Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.378
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Cell Dev Biol ; 38: 25-48, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35395166

RESUMEN

The anaphase-promoting complex/cyclosome (APC/C) represents a large multisubunit E3-ubiquitin ligase complex that controls the unidirectional progression through the cell cycle by the ubiquitination of specific target proteins, marking them for proteasomal destruction. Although the APC/C's role is largely conserved among eukaryotes, its subunit composition and target spectrum appear to be species specific. In this review, we focus on the plant APC/C complex, whose activity correlates with different developmental processes, including polyploidization and gametogenesis. After an introduction into proteolytic control by ubiquitination, we discuss the composition of the plant APC/C and the essential nature of its core subunits for plant development. Subsequently, we describe the APC/C activator subunits and interactors, most being plant specific. Finally, we provide a comprehensive list of confirmed and suspected plant APC/C target proteins. Identification of growth-related targets might offer opportunities to increase crop yield and resilience of plants to climate change by manipulating APC/C activity.


Asunto(s)
Anafase , Plantas , Ciclosoma-Complejo Promotor de la Anafase/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Plantas/genética , Plantas/metabolismo , Ubiquitinación , Ubiquitinas/metabolismo
2.
Mol Cell ; 83(10): 1549-1551, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37207623

RESUMEN

Cell cycle and metabolism are intimately intertwined, but how metabolites directly regulate cell-cycle machinery remains elusive. Liu et al.1 reveal that glycolysis end-product lactate directly binds and inhibits the SUMO protease SENP1 to govern the E3 ligase activity of the anaphase-promoting complex, leading to efficient mitotic exit in proliferative cells.


Asunto(s)
Anafase , Ácido Láctico , Mitosis , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Ciclo Celular/metabolismo
3.
Cell ; 156(5): 868-9, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24581486

RESUMEN

The spindle assembly checkpoint prevents separation of sister chromatids until each kinetochore is attached to the mitotic spindle. Rodriguez-Bravo et al. report that the nuclear pore complex scaffolds spindle assembly checkpoint signaling in interphase, providing a store of inhibitory signals that limits the speed of the subsequent mitosis.


Asunto(s)
Anafase , Proteínas de Ciclo Celular/metabolismo , Puntos de Control de la Fase M del Ciclo Celular , Proteínas Mad2/metabolismo , Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Humanos
4.
Cell ; 156(5): 1017-31, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24581499

RESUMEN

The spindle assembly checkpoint (SAC) delays anaphase until all chromosomes are bioriented on the mitotic spindle. Under current models, unattached kinetochores transduce the SAC by catalyzing the intramitotic production of a diffusible inhibitor of APC/C(Cdc20) (the anaphase-promoting complex/cyclosome and its coactivator Cdc20, a large ubiquitin ligase). Here we show that nuclear pore complexes (NPCs) in interphase cells also function as scaffolds for anaphase-inhibitory signaling. This role is mediated by Mad1-Mad2 complexes tethered to the nuclear basket, which activate soluble Mad2 as a binding partner and inhibitor of Cdc20 in the cytoplasm. Displacing Mad1-Mad2 from nuclear pores accelerated anaphase onset, prevented effective correction of merotelic errors, and increased the threshold of kinetochore-dependent signaling needed to halt mitosis in response to spindle poisons. A heterologous Mad1-NPC tether restored Cdc20 inhibitor production and normal M phase control. We conclude that nuclear pores and kinetochores both emit "wait anaphase" signals that preserve genome integrity.


Asunto(s)
Anafase , Proteínas de Ciclo Celular/metabolismo , Puntos de Control de la Fase M del Ciclo Celular , Proteínas Mad2/metabolismo , Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Transporte Activo de Núcleo Celular , Proteínas de Ciclo Celular/genética , Dimerización , Células HCT116 , Células HeLa , Humanos , Interfase , Cinetocoros/metabolismo , Mitosis , Proteínas Nucleares/genética
5.
Nature ; 616(7958): 790-797, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36921622

RESUMEN

Lactate is abundant in rapidly dividing cells owing to the requirement for elevated glucose catabolism to support proliferation1-6. However, it is not known whether accumulated lactate affects the proliferative state. Here we use a systematic approach to determine lactate-dependent regulation of proteins across the human proteome. From these data, we identify a mechanism of cell cycle regulation whereby accumulated lactate remodels the anaphase promoting complex (APC/C). Remodelling of APC/C in this way is caused by direct inhibition of the SUMO protease SENP1 by lactate. We find that accumulated lactate binds and inhibits SENP1 by forming a complex with zinc in the SENP1 active site. SENP1 inhibition by lactate stabilizes SUMOylation of two residues on APC4, which drives UBE2C binding to APC/C. This direct regulation of APC/C by lactate stimulates timed degradation of cell cycle proteins, and efficient mitotic exit in proliferative human cells. This mechanism is initiated upon mitotic entry when lactate abundance reaches its apex. In this way, accumulation of lactate communicates the consequences of a nutrient-replete growth phase to stimulate timed opening of APC/C, cell division and proliferation. Conversely, persistent accumulation of lactate drives aberrant APC/C remodelling and can overcome anti-mitotic pharmacology via mitotic slippage. In sum, we define a biochemical mechanism through which lactate directly regulates protein function to control the cell cycle and proliferation.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase , Proteínas de Ciclo Celular , Ciclo Celular , Ácido Láctico , Humanos , Anafase , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ácido Láctico/metabolismo , Mitosis
6.
Cell ; 154(2): 269-71, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23870117

RESUMEN

Development and homeostasis require repeated symmetric cell divisions, which in turn depend on a centered mitotic spindle. In this issue, Kiyomitsu and Cheeseman uncover two mechanisms that ensure correct spindle positioning in anaphase: cortical dynein for pulling the spindle to the cell center and asymmetric membrane elongation that adjusts the position of the cell center to the cleavage plane.


Asunto(s)
Anafase , Membrana Celular/metabolismo , Dineínas/metabolismo , Huso Acromático/metabolismo , Animales , Humanos
7.
Cell ; 154(5): 1127-1139, 2013 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-23993100

RESUMEN

Following DNA replication, eukaryotic cells must biorient all sister chromatids prior to cohesion cleavage at anaphase. In animal cells, sister chromatids gradually biorient during prometaphase, but current models of mitosis in S. cerevisiae assume that biorientation is established shortly after S phase. This assumption is based on the observation of a bilobed distribution of yeast kinetochores early in mitosis and suggests fundamental differences between yeast mitosis and mitosis in animal cells. By applying super-resolution imaging methods, we show that yeast and animal cells share the key property of gradual and stochastic chromosome biorientation. The characteristic bilobed distribution of yeast kinetochores, hitherto considered synonymous for biorientation, arises from kinetochores in mixed attachment states to microtubules, the length of which discriminates bioriented from syntelic attachments. Our results offer a revised view of mitotic progression in S. cerevisiae that augments the relevance of mechanistic information obtained in this powerful genetic system for mammalian mitosis.


Asunto(s)
Cromosomas Fúngicos/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Anafase , Aurora Quinasas , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Cinetocoros/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Fase S , Proteínas de Saccharomyces cerevisiae/genética , Huso Acromático
8.
Cell ; 154(2): 391-402, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23870127

RESUMEN

Mitotic spindle position defines the cell-cleavage site during cytokinesis. However, the mechanisms that control spindle positioning to generate equal-sized daughter cells remain poorly understood. Here, we demonstrate that two mechanisms act coordinately to center the spindle during anaphase in symmetrically dividing human cells. First, the spindle is positioned directly by the microtubule-based motor dynein, which we demonstrate is targeted to the cell cortex by two distinct pathways: a Gαi/LGN/NuMA-dependent pathway and a 4.1G/R and NuMA-dependent, anaphase-specific pathway. Second, we find that asymmetric plasma membrane elongation occurs in response to spindle mispositioning to alter the cellular boundaries relative to the spindle. Asymmetric membrane elongation is promoted by chromosome-derived Ran-GTP signals that locally reduce Anillin at the growing cell cortex. In asymmetrically elongating cells, dynein-dependent spindle anchoring at the stationary cell cortex ensures proper spindle positioning. Our results reveal the anaphase-specific spindle centering systems that achieve equal-sized cell division.


Asunto(s)
Anafase , Membrana Celular/metabolismo , Dineínas/metabolismo , Huso Acromático/metabolismo , Secuencia de Aminoácidos , Animales , Antígenos Nucleares/metabolismo , Proteínas de Ciclo Celular , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Complejo Dinactina , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Datos de Secuencia Molecular , Proteínas Asociadas a Matriz Nuclear/metabolismo , Alineación de Secuencia
9.
Mol Cell ; 79(5): 836-845.e7, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32649884

RESUMEN

The inactive X chromosome (Xi) is inherently susceptible to genomic aberrations. Replication stress (RS) has been proposed as an underlying cause, but the mechanisms that protect from Xi instability remain unknown. Here, we show that macroH2A1.2, an RS-protective histone variant enriched on the Xi, is required for Xi integrity and female survival. Mechanistically, macroH2A1.2 counteracts its structurally distinct and equally Xi-enriched alternative splice variant, macroH2A1.1. Comparative proteomics identified a role for macroH2A1.1 in alternative end joining (alt-EJ), which accounts for Xi anaphase defects in the absence of macroH2A1.2. Genomic instability was rescued by simultaneous depletion of macroH2A1.1 or alt-EJ factors, and mice deficient for both macroH2A1 variants harbor no overt female defects. Notably, macroH2A1 splice variant imbalance affected alt-EJ capacity also in tumor cells. Together, these findings identify macroH2A1 splicing as a modulator of genome maintenance that ensures Xi integrity and may, more broadly, predict DNA repair outcome in malignant cells.


Asunto(s)
Empalme Alternativo , Reparación del ADN , Epigénesis Genética , Inestabilidad Genómica , Histonas/fisiología , Anafase , Animales , Línea Celular , Inestabilidad Cromosómica , Cromosomas Humanos X , Femenino , Histonas/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
10.
Mol Cell ; 79(6): 902-916.e6, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32768407

RESUMEN

A long-standing conundrum is how mitotic chromosomes can compact, as required for clean separation to daughter cells, while maintaining close parallel alignment of sister chromatids. Pursuit of this question, by high resolution 3D fluorescence imaging of living and fixed mammalian cells, has led to three discoveries. First, we show that the structural axes of separated sister chromatids are linked by evenly spaced "mini-axis" bridges. Second, when chromosomes first emerge as discrete units, at prophase, they are organized as co-oriented sister linear loop arrays emanating from a conjoined axis. We show that this same basic organization persists throughout mitosis, without helical coiling. Third, from prophase onward, chromosomes are deformed into sequential arrays of half-helical segments of alternating handedness (perversions), accompanied by correlated kinks. These arrays fluctuate dynamically over <15 s timescales. Together these discoveries redefine the foundation for thinking about the evolution of mitotic chromosomes as they prepare for anaphase segregation.


Asunto(s)
Proteínas de Ciclo Celular/genética , Cromosomas/genética , Proteínas de Unión al ADN/genética , Mitosis/genética , Adenosina Trifosfatasas/genética , Anafase/genética , Animales , Proteínas de Ciclo Celular/aislamiento & purificación , Cromátides/genética , Proteínas Cromosómicas no Histona , ADN-Topoisomerasas de Tipo II/genética , Proteínas de Unión al ADN/aislamiento & purificación , Imagenología Tridimensional , Mamíferos , Metafase/genética , Profase/genética
11.
Mol Cell ; 78(1): 127-140.e7, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32035037

RESUMEN

As cells enter mitosis, the genome is restructured to facilitate chromosome segregation, accompanied by dramatic changes in gene expression. However, the mechanisms that underlie mitotic transcriptional regulation are unclear. In contrast to transcribed genes, centromere regions retain transcriptionally active RNA polymerase II (Pol II) in mitosis. Here, we demonstrate that chromatin-bound cohesin is necessary to retain elongating Pol II at centromeres. We find that WAPL-mediated removal of cohesin from chromosome arms during prophase is required for the dissociation of Pol II and nascent transcripts, and failure of this process dramatically alters mitotic gene expression. Removal of cohesin/Pol II from chromosome arms in prophase is important for accurate chromosome segregation and normal activation of gene expression in G1. We propose that prophase cohesin removal is a key step in reprogramming gene expression as cells transition from G2 through mitosis to G1.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas Cromosómicas no Histona/fisiología , Regulación de la Expresión Génica , Mitosis/genética , Transcripción Genética , Anafase/genética , Animales , Aurora Quinasa B/análisis , Ciclo Celular , Proteínas de Ciclo Celular/análisis , Línea Celular , Centrómero/enzimología , Segregación Cromosómica , Fase G1/genética , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Humanos , Metafase/genética , Profase , ARN Polimerasa II/metabolismo , Xenopus laevis , Cohesinas
12.
EMBO J ; 42(10): e111559, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37038978

RESUMEN

Various cancer types exhibit characteristic and recurrent aneuploidy patterns. The origins of these cancer type-specific karyotypes are still unknown, partly because introducing or eliminating specific chromosomes in human cells still poses a challenge. Here, we describe a novel strategy to induce mis-segregation of specific chromosomes in different human cell types. We employed Tet repressor or nuclease-dead Cas9 to link a microtubule minus-end-directed kinesin (Kinesin14VIb) from Physcomitrella patens to integrated Tet operon repeats and chromosome-specific endogenous repeats, respectively. By live- and fixed-cell imaging, we observed poleward movement of the targeted loci during (pro)metaphase. Kinesin14VIb-mediated pulling forces on the targeted chromosome were counteracted by forces from kinetochore-attached microtubules. This tug-of-war resulted in chromosome-specific segregation errors during anaphase and revealed that spindle forces can heavily stretch chromosomal arms. By single-cell whole-genome sequencing, we established that kinesin-induced targeted mis-segregations predominantly result in chromosomal arm aneuploidies after a single cell division. Our kinesin-based strategy opens the possibility to investigate the immediate cellular responses to specific aneuploidies in different cell types; an important step toward understanding how tissue-specific aneuploidy patterns evolve.


Asunto(s)
Cinesinas , Huso Acromático , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Huso Acromático/genética , Huso Acromático/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Segregación Cromosómica , Anafase , Aneuploidia
13.
EMBO J ; 42(20): e114288, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37728253

RESUMEN

Genome haploidization at meiosis depends on two consecutive nuclear divisions, which are controlled by an oscillatory system consisting of Cdk1-cyclin B and the APC/C bound to the Cdc20 activator. How the oscillator generates exactly two divisions has been unclear. We have studied this question in yeast where exit from meiosis involves accumulation of the APC/C activator Ama1 at meiosis II. We show that inactivation of the meiosis I-specific protein Spo13/MEIKIN results in a single-division meiosis due to premature activation of APC/CAma1 . In the wild type, Spo13 bound to the polo-like kinase Cdc5 prevents Ama1 synthesis at meiosis I by stabilizing the translational repressor Rim4. In addition, Cdc5-Spo13 inhibits the activity of Ama1 by converting the B-type cyclin Clb1 from a substrate to an inhibitor of Ama1. Cdc20-dependent degradation of Spo13 at anaphase I unleashes a feedback loop that increases Ama1's synthesis and activity, leading to irreversible exit from meiosis at the second division. Thus, by repressing the exit machinery at meiosis I, Cdc5-Spo13 ensures that cells undergo two divisions to produce haploid gametes.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Ciclosoma-Complejo Promotor de la Anafase/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Meiosis , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Anafase , Saccharomyces cerevisiae/metabolismo , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Proteínas de Unión al ARN/metabolismo
14.
Cell ; 150(2): 304-16, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22817893

RESUMEN

The centromere is a specialized chromosomal structure that regulates chromosome segregation. Centromeres are marked by a histone H3 variant. In budding yeast, the histone H3 variant Cse4 is present in a single centromeric nucleosome. Experimental evidence supports several different models for the structure of centromeric nucleosomes. To investigate Cse4 copy number in live yeast, we developed a method coupling fluorescence correlation spectroscopy and calibrated imaging. We find that centromeric nucleosomes have one copy of Cse4 during most of the cell cycle, whereas two copies are detected at anaphase. The proposal of an anaphase-coupled structural change is supported by Cse4-Cse4 interactions, incorporation of Cse4, and the absence of Scm3 in anaphase. Nucleosome reconstitution and ChIP suggests both Cse4 structures contain H2A/H2B. The increase in Cse4 intensity and deposition at anaphase are also observed in Candida albicans. Our experimental evidence supports a cell-cycle-coupled oscillation of centromeric nucleosome structure in yeast.


Asunto(s)
Candida albicans/citología , Ciclo Celular , Centrómero/metabolismo , Nucleosomas/metabolismo , Saccharomyces cerevisiae/citología , Anafase , Candida albicans/química , Candida albicans/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fluorescentes Verdes/análisis , Proteínas de Complejo Poro Nuclear/metabolismo , Proteína 1 de Ensamblaje de Nucleosomas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Proc Natl Acad Sci U S A ; 121(25): e2323009121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38875144

RESUMEN

Error correction is central to many biological systems and is critical for protein function and cell health. During mitosis, error correction is required for the faithful inheritance of genetic material. When functioning properly, the mitotic spindle segregates an equal number of chromosomes to daughter cells with high fidelity. Over the course of spindle assembly, many initially erroneous attachments between kinetochores and microtubules are fixed through the process of error correction. Despite the importance of chromosome segregation errors in cancer and other diseases, there is a lack of methods to characterize the dynamics of error correction and how it can go wrong. Here, we present an experimental method and analysis framework to quantify chromosome segregation error correction in human tissue culture cells with live cell confocal imaging, timed premature anaphase, and automated counting of kinetochores after cell division. We find that errors decrease exponentially over time during spindle assembly. A coarse-grained model, in which errors are corrected in a chromosome-autonomous manner at a constant rate, can quantitatively explain both the measured error correction dynamics and the distribution of anaphase onset times. We further validated our model using perturbations that destabilized microtubules and changed the initial configuration of chromosomal attachments. Taken together, this work provides a quantitative framework for understanding the dynamics of mitotic error correction.


Asunto(s)
Segregación Cromosómica , Cinetocoros , Microtúbulos , Mitosis , Huso Acromático , Humanos , Cinetocoros/metabolismo , Huso Acromático/metabolismo , Microtúbulos/metabolismo , Anafase , Modelos Biológicos , Células HeLa
16.
Genes Dev ; 33(5-6): 276-281, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30804226

RESUMEN

Formation of individualized sister chromatids is essential for their accurate segregation. In budding yeast, while most of the genome segregates at the metaphase to anaphase transition, resolution of the ribosomal DNA (rDNA) repeats is delayed. The timing and mechanism in human cells is unknown. Here we show that resolution of human rDNA occurs in anaphase after the bulk of the genome, dependent on tankyrase 1, condensin II, and topoisomerase IIα. Defective resolution leads to rDNA bridges, rDNA damage, and aneuploidy of an rDNA-containing acrocentric chromosome. Thus, temporal regulation of rDNA segregation is conserved between yeast and man and is essential for genome integrity.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Anafase/fisiología , ADN-Topoisomerasas de Tipo II/metabolismo , ADN Ribosómico/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Tanquirasas/metabolismo , Aneuploidia , Segregación Cromosómica , Daño del ADN/genética , ADN Ribosómico/genética , Humanos , Saccharomyces cerevisiae/genética
17.
PLoS Biol ; 21(8): e3002263, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37647291

RESUMEN

The target of rapamycin (TOR) signalling pathway plays a key role in the coordination between cellular growth and the cell cycle machinery in eukaryotes. The underlying molecular mechanisms by which TOR might regulate events after anaphase remain unknown. We show for the first time that one of the 2 TOR complexes in budding yeast, TORC1, blocks the separation of cells following cytokinesis by phosphorylation of a member of the NDR (nuclear Dbf2-related) protein-kinase family, the protein Cbk1. We observe that TORC1 alters the phosphorylation pattern of Cbk1 and we identify a residue within Cbk1 activation loop, T574, for which a phosphomimetic substitution makes Cbk1 catalytically inactive and, indeed, reproduces TORC1 control over cell separation. In addition, we identify the exocyst component Sec3 as a key substrate of Cbk1, since Sec3 activates the SNARE complex to promote membrane fusion. TORC1 activity ultimately compromises the interaction between Sec3 and a t-SNARE component. Our data indicate that TORC1 negatively regulates cell separation in budding yeast by participating in Cbk1 phosphorylation, which in turn controls the fusion of secretory vesicles transporting hydrolase at the site of division.


Asunto(s)
Saccharomycetales , Fosforilación , Anafase , Separación Celular , Diana Mecanicista del Complejo 1 de la Rapamicina
18.
EMBO Rep ; 25(5): 2391-2417, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38605278

RESUMEN

ELYS is a nucleoporin that localizes to the nuclear side of the nuclear pore complex (NPC) in interphase cells. In mitosis, it serves as an assembly platform that interacts with chromatin and then with nucleoporin subcomplexes to initiate post-mitotic NPC assembly. Here we identify ELYS as a major binding partner of the membrane protein VAPB during mitosis. In mitosis, ELYS becomes phosphorylated at many sites, including a predicted FFAT (two phenylalanines in an acidic tract) motif, which mediates interaction with the MSP (major sperm protein)-domain of VAPB. Binding assays using recombinant proteins or cell lysates and co-immunoprecipitation experiments show that VAPB binds the FFAT motif of ELYS in a phosphorylation-dependent manner. In anaphase, the two proteins co-localize to the non-core region of the newly forming nuclear envelope. Depletion of VAPB results in prolonged mitosis, slow progression from meta- to anaphase and in chromosome segregation defects. Together, our results suggest a role of VAPB in mitosis upon recruitment to or release from ELYS at the non-core region of the chromatin in a phosphorylation-dependent manner.


Asunto(s)
Proteínas de Unión al ADN , Mitosis , Unión Proteica , Factores de Transcripción , Proteínas de Transporte Vesicular , Humanos , Anafase , Cromatina/metabolismo , Segregación Cromosómica , Células HeLa , Proteínas de la Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Fosforilación , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Transporte Vesicular/metabolismo
19.
Nature ; 579(7797): 136-140, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32076268

RESUMEN

Metazoan development requires the robust proliferation of progenitor cells, the identities of which are established by tightly controlled transcriptional networks1. As gene expression is globally inhibited during mitosis, the transcriptional programs that define cell identity must be restarted in each cell cycle2-5 but how this is accomplished is poorly understood. Here we identify a ubiquitin-dependent mechanism that integrates gene expression with cell division to preserve cell identity. We found that WDR5 and TBP, which bind active interphase promoters6,7, recruit the anaphase-promoting complex (APC/C) to specific transcription start sites during mitosis. This allows APC/C to decorate histones with ubiquitin chains branched at Lys11 and Lys48 (K11/K48-branched ubiquitin chains) that recruit p97 (also known as VCP) and the proteasome, which ensures the rapid expression of pluripotency genes in the next cell cycle. Mitotic exit and the re-initiation of transcription are thus controlled by a single regulator (APC/C), which provides a robust mechanism for maintaining cell identity throughout cell division.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Diferenciación Celular/genética , Regulación de la Expresión Génica , Complejos Multiproteicos/metabolismo , Anafase , División Celular , Células HEK293 , Células HeLa , Histonas/química , Histonas/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Interfase , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mitosis , Organofosfatos/metabolismo , Poliubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Sitio de Iniciación de la Transcripción , Ubiquitina/metabolismo , Ubiquitinación
20.
Nature ; 582(7810): 115-118, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32494070

RESUMEN

During cell division, remodelling of the nuclear envelope enables chromosome segregation by the mitotic spindle1. The reformation of sealed nuclei requires ESCRTs (endosomal sorting complexes required for transport) and LEM2, a transmembrane ESCRT adaptor2-4. Here we show how the ability of LEM2 to condense on microtubules governs the activation of ESCRTs and coordinated spindle disassembly. The LEM motif of LEM2 binds BAF, conferring on LEM2 an affinity for chromatin5,6, while an adjacent low-complexity domain (LCD) promotes LEM2 phase separation. A proline-arginine-rich sequence within the LCD binds to microtubules and targets condensation of LEM2 to spindle microtubules that traverse the nascent nuclear envelope. Furthermore, the winged-helix domain of LEM2 activates the ESCRT-II/ESCRT-III hybrid protein CHMP7 to form co-oligomeric rings. Disruption of these events in human cells prevented the recruitment of downstream ESCRTs, compromised spindle disassembly, and led to defects in nuclear integrity and DNA damage. We propose that during nuclear reassembly LEM2 condenses into a liquid-like phase and coassembles with CHMP7 to form a macromolecular O-ring seal at the confluence between membranes, chromatin and the spindle. The properties of LEM2 described here, and the homologous architectures of related inner nuclear membrane proteins7,8, suggest that phase separation may contribute to other critical envelope functions, including interphase repair8-13 and chromatin organization14-17.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Anafase , Cromatina/metabolismo , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Microtúbulos/química , Microtúbulos/metabolismo , Membrana Nuclear/química , Huso Acromático/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA