and investigated idarubicinol formation in different cell lines and its inhibition by known inhibitors of the aldo-keto reductases AKR1A1, AKR1B1, and AKR1C3 and the carbonyl reductases CBR1/3. The enzyme expression pattern differed among the cell lines with dominant expression of CBR1/3 in HEK293 and MCF-7 and very high expression of AKR1C3 in HepG2 cells. In HEK293 and MCF-7 cells, menadione was the most potent inhibitor (IC50 = 1.6 and 9.8 µM), while in HepG2 cells, ranirestat was most potent (IC50 = 0.4 µM), suggesting that ranirestat is not a selective AKR1B1 inhibitor, but also an AKR1C3 inhibitor. Over-expression of AKR1C3 verified the importance of AKR1C3 for idarubicinol formation and showed that ranirestat is also a potent inhibitor of this enzyme. Taken together, our study underlines the importance of AKR1C3 and CBR1 for the reduction of idarubicin and identifies potent inhibitors of metabolic formation of the cardiotoxic idarubicinol, which should now be tested in vivo to evaluate whether such combinations can increase the cardiac safety of idarubicin therapies while preserving its efficacy.


Asunto(s)
Cardiotoxicidad , Daunorrubicina/análogos & derivados , Idarrubicina , Pirazinas , Compuestos de Espiro , Humanos , Idarrubicina/toxicidad , Idarrubicina/metabolismo , Aldo-Ceto Reductasas , Células HEK293 , Aldehído Reductasa
15.
Lipids Health Dis ; 23(1): 201, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937844

RESUMEN

BACKGROUND: Nonalcoholic steatohepatitis (NASH) is a prevalent chronic liver condition. However, the potential therapeutic benefits and underlying mechanism of nicotinate-curcumin (NC) in the treatment of NASH remain uncertain. METHODS: A rat model of NASH induced by a high-fat and high-fructose diet was treated with nicotinate-curcumin (NC, 20, 40 mg·kg- 1), curcumin (Cur, 40 mg·kg- 1) and metformin (Met, 50 mg·kg- 1) for a duration of 4 weeks. The interaction between NASH, Cur and Aldo-Keto reductase family 1 member B10 (AKR1B10) was filter and analyzed using network pharmacology. The interaction of Cur, NC and AKR1B10 was analyzed using molecular docking techniques, and the binding energy of Cur and NC with AKR1B10 was compared. HepG2 cells were induced by Ox-LDL (25 µg·ml- 1, 24 h) in high glucose medium. NC (20µM, 40µM), Cur (40µM) Met (150µM) and epalrestat (Epa, 75µM) were administered individually. The activities of ALT, AST, ALP and the levels of LDL, HDL, TG, TC and FFA in serum were quantified using a chemiluminescence assay. Based on the changes in the above indicators, score according to NAS standards. The activities of Acetyl-CoA and Malonyl-CoA were measured using an ELISA assay. And the expression and cellular localization of AKR1B10 and Acetyl-CoA carboxylase (ACCα) in HepG2 cells were detected by Western blotting and immunofluorescence. RESULTS: The results of the animal experiments demonstrated that NASH rat model induced by a high-fat and high-fructose diet exhibited pronounced dysfunction in liver function and lipid metabolism. Additionally, there was a significant increase in serum levels of FFA and TG, as well as elevated expression of AKR1B10 and ACCα, and heightened activity of Acetyl-CoA and Malonyl-CoA in liver tissue. The administration of NC showed to enhance liver function in rats with NASH, leading to reductions in ALT, AST and ALP levels, and decrease in blood lipid and significant inhibition of FFA and TG synthesis in the liver. Network pharmacological analysis identified AKR1B10 and ACCα as potential targets for NASH treatment. Molecular docking studies revealed that both Cur and NC are capable of binding to AKR1B10, with NC exhibiting a stronger binding energy to AKR1B10. Western blot analysis demonstrated an upregulation in the expression of AKR1B10 and ACCα in the liver tissue of NASH rats, accompanied by elevated Acetyl-CoA and Malonyl-CoA activity, and increased levels of FFA and TG. The results of the HepG2 cell experiments induced by Ox-LDL suggest that NC significantly inhibited the expression and co-localization of AKR1B10 and ACCα, while also reduced levels of TC and LDL-C and increased level of HDL-C. These effects are accompanied by a decrease in the activities of ACCα and Malonyl-CoA, and levels of FFA and TG. Furthermore, the impact of NC appears to be more pronounced compared to Cur. CONCLUSION: NC could effectively treat NASH and improve liver function and lipid metabolism disorder. The mechanism of NC is related to the inhibition of AKR1B10/ACCα pathway and FFA/TG synthesis of liver.


Asunto(s)
Aldo-Ceto Reductasas , Curcumina , Enfermedad del Hígado Graso no Alcohólico , Triglicéridos , Curcumina/farmacología , Curcumina/análogos & derivados , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Humanos , Células Hep G2 , Aldo-Ceto Reductasas/metabolismo , Ratas , Masculino , Triglicéridos/sangre , Triglicéridos/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Aldehído Reductasa/metabolismo , Aldehído Reductasa/antagonistas & inhibidores , Dieta Alta en Grasa/efectos adversos , Simulación del Acoplamiento Molecular , Hígado/efectos de los fármacos , Hígado/metabolismo , Metformina/farmacología , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Rodanina/análogos & derivados , Tiazolidinas
16.
Mar Drugs ; 22(6)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38921547

RESUMEN

Clavatols exhibit a wide range of biological activities due to their diverse structures. A genome mining strategy identified an A5cla cluster from Penicillium sp. MYA5, derived from the Arctic plant Dryas octopetala, is responsible for clavatol biosynthesis. Seven clavatols, including one new clavatol derivate named penicophenone F (1) and six known clavatols (2-7), were isolated from Penicillium sp. MYA5 using a transcriptome mining strategy. These structures were elucidated by comprehensive spectroscopic analysis. Antibacterial, aldose reductase inhibition, and siderophore-producing ability assays were conducted on compounds 1-7. Compounds 1 and 2 demonstrated inhibitory effects on the ALR2 enzyme with inhibition rates of 75.3% and 71.6% at a concentration of 10 µM, respectively. Compound 6 exhibited antibacterial activity against Staphylococcus aureus and Escherichia coli with MIC values of 4.0 µg/mL and 4.0 µg/mL, respectively. Additionally, compounds 1, 5, and 6 also showed potential iron-binding ability.


Asunto(s)
Antibacterianos , Penicillium , Staphylococcus aureus , Penicillium/genética , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus/efectos de los fármacos , Genómica/métodos , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Pruebas de Sensibilidad Microbiana , Transcriptoma , Regiones Árticas , Sideróforos/farmacología , Aldehído Reductasa/antagonistas & inhibidores , Aldehído Reductasa/genética
17.
Arch Pharm (Weinheim) ; 357(8): e2300634, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38772694

RESUMEN

Novel synthesized pyrimidine derivatives were investigated against carbonic anhydrase isoenzymes I and II (hCA I and II), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-glycosidase, and aldose reductase (AR) enzymes associated with some common diseases such as epilepsy, glaucoma, Alzheimer's disease, diabetes, and neuropathy. When the results were examined, novel synthesized pyrimidine derivatives were found to have effective inhibition abilities toward the metabolic enzymes. IC50 values and Ki values were calculated for each pyrimidine derivative and compared to positive controls. The synthesized novel pyrimidine derivatives exhibited Ki values in the range of 39.16 ± 7.70-144.62 ± 26.98 nM against hCA I, 18.21 ± 3.66-136.35 ± 21.48 nM toward hCA II, which is associated with different pathological and physiological processes, 33.15 ± 4.85-52.98 ± 19.86 nM on AChE, and 31.96 ± 8.24-69.57 ± 21.27 nM on BChE. Also, Ki values were determined in the range of 17.37 ± 1.11-253.88 ± 39.91 nM against α-glycosidase and 648.82 ± 53.74-1902.58 ± 98.90 nM toward AR enzymes. Within the scope of the study, the inhibition types of the novel synthesized pyrimidine derivatives were evaluated.


Asunto(s)
Acetilcolinesterasa , Butirilcolinesterasa , Pirimidinas , Pirimidinas/farmacología , Pirimidinas/síntesis química , Pirimidinas/química , Relación Estructura-Actividad , Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Humanos , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Estructura Molecular , Aldehído Reductasa/antagonistas & inhibidores , Aldehído Reductasa/metabolismo , Anhidrasa Carbónica I/antagonistas & inhibidores , Anhidrasa Carbónica I/metabolismo , Relación Dosis-Respuesta a Droga , Anhidrasa Carbónica II/antagonistas & inhibidores , Anhidrasa Carbónica II/metabolismo , Concentración 50 Inhibidora
18.
Pharmacol Rev ; 73(3): 1150-1171, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34312303

RESUMEN

Human aldo-keto reductases (AKRs) catalyze the NADPH-dependent reduction of carbonyl groups to alcohols for conjugation reactions to proceed. They are implicated in resistance to cancer chemotherapeutic agents either because they are directly involved in their metabolism or help eradicate the cellular stress created by these agents (e.g., reactive oxygen species and lipid peroxides). Furthermore, this cellular stress activates the Nuclear factor-erythroid 2 p45-related factor 2 (NRF2)-Kelch-like ECH-associated protein 1 pathway. As many human AKR genes are upregulated by the NRF2 transcription factor, this leads to a feed-forward mechanism to enhance drug resistance. Resistance to major classes of chemotherapeutic agents (anthracyclines, mitomycin, cis-platin, antitubulin agents, vinca alkaloids, and cyclophosphamide) occurs by this mechanism. Human AKRs also catalyze the synthesis of androgens and estrogens and the elimination of progestogens and are involved in hormonal-dependent malignancies. They are upregulated by antihormonal therapy providing a second mechanism for cancer drug resistance. Inhibitors of the NRF2 system or pan-AKR1C inhibitors offer promise to surmount cancer drug resistance and/or synergize the effects of existing drugs. SIGNIFICANCE STATEMENT: Aldo-keto reductases (AKRs) are overexpressed in a large number of human tumors and mediate resistance to cancer chemotherapeutics and antihormonal therapies. Existing drugs and new agents in development may surmount this resistance by acting as specific AKR isoforms or AKR pan-inhibitors to improve clinical outcome.


Asunto(s)
Antineoplásicos , Neoplasias , Aldehído Reductasa/genética , Aldo-Ceto Reductasas , Antineoplásicos/farmacología , Resistencia a Medicamentos , Humanos , Neoplasias/tratamiento farmacológico
19.
Am J Physiol Cell Physiol ; 325(6): C1401-C1414, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37842750

RESUMEN

Open heart surgery is often an unavoidable procedure for the treatment of coronary artery disease. The procedure-associated reperfusion injury affects postoperative cardiac performance and long-term outcomes. We addressed here whether cardioplegia essential for cardiopulmonary bypass surgery activates Nrf2, a transcription factor regulating the expression of antioxidant and detoxification genes. With commonly used cardioplegic solutions, high K+, low K+, Del Nido (DN), histidine-tryptophan-ketoglutarate (HTK), and Celsior (CS), we found that DN caused a significant increase of Nrf2 protein in AC16 human cardiomyocytes. Tracing the ingredients in DN led to the discovery of KCl at the concentration of 20-60 mM capable of significant Nrf2 protein induction. The antioxidant response element (ARE) luciferase reporter assays confirmed Nrf2 activation by DN or KCl. Transcriptomic profiling using RNA-seq revealed that oxidation-reduction as a main gene ontology group affected by KCl. KCl indeed elevated the expression of classical Nrf2 downstream targets, including TXNRD1, AKR1C, AKR1B1, SRXN1, and G6PD. DN or KCl-induced Nrf2 elevation is Ca2+ concentration dependent. We found that KCl decreased Nrf2 protein ubiquitination and extended the half-life of Nrf2 from 17.8 to 25.1 mins. Knocking out Keap1 blocked Nrf2 induction by K+. Nrf2 induction by DN or KCl correlates with the protection against reactive oxygen species generation or loss of viability by H2O2 treatment. Our data support that high K+ concentration in DN cardioplegic solution can induce Nrf2 protein and protect cardiomyocytes against oxidative damage.NEW & NOTEWORTHY Open heart surgery is often an unavoidable procedure for the treatment of coronary artery disease. The procedure-associated reperfusion injury affects postoperative cardiac performance and long-term outcomes. We report here that Del Nido cardioplegic solution or potassium is an effective inducer of Nrf2 transcription factor, which controls the antioxidant and detoxification response. This indicates that Del Nido solution is not only essential for open heart surgery but also exhibits cardiac protective activity.


Asunto(s)
Enfermedad de la Arteria Coronaria , Daño por Reperfusión , Humanos , Soluciones Cardiopléjicas/farmacología , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2/genética , Miocitos Cardíacos , Potasio , Antioxidantes/farmacología , Peróxido de Hidrógeno/farmacología , Paro Cardíaco Inducido/métodos , Estrés Oxidativo , Aldehído Reductasa
20.
Funct Integr Genomics ; 23(3): 228, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37423913

RESUMEN

Tumor-associated macrophages (TAMs) are pivotal components of tumor microenvironment (TME), and senescent TAMs contribute to the alternation of the profiles of TME. However, the potential biological mechanisms and the prognosis value of senescent macrophages are largely unknown, especially in bladder cancer (BLCA). Based on the single-cell RNA sequencing of a primary BLCA sample, 23 macrophage-related genes were identified. Genomic difference analysis, LASSO, and Cox regression were used to develop the risk model. TCGA-BLCA cohort (n = 406) was utilized as the training cohort, and then, three independent cohorts (n = 90, n = 221, n = 165) from Gene Expression Omnibus, clinical samples from the local hospital (n = 27), and in vitro cell experiments were used for external validation. Aldo-keto reductase family 1 member B (AKR1B1), inhibitor of DNA binding 1 (ID1), and transforming growth factor beta 1 (TGFB1I1) were determined and included in the predictive model. The model serves as a promising tool to evaluate the prognosis in BLCA (pooled hazard ratio = 2.51, 95% confidence interval = [1.43; 4.39]). The model was also effective for the prediction of immunotherapeutic sensitivity and chemotherapy treatment outcomes, which were further confirmed by IMvigor210 cohort (P < 0.01) and GDSC dataset, respectively. Twenty-seven BLCA samples from the local hospital proved that the risk model was associated with the malignant degree (P < 0.05). At last, the human macrophage THP-1 and U937 cells were treated with H2O2 to mimic the senescent process in macrophage, and the expressions of these molecules in the model were detected (all P < 0.05).Overall, a macrophage cell senescence-related gene signature was constructed to predict the prognosis, immunotherapeutic response, and chemotherapy sensitivity in BLCA, which provides novel insights to uncover the underlying mechanisms of macrophage senescence.


Asunto(s)
Peróxido de Hidrógeno , Neoplasias de la Vejiga Urinaria , Humanos , Macrófagos , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Senescencia Celular , Inmunoterapia , Microambiente Tumoral/genética , Aldehído Reductasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA