Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proteins ; 92(3): 370-383, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37909486

RESUMEN

The thioredoxin system is a ubiquitous oxidoreductase system consisting of the enzyme thioredoxin reductase, the protein thioredoxin, and the cofactor nicotinamide adenine dinucleotide phosphate. The system has been comprehensively studied from many organisms, such as Escherichia coli; however, structural and functional analysis of this system from psychrophilic bacteria has not been as extensive. In this study, the thioredoxin system proteins of a psychrophilic bacterium, Colwellia psychrerythraea, were characterized using biophysical and biochemical techniques. Analysis of the complete genome sequence of the C. psychrerythraea thioredoxin system suggested the presence of a putative thioredoxin reductase and at least three thioredoxin. In this study, these identified putative thioredoxin system components were cloned, overexpressed, purified, and characterized. Our studies have indicated that the thioredoxin system proteins from E. coli were more stable than those from C. psychrerythraea. Consistent with these results, kinetic assays indicated that the thioredoxin reductase from E. coli had a higher optimal temperature than that from C. psychrerythraea.


Asunto(s)
Alteromonadaceae , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Reductasa de Tiorredoxina-Disulfuro/genética , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Proteínas Bacterianas/química , Alteromonadaceae/genética , Alteromonadaceae/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
2.
Appl Environ Microbiol ; 90(2): e0091423, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38265213

RESUMEN

Marine macroalgae produce abundant and diverse polysaccharides, which contribute substantially to the organic matter exported to the deep ocean. Microbial degradation of these polysaccharides plays an important role in the turnover of macroalgal biomass. Various members of the Planctomycetes-Verrucomicrobia-Chlamydia (PVC) superphylum are degraders of polysaccharides in widespread anoxic environments. In this study, we isolated a novel anaerobic bacterial strain NLcol2T from microbial mats on the surface of marine sediments offshore Santa Barbara, CA, USA. Based on 16S ribosomal RNA (rRNA) gene and phylogenomic analyses, strain NLcol2T represents a novel species within the Pontiella genus in the Kiritimatiellota phylum (within the PVC superphylum). Strain NLcol2T is able to utilize various monosaccharides, disaccharides, and macroalgal polysaccharides such as agar and É©-carrageenan. A near-complete genome also revealed an extensive metabolic capacity for anaerobic degradation of sulfated polysaccharides, as evidenced by 202 carbohydrate-active enzymes (CAZymes) and 165 sulfatases. Additionally, its ability of nitrogen fixation was confirmed by nitrogenase activity detected during growth on nitrogen-free medium, and the presence of nitrogenases (nifDKH) encoded in the genome. Based on the physiological and genomic analyses, this strain represents a new species of bacteria that may play an important role in the degradation of macroalgal polysaccharides and with relevance to the biogeochemical cycling of carbon, sulfur, and nitrogen in marine environments. Strain NLcol2T (= DSM 113125T = MCCC 1K08672T) is proposed to be the type strain of a novel species in the Pontiella genus, and the name Pontiella agarivorans sp. nov. is proposed.IMPORTANCEGrowth and intentional burial of marine macroalgae is being considered as a carbon dioxide reduction strategy but elicits concerns as to the fate and impacts of this macroalgal carbon in the ocean. Diverse heterotrophic microbial communities in the ocean specialize in these complex polymers such as carrageenan and fucoidan, for example, members of the Kiritimatiellota phylum. However, only four type strains within the phylum have been cultivated and characterized to date, and there is limited knowledge about the metabolic capabilities and functional roles of related organisms in the environment. The new isolate strain NLcol2T expands the known substrate range of this phylum and further reveals the ability to fix nitrogen during anaerobic growth on macroalgal polysaccharides, thereby informing the issue of macroalgal carbon disposal.


Asunto(s)
Alteromonadaceae , Bacterias Anaerobias , Anaerobiosis , Composición de Base , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Filogenia , Análisis de Secuencia de ADN , Bacterias Anaerobias/metabolismo , Polisacáridos/metabolismo , Alteromonadaceae/genética , Carragenina , ADN Bacteriano/análisis , Ácidos Grasos , Técnicas de Tipificación Bacteriana
3.
Curr Microbiol ; 81(4): 105, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38393402

RESUMEN

A bacterium designated GXH0434T was isolated from sea shore samples collected from Weizhou Island, Beihai, Guangxi, China. The organism is motile, strictly aerobic, and possesses a rod-coccus cell cycle in association with the growth phase. It can grow at 15-45 °C (optimum 37 °C), at pH 6.0-11.0 (optimum 6.0), and at 0-20% (w/v) NaCl (optimum 5.0-8.0%). The strain is positive for peroxidase and oxidase activity, negative for Voges-Proskauer test, can hydrolyze Tween 20, Tween 60, Tween 80, casein, and is able to produce siderophore and has the function of nitrogen fixation. Molecular phylogenetic analysis based on 16S rRNA gene sequences indicated that GXH0434T was most closely related to Microbulbifer halophilus KCTC 12848T with the similarity of 97.2%, followed by Microbulbifer chitinilyticus JCM 16148T (97.1%) and Microbulbifer taiwanensis LMG 26125T (96.5%). The digital DNA-DNA hybridization and the average nucleotide identity values between GXH0434T and Microbulbifer halophilus KCTC 12848T were 28.90% and 83.38%, respectively, which were below thresholds of species delineation. The genomic DNA G+C content of the strain was 61.9%. The major fatty acids were iso-C15:0, C16:0, iso-C11:0 3-OH, iso-C11:0 and Summed features 8 (C18:0 ω7c and/or C18:0 ω6c). The major polar lipids detected in GXH0434T were diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylcholine (PC). The major respiratory quinone was ubiquinone Q-8. Based on the above polyphasic classification indicated strain GXH0434T represents a novel species of the genus Microbulbifer, for which the name Microbulbifer litoralis sp. nov. is proposed. The type strain is GXH0434T (= MCCC 1K07158T = KCTC 92169T).


Asunto(s)
Alteromonadaceae , Gammaproteobacteria , Filogenia , ARN Ribosómico 16S/genética , China , Alteromonadaceae/genética , Ácidos Grasos/química , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana , Fosfolípidos/química
4.
RNA ; 27(2): 133-150, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33184227

RESUMEN

The large ribosomal RNAs of eukaryotes frequently contain expansion sequences that add to the size of the rRNAs but do not affect their overall structural layout and are compatible with major ribosomal function as an mRNA translation machine. The expansion of prokaryotic ribosomal RNAs is much less explored. In order to obtain more insight into the structural variability of these conserved molecules, we herein report the results of a comprehensive search for the expansion sequences in prokaryotic 5S rRNAs. Overall, 89 expanded 5S rRNAs of 15 structural types were identified in 15 archaeal and 36 bacterial genomes. Expansion segments ranging in length from 13 to 109 residues were found to be distributed among 17 insertion sites. The strains harboring the expanded 5S rRNAs belong to the bacterial orders Clostridiales, Halanaerobiales, Thermoanaerobacterales, and Alteromonadales as well as the archael order Halobacterales When several copies of a 5S rRNA gene are present in a genome, the expanded versions may coexist with normal 5S rRNA genes. The insertion sequences are typically capable of forming extended helices, which do not seemingly interfere with folding of the conserved core. The expanded 5S rRNAs have largely been overlooked in 5S rRNA databases.


Asunto(s)
Genoma Arqueal , Genoma Bacteriano , ARN de Archaea/genética , ARN Bacteriano/genética , ARN Ribosómico 5S/genética , Alteromonadaceae/clasificación , Alteromonadaceae/genética , Alteromonadaceae/metabolismo , Emparejamiento Base , Secuencia de Bases , Clostridiales/clasificación , Clostridiales/genética , Clostridiales/metabolismo , Firmicutes/clasificación , Firmicutes/genética , Firmicutes/metabolismo , Halobacteriales/clasificación , Halobacteriales/genética , Halobacteriales/metabolismo , Conformación de Ácido Nucleico , Filogenia , ARN de Archaea/química , ARN de Archaea/metabolismo , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Ribosómico 5S/química , ARN Ribosómico 5S/metabolismo , Thermoanaerobacterium/clasificación , Thermoanaerobacterium/genética , Thermoanaerobacterium/metabolismo
5.
Arch Microbiol ; 204(9): 548, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35945400

RESUMEN

A Gram-negative, aerobic, non-motile bacterium КMM 9862T was isolated from a deep bottom sediment sample obtained from the Okhotsk Sea, Russia. Based on the 16S rRNA gene and whole genome sequences analyses the novel strain КMM 9862T fell into the genus Microbulbifer (class Gammaproteobacteria) sharing the highest 16S rRNA gene sequence similarities of 97.4% to Microbulbifer echini AM134T and Microbulbifer epialgicus F-104T, 97.3% to Microbulbifer pacificus SPO729T, 97.1% to Microbulbifer variabilis ATCC 700307T, and similarity values of < 97.1% to other recognized Microbulbifer species. The average nucleotide identity and digital DNA-DNA hybridization values between strain КMM 9862T and M. variabilis ATCC 700307T and M. thermotolerans DSM 19189T were 80.34 and 77.72%, and 20.2 and 19.0%, respectively. Strain КMM 9862T contained Q-8 as the predominant ubiquinone and C16:0, C16:1 ω7c, C12:0, and C10:0 3-OH as the major fatty acids. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine, an unidentified aminophospholipid, an unidentified aminolipid, two unidentified phospholipids, phosphatidic acid, and an unidentified lipid. The DNA G+C content of 49.8% was calculated from the genome sequence. On the basis of the phylogenetic evidence and distinctive phenotypic characteristics, the marine bacterium KMM 9862T is proposed to be classified as a novel species Microbulbifer okhotskensis sp. nov. The type strain of the species is strain KMM 9862T (= KACC 22804T).


Asunto(s)
Alteromonadaceae , Sedimentos Geológicos , Alteromonadaceae/genética , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos/análisis , Sedimentos Geológicos/microbiología , Fosfolípidos/análisis , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
6.
Int J Syst Evol Microbiol ; 72(11)2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36748488

RESUMEN

Two Gram-stain-negative, catalase- and oxidase-positive, and aerobic bacteria, strains MSW7T and MSW13T, were isolated from seawater. Cells of strains MSW7T and MSW13T are motile and non-motile rods, respectively. Strain MSW7T optimally grew at 25 °C and pH 7.0 and in the presence of 3 % (w/v) NaCl, whereas strain MSW13T optimally grew at 25 °C and pH 6.0-7.0 and in the presence of 2 % NaCl. As the sole respiratory quinone and the major fatty acids and polar lipids, strain MSW7T contained ubiquinone-8, C16 : 0, C15 : 1 ω8c, C17 : 1 ω8c and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), and phosphatidylethanolamine and phosphatidylglycerol, respectively, whereas strain MSW13T contained menaquinone-6, C15 : 1 ω6c, iso-C15 : 0, anteiso-C15 : 0, and iso-C15 : 0 3-OH, and phosphatidylethanolamine, respectively. The DNA G+C contents of strains MSW7T and MSW13T were 37.3 and 29.9 %, respectively. Phylogenetic analyses based on 16S rRNA gene sequences showed that strains MSW7T and MSW13T were most closely related to Colwellia echini A3T and Polaribacter atrinae WP25T with 98.8 and 98.1 % sequence similarities, respectively. The average nucleotide identity and digital DNA-DNA hybridization values between strain MSW7T and C. echini A3T and between strain MSW13T and P. atrinae KACC 17473T were 73.6 and 22.6 % and 80.4 and 23.8 %, respectively. Based on phenotypic, chemotaxonomic and phylogenetic data, strains MSW7T and MSW13T represent novel species of the genera Colwellia and Polaribacter, respectively, for which the names Colwellia maritima sp. nov. and Polaribacter marinus sp. nov. are proposed, respectively. The type strains of C. maritima sp. nov. and P. marinus sp. nov. are MSW7T (=KACC 22339T=JCM 35001T) and MSW13T (=KACC 22341T=JCM 35021T), respectively.


Asunto(s)
Alteromonadaceae , Fosfatidiletanolaminas , Fosfatidiletanolaminas/química , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Cloruro de Sodio , ADN Bacteriano/genética , Composición de Base , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , Agua de Mar/microbiología , Alteromonadaceae/genética , Vitamina K 2/química
7.
Mar Drugs ; 20(4)2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35447927

RESUMEN

Alginate is the main component of brown algae, which is an important primary production in marine ecosystems and represents a huge marine biomass. The efficient utilization of alginate depends on alginate lyases to catalyze the degradation, and remains to be further explored. In this study, 354 strains were isolated from the gut of adult abalones, which mainly feed on brown algae. Among them, 100 alginate-degrading strains were gained and the majority belonged to the Gammaproteobacteria, followed by the Bacteroidetes and Alphaproteobacteria. A marine bacterium, Agarivorans sp. B2Z047, had the strongest degradation ability of alginate with the largest degradation circle and the highest enzyme activity. The optimal alginate lyase production medium of strain B2Z047 was determined as 1.1% sodium alginate, 0.3% yeast extract, 1% NaCl, and 0.1% MgSO4 in artificial seawater (pH 7.0). Cells of strain B2Z047 were Gram-stain-negative, aerobic, motile by flagella, short rod-shaped, and approximately 0.7-0.9 µm width and 1.2-1.9 µm length. The optimal growth conditions were determined to be at 30 °C, pH 7.0-8.0, and in 3% (w/v) NaCl. A total of 12 potential alginate lyase genes were identified through whole genome sequencing and prediction, which belonged to polysaccharide lyase family 6, 7, 17, and 38 (PL6, PL7, PL17, and PL38, respectively). Furthermore, the degradation products of nine alginate lyases were detected, among which Aly38A was the first alginate lyase belonging to the PL38 family that has been found to degrade alginate. The combination of alginate lyases functioning in the alginate-degrading process was further demonstrated by the growth curve and alginate lyase production of strain B2Z047 cultivated with or without sodium alginate, as well as the content changes of total sugar and reducing sugar and the transcript levels of alginate lyase genes. A simplified model was proposed to explain the alginate utilization process of Agarivorans sp. B2Z047.


Asunto(s)
Alteromonadaceae , Phaeophyceae , Alginatos/metabolismo , Alteromonadaceae/genética , Alteromonadaceae/metabolismo , Ecosistema , Phaeophyceae/metabolismo , Polisacárido Liasas/metabolismo , Cloruro de Sodio , Especificidad por Sustrato , Azúcares
8.
Mar Drugs ; 20(11)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36355015

RESUMEN

Up until now, the characterizations of GH50 agarases from Vibrio species have rarely been reported compared to GH16 agarases. In this study, a deep-sea strain, WPAGA4, was isolated and identified as Vibrio natriegens due to the maximum similarity of its 16S rRNA gene sequence, the values of its average nucleotide identity, and through digital DNA-DNA hybridization. Two circular chromosomes in V. natriegens WPAGA4 were assembled. A total of 4561 coding genes, 37 rRNA, 131 tRNA, and 59 other non-coding RNA genes were predicted in the genome of V. natriegens WPAGA4. An agarase gene belonging to the GH50 family was annotated in the genome sequence and expressed in E. coli cells. The optimum temperature and pH of the recombinant Aga3420 (rAga3420) were 40 °C and 7.0, respectively. Neoagarobiose (NA2) was the only product during the degradation process of agarose by rAga3420. rAga3420 had a favorable stability following incubation at 10-30 °C for 50 min. The Km, Vmax, and kcat values of rAga3420 were 2.8 mg/mL, 78.1 U/mg, and 376.9 s-1, respectively. rAga3420 displayed cold-adapted properties as 59.7% and 41.2% of the relative activity remained at 10 3 °C and 0 °C, respectively. This property ensured V. natriegens WPAGA4 could degrade and metabolize the agarose in cold deep-sea environments and enables rAga3420 to be an appropriate industrial enzyme for NA2 production, with industrial potential in medical and cosmetic fields.


Asunto(s)
Alteromonadaceae , Vibrio , Alteromonadaceae/genética , Alteromonadaceae/metabolismo , Sefarosa/metabolismo , ARN Ribosómico 16S/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Glicósido Hidrolasas/metabolismo , Vibrio/genética , Vibrio/metabolismo , ADN/metabolismo
9.
Environ Microbiol ; 23(7): 3840-3866, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33760340

RESUMEN

Colwellia psychrerythraea is a marine psychrophilic bacterium known for its remarkable ability to maintain activity during long-term exposure to extreme subzero temperatures and correspondingly high salinities in sea ice. These microorganisms must have adaptations to both high salinity and low temperature to survive, be metabolically active, or grow in the ice. Here, we report on an experimental design that allowed us to monitor culturability, cell abundance, activity and proteomic signatures of C. psychrerythraea strain 34H (Cp34H) in subzero brines and supercooled sea water through long-term incubations under eight conditions with varying subzero temperatures, salinities and nutrient additions. Shotgun proteomics found novel metabolic strategies used to maintain culturability in response to each independent experimental variable, particularly in pathways regulating carbon, nitrogen and fatty acid metabolism. Statistical analysis of abundances of proteins uniquely identified in isolated conditions provide metabolism-specific protein biosignatures indicative of growth or survival in either increased salinity, decreased temperature, or nutrient limitation. Additionally, to aid in the search for extant life on other icy worlds, analysis of detected short peptides in -10°C incubations after 4 months identified over 500 potential biosignatures that could indicate the presence of terrestrial-like cold-active or halophilic metabolisms on other icy worlds.


Asunto(s)
Alteromonadaceae , Proteómica , Alteromonadaceae/genética , Biomarcadores , Frío
10.
Environ Microbiol ; 23(2): 934-948, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32815245

RESUMEN

Heavy metal is one of the major factors threatening the survival of microorganisms. Here, a deep-sea bacterium designated Idiomarina sp. OT37-5b possessing strong cadmium (Cd) tolerance was isolated from a typical hydrothermal vent. Both the Cd-resistance and removal efficiency of Idiomarina sp. OT37-5b were significantly promoted by the supplement of cysteine and meanwhile large amount of CdS nanoparticles were observed. Production of H2 S from cysteine catalysed by methionine gamma-lyase was further demonstrated to contribute to the formation of CdS nanoparticles. Proteomic results showed the addition of cysteine effectively enhanced the efflux of Cd, improved the activities of reactive oxygen species scavenging enzymes, and thereby boosted the nitrogen reduction and energy production of Idiomarina sp. OT37-5b. Notably, the existence of CdS nanoparticles obviously promoted the growth of Idiomarina sp. OT37-5b when exposed to light, indicating this bacterium might grab light energy through CdS nanoparticles. Proteomic analysis revealed the expression levels of essential components for light utilization including electron transport, cytochrome complex and F-type ATPase were significantly up-regulated, which strongly suggested the formation of CdS nanoparticles promoted light utilization and energy production. Our results provide a good model to investigate the uncovered mechanisms of self-photosensitization of nonphotosynthetic bacteria for light-to-chemical production in the deep biosphere.


Asunto(s)
Alteromonadaceae/metabolismo , Compuestos de Cadmio/metabolismo , Cadmio/metabolismo , Agua de Mar/microbiología , Sulfuros/metabolismo , Alteromonadaceae/clasificación , Alteromonadaceae/genética , Alteromonadaceae/aislamiento & purificación , Compuestos de Cadmio/química , Cisteína/metabolismo , Hidrógeno/metabolismo , Nanopartículas/química , Proteómica , Sulfuros/química
11.
Appl Environ Microbiol ; 87(12): e0023021, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-33811026

RESUMEN

Marine microorganisms encode a complex repertoire of carbohydrate-active enzymes (CAZymes) for the catabolism of algal cell wall polysaccharides. While the core enzyme cascade for degrading agar is conserved across agarolytic marine bacteria, gain of novel metabolic functions can lead to the evolutionary expansion of the gene repertoire. Here, we describe how two less-abundant GH96 α-agarases harbored in the agar-specific polysaccharide utilization locus (PUL) of Colwellia echini strain A3T facilitate the versatility of the agarolytic pathway. The cellular and molecular functions of the α-agarases examined by genomic, transcriptomic, and biochemical analyses revealed that α-agarases of C. echini A3T create a novel auxiliary pathway. α-Agarases convert even-numbered neoagarooligosaccharides to odd-numbered agaro- and neoagarooligosaccharides, providing an alternative route for the depolymerization process in the agarolytic pathway. Comparative genomic analysis of agarolytic bacteria implied that the agarolytic gene repertoire in marine bacteria has been diversified during evolution, while the essential core agarolytic gene set has been conserved. The expansion of the agarolytic gene repertoire and novel hydrolytic functions, including the elucidated molecular functionality of α-agarase, promote metabolic versatility by channeling agar metabolism through different routes. IMPORTANCEColwellia echini A3T is an example of how the gain of gene(s) can lead to the evolutionary expansion of agar-specific polysaccharide utilization loci (PUL). C. echini A3T encodes two α-agarases in addition to the core ß-agarolytic enzymes in its agarolytic PUL. Among the agar-degrading CAZymes identified so far, only a few α-agarases have been biochemically characterized. The molecular and biological functions of two α-agarases revealed that their unique hydrolytic pattern leads to the emergence of auxiliary agarolytic pathways. Through the combination of transcriptomic, genomic, and biochemical evidence, we elucidate the complete α-agarolytic pathway in C. echini A3T. The addition of α-agarases to the agarolytic enzyme repertoire might allow marine agarolytic bacteria to increase competitive abilities through metabolic versatility.


Asunto(s)
Agar/metabolismo , Alteromonadaceae/metabolismo , Proteínas Bacterianas/metabolismo , Glicósido Hidrolasas/metabolismo , Alteromonadaceae/genética , Proteínas Bacterianas/genética , Perfilación de la Expresión Génica , Genoma Bacteriano , Genómica , Glicósido Hidrolasas/genética , Hidrólisis , Familia de Multigenes , Filogenia
12.
Antonie Van Leeuwenhoek ; 114(7): 947-955, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33864544

RESUMEN

A novel Gram-negative, rod-shaped, aerobic, oxidase-positive and catalase-negative bacterium, designated strain SM1970T, was isolated from a seawater sample collected from the Mariana Trench. Strain SM1970T grew at 15-37 oC and with 1-5% (w/v) NaCl. It hydrolyzed colloidal chitin, agar and casein but did not reduce nitrate to nitrite. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain SM1970T formed a distinct lineage close to the genus Catenovulum within the family Alteromonadaceae, sharing the highest sequence similarity (93.6%) with type strain of Catenovulum maritimum but < 93.0% sequence similarity with those of other known species in the class Gammaproteobacteria. The major fatty acids of strain SM1970T were summed feature 3 (C16: 1 ω7c and/or C16: 1 ω6c), C16: 0 and summed feature 8 (C18: 1 ω7c and/or C18: 1 ω6c). The major polar lipids of the strain included phosphatidylethanolamine and phosphatidylglycerol and its main respiratory quinone was ubiquinone 8. The draft genome of strain SM1970T consisted of 77 scaffolds and was 4,172,146 bp in length, containing a complete set of genes for chitin degradation. The average amino acid identity (AAI) values between SM1970T and type strains of known Catenovulum species were 56.6-57.1% while the percentage of conserved proteins (POCP) values between them were 28.5-31.5%. The genomic DNA G + C content of strain SM1970T was 40.1 mol%. On the basis of the polyphasic analysis, strain SM1970T is considered to represent a novel species in a novel genus of the family Alteromonadaceae, for which the name Marinifaba aquimaris is proposed with the type strain being SM1970T (= MCCC 1K04323T = KCTC 72844T).


Asunto(s)
Alteromonadaceae , Quitina , Alteromonadaceae/genética , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/análisis , Fosfolípidos/análisis , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar , Análisis de Secuencia de ADN
13.
BMC Genomics ; 21(1): 692, 2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-33023469

RESUMEN

BACKGROUND: The deep ocean is characterized by low temperatures, high hydrostatic pressures, and low concentrations of organic matter. While these conditions likely select for distinct genomic characteristics within prokaryotes, the attributes facilitating adaptation to the deep ocean are relatively unexplored. In this study, we compared the genomes of seven strains within the genus Colwellia, including some of the most piezophilic microbes known, to identify genomic features that enable life in the deep sea. RESULTS: Significant differences were found to exist between piezophilic and non-piezophilic strains of Colwellia. Piezophilic Colwellia have a more basic and hydrophobic proteome. The piezophilic abyssal and hadal isolates have more genes involved in replication/recombination/repair, cell wall/membrane biogenesis, and cell motility. The characteristics of respiration, pilus generation, and membrane fluidity adjustment vary between the strains, with operons for a nuo dehydrogenase and a tad pilus only present in the piezophiles. In contrast, the piezosensitive members are unique in having the capacity for dissimilatory nitrite and TMAO reduction. A number of genes exist only within deep-sea adapted species, such as those encoding d-alanine-d-alanine ligase for peptidoglycan formation, alanine dehydrogenase for NADH/NAD+ homeostasis, and a SAM methyltransferase for tRNA modification. Many of these piezophile-specific genes are in variable regions of the genome near genomic islands, transposases, and toxin-antitoxin systems. CONCLUSIONS: We identified a number of adaptations that may facilitate deep-sea radiation in members of the genus Colwellia, as well as in other piezophilic bacteria. An enrichment in more basic and hydrophobic amino acids could help piezophiles stabilize and limit water intrusion into proteins as a result of high pressure. Variations in genes associated with the membrane, including those involved in unsaturated fatty acid production and respiration, indicate that membrane-based adaptations are critical for coping with high pressure. The presence of many piezophile-specific genes near genomic islands highlights that adaptation to the deep ocean may be facilitated by horizontal gene transfer through transposases or other mobile elements. Some of these genes are amenable to further study in genetically tractable piezophilic and piezotolerant deep-sea microorganisms.


Asunto(s)
Adaptación Fisiológica , Alteromonadaceae/genética , Ambientes Extremos , Genoma Bacteriano , Proteoma , Alanina-Deshidrogenasa/genética , Alanina-Deshidrogenasa/metabolismo , Alteromonadaceae/clasificación , Alteromonadaceae/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Respiración de la Célula , Presión Hidrostática , Fluidez de la Membrana , Metilaminas/metabolismo , Nitritos/metabolismo , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Filogenia , Transposasas/genética , Transposasas/metabolismo
14.
Biochem Biophys Res Commun ; 523(2): 441-445, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31875842

RESUMEN

Ulvan is a complex water-soluble sulfated polysaccharide in the cell wall of green algae belonging to genus Ulva. It is composed of l-rhamnose-3-sulfate (Rha3S), glucuronic acid (GluA), iduronic acid (IduA), and d-xylose (Xyl) distributed in three repetition moieties. The first step of a bacterial ulvan degradation is the cleavage of the ß-glycosidic bond between Rha3S and GluA/IduA through a ß-elimination mechanism by a ulvan lyase to produce oligo-ulvans with unsaturated 4-deoxy-L-threo-hex-4-enopyranosiduronate (Δ) at the non-reducing end. We have identified an ulvan associated polysaccharide utilization locus (PUL) residing between two ulvan lyase genes belonging to families of polysaccharide lyase 24 (PL24) and PL25 in the genome of a ulvan-utilizing bacterium Glaciecola KUL10 strain. The PUL contains many genes responsible for oligo-ulvan degradation. Among them, we demonstrated that both KUL10_26540 and KUL10_26770 had an unsaturated ß-glucuronyl hydrolase activity to produce Rha3S and oligosaccharides, such as Rha3S-GluA-Rha3S, Rha3S-IduA-Rha3S and, Rha3S-Xyl-Rha3S, by releasing 5-dehydro-4-deoxy-d-glucuronate. KUL10_26540 showed much higher activity than KUL10_26770 and was more active on disaccharide than tetrasaccharide. We also found a rhamnosidase activity on four KUL10 gene products, although they could not react on the sulfated rhamnose.


Asunto(s)
Alteromonadaceae/enzimología , Glicósido Hidrolasas/metabolismo , Polisacáridos/metabolismo , Ulva/química , Alteromonadaceae/genética , Alteromonadaceae/metabolismo , Glicósido Hidrolasas/genética , Cinética , Polisacárido Liasas/genética , Polisacárido Liasas/metabolismo , Polisacáridos/aislamiento & purificación
15.
Protein Expr Purif ; 174: 105678, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32446879

RESUMEN

Dental plaque is a high-incidence health concern, and it is caused by Streptococcus mutans. Dextranase can specifically hydrolyze ɑ-1,6-glycosidic linkages in dextran. It is commonly used in the sugar industry, in the production of plasma substitutes, and the treatment and prevention of dental plaque. In this research work, we successfully cloned and expressed a cold-adapted dextranase from marine bacteria Catenovulum sp. DP03 in Escherichia coli. The recombinant dextranase named Cadex2870 contained a 2511 bp intact open reading frame and encoded 836 amino acids. The expression condition of recombinant strain was 0.1 mM isopropylthio-galactoside (IPTG), and the reduced temperature was 16 °C. The purified enzyme activity was 16.2 U/mg. The optimal temperature and pH of Cadex2870 were 45 °C and pH 8, and it also had catalytic activity at 0 °C. The hydrolysates of Cadex2870 hydrolysis Dextran T70 are maltose, maltotetraose, maltopentose, maltoheptaose and higher molecular weight maltooligosaccharides. Interestingly, 0.5% sodium benzoate, 2% xylitol, 0.5% sodium fluoride, 5% propanediol, 5% glycerin and 2% sorbitol can enhance stability Cadex2870, which are additives in mouthwashes. Additionally, Cadex2870 reduced the formation of dental plaque and effectively degraded formed plaque. Therefore, Cadex2870 shows great promise in commercial applications.


Asunto(s)
Alteromonadaceae , Organismos Acuáticos , Proteínas Bacterianas , Placa Dental/tratamiento farmacológico , Dextranasa , Expresión Génica , Streptococcus mutans/crecimiento & desarrollo , Aclimatación , Alteromonadaceae/enzimología , Alteromonadaceae/genética , Organismos Acuáticos/enzimología , Organismos Acuáticos/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/farmacología , Frío , Placa Dental/microbiología , Dextranasa/biosíntesis , Dextranasa/genética , Dextranasa/aislamiento & purificación , Dextranasa/farmacología , Humanos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología
16.
Appl Microbiol Biotechnol ; 104(24): 10541-10553, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33104843

RESUMEN

Agar-degrading bacteria are crucial drivers for the carbon cycle in the marine environments due to their ability that use algae as a carbon source. Although numerous agar-degrading bacteria and agarases have been reported, little is known about expression levels of agar-degrading genes in wild strains. Here, the genome of an agar-hydrolyzing marine bacterium, Catenovulum maritimus Q1T, was sequenced and annotated with 11 agarase and 2 neoagarooligosaccharide hydrolase genes. Quantitative PCR revealed that all the annotated agar-degrading genes were expressed consistently that initially upregulated and then gradually downregulated under agarose induction. Moreover, the presence of glucose inhibited the agar-degrading ability, in terms of both gene expression and enzymatic activity. These facts indicated the agar-degrading ability of wild bacteria was mainly induced by agarose and repressed by the available carbon source. Additionally, a ß-agarase, AgaQ1, belonging to the GH16 family, with high expression in strain Q1T, was cloned and characterized. Biochemical analysis showed that the recombinant AgaQ1 was substrate-specific, yielding neoagarotetraose and neoagarohexaose as the main products. It exhibited optimal activity at 40 °C, pH 8.0, and an agarose concentration of 1.6% (w/v). Besides, AgaQ1 showed a high-specific activity (757.7 U/mg) and stable enzymatic activity under different ion or agent treatments; thus, AgaQ1 has great potential in industrial applications. KEY POINTS: • The genome of C. maritimus Q1T was sequenced and annotated with 11 agarases and 2 Nabh genes. • The expression of agar-degrading genes in the strain C. maritimus Q1T was induced by agarose. • Glucose was the carbon source utilized prior to agarose for bacterial growth. • A ß-agarase, AgaQ1, with high expression and activity was identified.


Asunto(s)
Alteromonadaceae , Agar , Alteromonadaceae/genética , Glicósido Hidrolasas/genética
17.
Antonie Van Leeuwenhoek ; 113(7): 919-931, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32219666

RESUMEN

Microbial taxonomy is the foundation of microbiology and rapid advancements in DNA sequencing technologies are providing new approaches to address prevailing questions in this field. The family Colwelliaceae, which currently comprises four genera, is a diverse and globally abundant group of Gamaproteobacteria. Based on 14 publically available genomes of bacteria strains labeled as members of the family Colwelliaceae, phylogenomic analyses were conducted to revisiting the taxonomic status of this family both in the genus and species level. Using genome-based phylogeny as a primary guideline and genome-based similarity indexes including average amino acid identity, percentage of conserved proteins, average nucleotide identity, and the digital DNA-DNA hybridization as supplements, the following taxonomic proposals were proposed: Colwellia polaris, Colwellia beringensis, Colwellia sediminilitoris, Colwellia aestuarii, Colwellia chukchiensis and Colwellia mytili should be reclassified into the novel genus Cognaticolwellia; Colwellia agarivorans should be reclassified into the novel genus Pseudocolwellia. Our results constitute a solid framework for current and future taxonomic decisions within this family, which will be helpful for avoiding confusion with ecological and evolutionary interpretations in subsequent studies.


Asunto(s)
Alteromonadaceae/clasificación , Alteromonadaceae/genética , Filogenia , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Gammaproteobacteria/clasificación , Gammaproteobacteria/genética , Genes Bacterianos , Hibridación de Ácido Nucleico , Fenotipo , Agua de Mar/microbiología
18.
Antonie Van Leeuwenhoek ; 113(4): 449-458, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31701358

RESUMEN

A Gram-stain negative, rod-shaped, aerobic, oxidase-positive and catalase-weakly positive bacterial strain with polar or subpolar flagellum, designated RZ04T, was isolated from an intertidal sand sample collected from a coastal area of the Yellow Sea, China. The organism was observed to grow optimally at 25 °C and pH 6.5-7.0 with 2% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain RZ04T was closely related to Colwellia asteriadis (similarity 96.9%) and Litorilituus sediminis (similarity 96.8%), and 94.4-96.4% sequence similarities to other type strains of species of the genera belonged to the family Colwelliaceae. The dominant fatty acids of strain RZ04T were determined to be C17:1ω8c, C15:1ω8c, C16:0 and summed feature 3 (C16:1ω6c and/or C16:1ω7c), and the predominant isoprenoid quinone was determined to be quinone 8 (Q-8). Phosphatidylethanolamine, phosphatidylglycerol, an unidentified aminophospholipid and four unidentified lipids were determined to be the major constituents of the polar lipids. The genome of strain RZ04T is 4.14 Mbp with a G + C content of 37.4 mol%. A total of 3631 genes are predicted, with 3531 protein-coding genes, 75 RNA genes and 25 pseudogenes. Based on phenotypic, genotypic and phylogenetic analysis, strain RZ04T is considered to represent a novel species in the genus Litorilituus, for which the name Litorilituus lipolyticus is proposed. The type strain is RZ04T (= MCCC 1K03616T = KCTC 62835T). An emended description of Colwellia asteriadis is also provided.


Asunto(s)
Alteromonadaceae/clasificación , Gammaproteobacteria/clasificación , Gammaproteobacteria/aislamiento & purificación , Alteromonadaceae/genética , China , ADN Bacteriano/genética , Gammaproteobacteria/genética , Genotipo , Humanos , Océanos y Mares , Filogenia , Arena , Especificidad de la Especie
19.
Int J Mol Sci ; 21(2)2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31936522

RESUMEN

ß-N-Acetylhexosaminidases are glycoside hydrolases (GHs) acting on N-acetylated carbohydrates and glycoproteins with the release of N-acetylhexosamines. Members of the family GH20 have been reported to catalyze the transfer of N-acetylglucosamine (GlcNAc) to an acceptor, i.e., the reverse of hydrolysis, thus representing an alternative to chemical oligosaccharide synthesis. Two putative GH20 ß-N-acetylhexosaminidases, PhNah20A and PhNah20B, encoded by the marine bacterium Paraglaciecola hydrolytica S66T, are distantly related to previously characterized enzymes. Remarkably, PhNah20A was located by phylogenetic analysis outside clusters of other studied ß-N-acetylhexosaminidases, in a unique position between bacterial and eukaryotic enzymes. We successfully produced recombinant PhNah20A showing optimum activity at pH 6.0 and 50 °C, hydrolysis of GlcNAc ß-1,4 and ß-1,3 linkages in chitobiose (GlcNAc)2 and GlcNAc-1,3-ß-Gal-1,4-ß-Glc (LNT2), a human milk oligosaccharide core structure. The kinetic parameters of PhNah20A for p-nitrophenyl-GlcNAc and p-nitrophenyl-GalNAc were highly similar: kcat/KM being 341 and 344 mM-1 s-1, respectively. PhNah20A was unstable in dilute solution, but retained full activity in the presence of 0.5% bovine serum albumin (BSA). PhNah20A catalyzed the formation of LNT2, the non-reducing trisaccharide ß-Gal-1,4-ß-Glc-1,1-ß-GlcNAc, and in low amounts the ß-1,2- or ß-1,3-linked trisaccharide ß-Gal-1,4(ß-GlcNAc)-1,x-Glc by a transglycosylation of lactose using 2-methyl-(1,2-dideoxy-α-d-glucopyrano)-oxazoline (NAG-oxazoline) as the donor. PhNah20A is the first characterized member of a distinct subgroup within GH20 ß-N-acetylhexosaminidases.


Asunto(s)
Alteromonadaceae/enzimología , Organismos Acuáticos/enzimología , beta-N-Acetilhexosaminidasas/biosíntesis , Alteromonadaceae/genética , Organismos Acuáticos/genética , Biocatálisis/efectos de los fármacos , Estabilidad de Enzimas , Genoma Bacteriano , Glicosilación , Concentración de Iones de Hidrógeno , Cinética , Octoxinol/farmacología , Filogenia , Dominios Proteicos , Albúmina Sérica Bovina/farmacología , Cloruro de Sodio/farmacología , Especificidad por Sustrato/efectos de los fármacos , Temperatura , Factores de Tiempo , beta-N-Acetilhexosaminidasas/química
20.
Environ Microbiol ; 21(7): 2595-2609, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31087606

RESUMEN

Alkyl quinolones (AQs) are multifunctional bacterial secondary metabolites generally known for their antibacterial and algicidal properties. Certain representatives are also employed as signalling molecules of Burkholderia strains and Pseudomonas aeruginosa. The marine Gammaproteobacterium Microbulbifer sp. HZ11 harbours an AQ biosynthetic gene cluster with unusual topology but does not produce any AQ-type metabolites under laboratory conditions. In this study, we demonstrate the potential of strain HZ11 for AQ production by analysing intermediates and key enzymes of the pathway. Moreover, we demonstrate that exogenously added AQs such as 2-heptyl-1(H)-quinolin-4-one (referred to as HHQ) or 2-heptyl-1-hydroxyquinolin-4-one (referred to as HQNO) are brominated by a vanadium-dependent haloperoxidase (V-HPOHZ11 ), which preferably is active towards AQs with C5-C9 alkyl side chains. Bromination was specific for the third position and led to 3-bromo-2-heptyl-1(H)-quinolin-4-one (BrHHQ) and 3-bromo-2-heptyl-1-hydroxyquinolin-4-one (BrHQNO), both of which were less toxic for strain HZ11 than the respective parental compounds. In contrast, BrHQNO showed increased antibiotic activity against Staphylococcus aureus and marine isolates. Therefore, bromination of AQs by V-HPOHZ11 can have divergent consequences, eliciting a detoxifying effect for strain HZ11 while simultaneously enhancing antibiotic activity against other bacteria.


Asunto(s)
Alteromonadaceae/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacología , Quinolonas/metabolismo , Quinolonas/farmacología , Alteromonadaceae/genética , Alteromonadaceae/aislamiento & purificación , Antibacterianos/química , Halogenación , Quinolonas/química , Agua de Mar/microbiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA