Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 542
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Neurochem ; 168(6): 1080-1096, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38317263

RESUMEN

Sevoflurane, the predominant pediatric anesthetic, has been linked to neurotoxicity in young mice, although the underlying mechanisms remain unclear. This study focuses on investigating the impact of neonatal sevoflurane exposure on cell-type-specific alterations in the prefrontal cortex (PFC) of young mice. Neonatal mice were subjected to either control treatment (60% oxygen balanced with nitrogen) or sevoflurane anesthesia (3% sevoflurane in 60% oxygen balanced with nitrogen) for 2 hours on postnatal days (PNDs) 6, 8, and 10. Behavioral tests and single-nucleus RNA sequencing (snRNA-seq) of the PFC were conducted from PNDs 31 to 37. Mechanistic exploration included clustering analysis, identification of differentially expressed genes (DEGs), enrichment analyses, single-cell trajectory analysis, and genome-wide association studies (GWAS). Sevoflurane anesthesia resulted in sociability and cognition impairments in mice. Novel specific marker genes identified 8 distinct cell types in the PFC. Most DEGs between the control and sevoflurane groups were unique to specific cell types. Re-defining 15 glutamatergic neuron subclusters based on layer identity revealed their altered expression profiles. Notably, sevoflurane disrupted the trajectory from oligodendrocyte precursor cells (OPCs) to oligodendrocytes (OLs). Validation of disease-relevant candidate genes across the main cell types demonstrated their association with social dysfunction and working memory impairment. Behavioral results and snRNA-seq collectively elucidated the cellular atlas in the PFC of young male mice, providing a foundation for further mechanistic studies on developmental neurotoxicity induced by anesthesia.


Asunto(s)
Anestésicos por Inhalación , Corteza Prefrontal , Sevoflurano , Animales , Sevoflurano/toxicidad , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ratones , Anestésicos por Inhalación/toxicidad , Masculino , Animales Recién Nacidos , Femenino , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estudio de Asociación del Genoma Completo
2.
Anesthesiology ; 140(3): 463-482, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38118175

RESUMEN

BACKGROUND: Carriers of mutations in the mitochondrial electron transport chain are at increased risk of anesthetic-induced neurotoxicity. To investigate the neurotoxicity mechanism and to test preconditioning as a protective strategy, this study used a Drosophila melanogaster model of Leigh syndrome. Model flies carried a mutation in ND23 (ND2360114) that encodes a mitochondrial electron transport chain complex I subunit. This study investigated why ND2360114 mutants become susceptible to lethal, oxygen-modulated neurotoxicity within 24 h of exposure to isoflurane but not sevoflurane. METHODS: This study used transcriptomics and quantitative real-time reverse transcription polymerase chain reaction to identify genes that are differentially expressed in ND2360114 but not wild-type fly heads at 30 min after exposure to high- versus low-toxicity conditions. This study also subjected ND2360114 flies to diverse stressors before isoflurane exposure to test whether isoflurane toxicity could be diminished by preconditioning. RESULTS: The ND2360114 mutation had a greater effect on isoflurane- than sevoflurane-mediated changes in gene expression. Isoflurane and sevoflurane did not affect expression of heat shock protein (Hsp) genes (Hsp22, Hsp27, and Hsp68) in wild-type flies, but isoflurane substantially increased expression of these genes in ND2360114 mutant flies. Furthermore, isoflurane and sevoflurane induced expression of oxidative (GstD1 and GstD2) and xenobiotic (Cyp6a8 and Cyp6a14) stress genes to a similar extent in wild-type flies, but the effect of isoflurane was largely reduced in ND2360114 flies. In addition, activating stress response pathways by pre-exposure to anesthetics, heat shock, hyperoxia, hypoxia, or oxidative stress did not suppress isoflurane-induced toxicity in ND2360114 mutant flies. CONCLUSIONS: Mutation of a mitochondrial electron transport chain complex I subunit generates differential effects of isoflurane and sevoflurane on gene expression that may underlie their differential effects on neurotoxicity. Additionally, the mutation produces resistance to preconditioning by stresses that protect the brain in other contexts. Therefore, complex I activity modifies molecular and physiologic effects of anesthetics in an anesthetic-specific manner.


Asunto(s)
Anestésicos por Inhalación , Isoflurano , Éteres Metílicos , Animales , Isoflurano/toxicidad , Sevoflurano/farmacología , Anestésicos por Inhalación/toxicidad , Drosophila melanogaster/genética , Estrés Oxidativo , Complejo I de Transporte de Electrón/genética , Éteres Metílicos/farmacología
3.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38928030

RESUMEN

Disruption of any stage of iron homeostasis, including uptake, utilization, efflux, and storage, can cause progressive damage to peripheral organs. The health hazards associated with occupational exposure to inhalation anesthetics (IA) in combination with chronic iron overload are not well documented. This study aimed to investigate changes in the concentration of essential metals in the peripheral organs of rats after iron overload in combination with IA. The aim was also to determine how iron overload in combination with IA affects tissue metal homeostasis, hepcidin-ferritin levels, and MMP levels according to physiological, functional, and tissue features. According to the obtained results, iron accumulation was most pronounced in the liver (19×), spleen (6.7×), lungs (3.1×), and kidneys (2.5×) compared to control. Iron accumulation is associated with elevated heavy metal levels and impaired essential metal concentrations due to oxidative stress (OS). Notably, the use of IA increases the iron overload toxicity, especially after Isoflurane exposure. The results show that the regulation of iron homeostasis is based on the interaction of hepcidin, ferritin, and other proteins regulated by inflammation, OS, free iron levels, erythropoiesis, and hypoxia. Long-term exposure to IA and iron leads to the development of numerous adaptation mechanisms in response to toxicity, OS, and inflammation. These adaptive mechanisms of iron regulation lead to the inhibition of MMP activity and reduction of oxidative stress, protecting the organism from possible damage.


Asunto(s)
Anestésicos por Inhalación , Hepcidinas , Complejo Hierro-Dextran , Hierro , Estrés Oxidativo , Animales , Ratas , Hepcidinas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Hierro/metabolismo , Masculino , Anestésicos por Inhalación/efectos adversos , Anestésicos por Inhalación/toxicidad , Complejo Hierro-Dextran/administración & dosificación , Complejo Hierro-Dextran/toxicidad , Ferritinas/metabolismo , Sobrecarga de Hierro/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Bazo/efectos de los fármacos , Bazo/metabolismo , Bazo/patología , Ratas Wistar , Homeostasis/efectos de los fármacos , Isoflurano/efectos adversos
4.
Pediatr Res ; 93(4): 838-844, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35804157

RESUMEN

BACKGROUND: The aim of the study was to determine the effects of repeated anesthesia exposure across postnatal development. METHODS: Seventy-two newborn Sprague-Dawley rats were randomly divided into Sev group and Con-aged group. Sev groups were exposed to 2.6% sevoflurane for 2 h on postnatal day (P) 7, P14, and P21; the Con groups only received carrier gas for 2 h. Learning and memory were evaluated using the MWM test at P31 (juvenile), P91 (adult), and 18 months postnatally (aged). The relative expression of APP and Mapt mRNA was detected by RT-PCR, while Aß, tau, and P-tau protein levels were analyzed by immunohistochemistry. RESULTS: After repeated inhalation of sevoflurane, MWM test performance was significantly decreased in the Sev-aged group compared to the Con-aged group (P > 0.05). The relative expression of APP and Mapt mRNA was not significantly different between groups in each growth period (P > 0.05). The tau expression in the juvenile hippocampal CA1, CA3, and dentate gyrus regions increased markedly in the Sev group, while P-tau only increased in the hippocampal CA3 region in the Sev-adult group. The expression of tau, P-tau, and Aß in the hippocampal regions was upregulated in the Sev-aged group. CONCLUSIONS: Multiple exposures to sevoflurane across postnatal development can induce or aggravate cognitive impairment in old age. IMPACT: Whether multiple sevoflurane exposures across postnatal development cause cognitive impairment in childhood, adulthood, or old age, as well as the relationship between sevoflurane and the hippocampal Aß, tau, and P-tau proteins, remains unknown. This study's results demonstrate that multiple exposures to sevoflurane across postnatal development do not appear to affect cognitive function in childhood and adulthood; however, multiple exposures may lead to a cognitive function deficit in old age. The underlying mechanism may involve overexpression of the tau, P-tau, and Aß proteins in the hippocampus.


Asunto(s)
Anestésicos por Inhalación , Disfunción Cognitiva , Éteres Metílicos , Ratas , Animales , Sevoflurano/efectos adversos , Sevoflurano/metabolismo , Ratas Sprague-Dawley , Éteres Metílicos/toxicidad , Éteres Metílicos/metabolismo , Anestésicos por Inhalación/toxicidad , Anestésicos por Inhalación/metabolismo , Aprendizaje por Laberinto , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/psicología , Cognición , Hipocampo/metabolismo
5.
Cell Biol Toxicol ; 39(5): 2133-2148, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-35249202

RESUMEN

BACKGROUND: Repeated neonatal exposure to anesthetics may disturb neurodevelopment and cause neuropsychological disorders. The m6A modification participates in the gene regulation of neurodevelopment in mouse fetuses exposed to anesthetics. This study aims to explore the underlying molecular mechanisms of neurotoxicity after early-life anesthesia exposure. METHODS: Mice were exposed to isoflurane (1.5%) or sevoflurane (2.3%) for 2 h daily during postnatal days (PND) 7-9. Sociability, spatial working memory, and anxiety-like behavior were assessed on PND 30-35. Synaptogenesis, epitranscriptome m6A, and the proteome of brain regions were evaluated on PND 21. RESULTS: Both isoflurane and sevoflurane produced abnormal social behaviors at the juvenile age, with different sociality patterns in each group. Synaptogenesis in the hippocampal area CA3 was increased in the sevoflurane-exposed mice. Both anesthetics led to numerous persistent m6A-induced alterations in the brain, associated with critical metabolic, developmental, and immune functions. The proteins altered by isoflurane exposure were mainly associated with epilepsy, ataxia, and brain development. As for sevoflurane, the altered proteins were involved in social behavior. CONCLUSIONS: Social interaction, the modulation patterns of the m6A modification, and protein expression were altered in an isoflurane or sevoflurane-specific way. Possible molecular pathways involved in brain impairment were revealed, as well as the mechanism underlying behavioral deficits following repeated exposure to anesthetics in newborns.


Asunto(s)
Anestésicos por Inhalación , Isoflurano , Éteres Metílicos , Animales , Ratones , Isoflurano/toxicidad , Sevoflurano , Animales Recién Nacidos , Proteoma , Anestésicos por Inhalación/toxicidad , Éteres Metílicos/toxicidad , Encéfalo
6.
Exp Brain Res ; 241(5): 1437-1446, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37067562

RESUMEN

Sevoflurane (SEV), usually causing neuronal damage and cognitive dysfunction, is one of the most commonly used anesthetics in clinical practice. However, the function of Trim47 in SEV-induced neuronal impairment remains elusive. The aim of this study was to study the effect of knocking down Trim47 on the nerve injury induced by SEV. Nerve injury was induced in rats by 3% SEV, and H19-7 was used to establish a pathological model, and sh-Trim47 was transfected into H19-7 to study the function of Trim47. The effects of SEV on the expression of Trim47 in the hippocampus and cognitive function of rats were studied by neurological function score and Moris water maze (MWM). The mRNA and protein expression of TNF-α, IL-1ß and IL-6 in the cells, along with the neuronal apoptosis in the hippocampus of rats in each group were studied by TUNEL or WB. Flow cytometry was used to study the effect of knockdown of Trim47 on cell apoptosis. CCK-8 was used to detect cell viability of H19-7 cells. Finally, the potential signaling pathway affected by knockdown of Trim47 after abrogation of SEV induction was investigated by WB. The results showed that, knockdown of Trim47 ameliorated SEV-induced neurological damage and cognitive deficits, inflammation and neuronal cell apoptosis in rats, and promoted hippocampal neuronal activity. Knockdown of Trim47 can inhibit the NF-κB signaling pathway and improve neuronal cell damage and cognitive impairment induced by SEV in neonatal rats by regulating NF-κB signaling pathway, alleviating inflammatory response, and inhibiting neuronal apoptosis.


Asunto(s)
Anestésicos por Inhalación , Apoptosis , Disfunción Cognitiva , Neuronas , Sevoflurano , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Animales , Ratas , Técnicas de Silenciamiento del Gen , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/genética , Sevoflurano/toxicidad , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/genética , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/patología , Cognición/efectos de los fármacos , Anestésicos por Inhalación/toxicidad , Ratas Sprague-Dawley , Neuronas/efectos de los fármacos , Neuronas/patología , Apoptosis/efectos de los fármacos , Apoptosis/genética
7.
Br J Anaesth ; 131(5): 832-846, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37770252

RESUMEN

BACKGROUND: Volatile anaesthetics are widely used in human medicine. Although generally safe, hypersensitivity and toxicity can occur in rare cases, such as in certain genetic disorders. Anaesthesia hypersensitivity is well-documented in a subset of mitochondrial diseases, but whether volatile anaesthetics are toxic in this setting has not been explored. METHODS: We exposed Ndufs4(-/-) mice, a model of Leigh syndrome, to isoflurane (0.2-0.6%), oxygen 100%, or air. Cardiorespiratory function, weight, blood metabolites, and survival were assessed. We exposed post-symptom onset and pre-symptom onset animals and animals treated with the macrophage depleting drug PLX3397/pexidartinib to define the role of overt neuroinflammation in volatile anaesthetic toxicities. RESULTS: Isoflurane induced hyperlactataemia, weight loss, and mortality in a concentration- and duration-dependent manner from 0.2% to 0.6% compared with carrier gas (O2 100%) or mock (air) exposures (lifespan after 30-min exposures ∗P<0.05 for isoflurane 0.4% vs air or vs O2, ∗∗P<0.005 for isoflurane 0.6% vs air or O2; 60-min exposures ∗∗P<0.005 for isoflurane 0.2% vs air, ∗P<0.05 for isoflurane 0.2% vs O2). Isoflurane toxicity was significantly reduced in Ndufs4(-/-) exposed before CNS disease onset, and the macrophage depleting drug pexidartinib attenuated sequelae of isoflurane toxicity (survival ∗∗∗P=0.0008 isoflurane 0.4% vs pexidartinib plus isoflurane 0.4%). Finally, the laboratory animal standard of care of 100% O2 as a carrier gas contributed significantly to weight loss and reduced survival, but not to metabolic changes, and increased acute mortality. CONCLUSIONS: Isoflurane is toxic in the Ndufs4(-/-) model of Leigh syndrome. Toxic effects are dependent on the status of underlying neurologic disease, largely prevented by the CSF1R inhibitor pexidartinib, and influenced by oxygen concentration in the carrier gas.


Asunto(s)
Anestésicos por Inhalación , Isoflurano , Enfermedad de Leigh , Humanos , Animales , Ratones , Isoflurano/toxicidad , Anestésicos por Inhalación/toxicidad , Enfermedad de Leigh/genética , Oxígeno , Pérdida de Peso , Complejo I de Transporte de Electrón
8.
Int J Mol Sci ; 24(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37240038

RESUMEN

Exposure to commonly used anesthetics leads to neurotoxic effects in animal models-ranging from cell death to learning and memory deficits. These neurotoxic effects invoke a variety of molecular pathways, exerting either immediate or long-term effects at the cellular and behavioural levels. However, little is known about the gene expression changes following early neonatal exposure to these anesthetic agents. We report here on the effects of sevoflurane, a commonly used inhalational anesthetic, on learning and memory and identify a key set of genes that may likely be involved in the observed behavioural deficits. Specifically, we demonstrate that sevoflurane exposure in postnatal day 7 (P7) rat pups results in subtle, but distinct, memory deficits in the adult animals that have not been reported previously. Interestingly, when given intraperitoneally, pre-treatment with dexmedetomidine (DEX) could only prevent sevoflurane-induced anxiety in open field testing. To identify genes that may have been altered in the neonatal rats after sevoflurane and DEX exposure, specifically those impacting cellular viability, learning, and memory, we conducted an extensive Nanostring study examining over 770 genes. We found differential changes in the gene expression levels after exposure to both agents. A number of the perturbed genes found in this study have previously been implicated in synaptic transmission, plasticity, neurogenesis, apoptosis, myelination, and learning and memory. Our data thus demonstrate that subtle, albeit long-term, changes observed in an adult animal's learning and memory after neonatal anesthetic exposure may likely involve perturbation of specific gene expression patterns.


Asunto(s)
Anestésicos por Inhalación , Aprendizaje , Animales , Ratas , Sevoflurano/farmacología , Animales Recién Nacidos , Ratas Sprague-Dawley , Anestésicos por Inhalación/toxicidad , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/genética , Aprendizaje por Laberinto , Hipocampo/metabolismo
9.
J Anesth ; 37(6): 853-860, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37608132

RESUMEN

PURPOSE: Repeated exposure of infant rhesus macaques to sevoflurane induces neurotoxicity and is associated with neurocognitive impairment in later life. We aimed to investigate the effect of repeated sevoflurane exposure on the expression of proteins in the prefrontal cortex of infant rhesus macaques by proteomics. METHODS: Rhesus macaques were exposed to sevoflurane three times, on postnatal days 7, 21 and 35. Quantitative proteomics employing LC-MS with isobaric labeling (TMT10plex), western blotting, and transmission electron microscopy (TEM) were utilized in the studies. RESULTS: The results of a proteomics investigation of the brain revealed that the proteins that were differentially expressed in rhesus macaques after sevoflurane exposures were associated mainly with mitochondrial respiration. Following multiple sevoflurane exposures, the prefrontal cortices of rhesus macaques exhibited increases in NDUFA8 and COX IV protein levels, while no alterations in mitochondrial morphology were observed through TEM. CONCLUSION: Multiple exposures to sevoflurane increased the mitochondrial protein levels in rhesus macaques.


Asunto(s)
Anestésicos por Inhalación , Humanos , Animales , Sevoflurano/toxicidad , Macaca mulatta , Anestésicos por Inhalación/toxicidad , Proteómica , Corteza Prefrontal , Expresión Génica , Animales Recién Nacidos
10.
Neurochem Res ; 47(2): 315-326, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34498160

RESUMEN

The effects of general anesthetics on the developing brain have aroused much attention in recent years. Sevoflurane, a commonly used inhalation anesthetic especially in pediatric anesthesia, can induce developmental neurotoxicity. In this study, the differentially expressed mRNAs in the hippocampus of newborn rats exposed to 3% sevoflurane for 6 h were detected by RNA-Sequencing. Those data indicated that the mRNA of Klotho was increased after exposure to sevoflurane. Moreover, the protein expression of Klotho was assayed by Western Blot. Besides over-expression and under-expression of Klotho protein, we also detected changes of cell proliferation, ROS, JC-1, and Bcl-2/Bax ratio in PC12 cells exposed to sevoflurane. After exposure to 3% sevoflurane, the expression of Klotho protein increased in the hippocampus of neonatal rats. In PC12 cells, exposure to sevoflurane could increase cellular ROS level, reduce mitochondrial membrane potential and Bcl-2/Bax ratio. While overexpression of Klotho alleviated the above changes, knockdown of Klotho aggravated the injury of sevoflurane. Klotho protein could reduce oxidative stress and mitochondrial injury induced by sevoflurane in the neuron.


Asunto(s)
Anestésicos por Inhalación , Éteres Metílicos , Anestésicos por Inhalación/toxicidad , Animales , Animales Recién Nacidos , Apoptosis , Hipocampo/metabolismo , Humanos , Éteres Metílicos/toxicidad , Neuronas/metabolismo , Ratas , Sevoflurano/toxicidad
11.
Br J Anaesth ; 128(1): 77-88, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34857359

RESUMEN

BACKGROUND: If anaesthetics cause permanent cognitive deficits in some children, the implications are enormous, but the molecular causes of anaesthetic-induced neurotoxicity, and consequently possible therapies, are still debated. Anaesthetic exposure early in development can be neurotoxic in the invertebrate Caenorhabditis elegans causing endoplasmic reticulum (ER) stress and defects in chemotaxis during adulthood. We screened this model organism for compounds that alleviated neurotoxicity, and then tested these candidates for efficacy in mice. METHODS: We screened compounds for alleviation of ER stress induction by isoflurane in C. elegans assayed by induction of a green fluorescent protein (GFP) reporter. Drugs that inhibited ER stress were screened for reduction of the anaesthetic-induced chemotaxis defect. Compounds that alleviated both aspects of neurotoxicity were then blindly tested for the ability to inhibit induction of caspase-3 by isoflurane in P7 mice. RESULTS: Isoflurane increased ER stress indicated by increased GFP reporter fluorescence (240% increase, P<0.001). Nine compounds reduced induction of ER stress by isoflurane by 90-95% (P<0.001 in all cases). Of these compounds, tetraethylammonium chloride and trehalose also alleviated the isoflurane-induced defect in chemotaxis (trehalose by 44%, P=0.001; tetraethylammonium chloride by 23%, P<0.001). In mouse brain, tetraethylammonium chloride reduced isoflurane-induced caspase staining in the anterior cortical (-54%, P=0.007) and hippocampal regions (-46%, P=0.002). DISCUSSION: Tetraethylammonium chloride alleviated isoflurane-induced neurotoxicity in two widely divergent species, raising the likelihood that it may have therapeutic value. In C. elegans, ER stress predicts isoflurane-induced neurotoxicity, but is not its cause.


Asunto(s)
Isoflurano/toxicidad , Síndromes de Neurotoxicidad/prevención & control , Tetraetilamonio/farmacología , Anestésicos por Inhalación/toxicidad , Animales , Caenorhabditis elegans , Caspasa 3/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Ratones , Síndromes de Neurotoxicidad/etiología , Especificidad de la Especie
12.
Br J Anaesth ; 128(2): 301-310, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34920856

RESUMEN

BACKGROUND: Evidence from animal models and human studies suggests an association between early general anaesthesia exposure and development of long-lasting neurocognitive problems including learning and memory impairments and an anxious phenotype. Because millions of children each year undergo procedures that require anaesthesia, it is important to investigate ways to protect the vulnerable developing brain. We evaluated whether progesterone treatment administered before general anaesthesia exposure could prevent long-term anaesthesia-induced neurocognitive and behavioural changes. METHODS: Female and male Long-Evans rat pups were repeatedly exposed to 2 h of sevoflurane or control procedures at postnatal days 7, 10, and 13. Subcutaneous injections of progesterone or vehicle were administered immediately before general anaesthesia exposure or control procedures. Neurobehavioural and cognitive outcomes were evaluated using elevated plus maze and Morris water maze tests. RESULTS: Prophylactic progesterone treatment attenuated the chemokine (C-X-C motif) ligand 1 (CXCL1) response to sevoflurane exposure. Rats given vehicle treatment with general anaesthesia exposure exhibited increased anxiety on the elevated plus maze and learning and memory impairments on the Morris water maze. However, rats treated with progesterone before general anaesthesia lacked these impairments and performed in a similar manner to controls on both tasks. CONCLUSIONS: Progesterone attenuated the anaesthesia-induced, acute peripheral inflammatory response and prevented cognitive and behavioural alterations associated with early repeated general anaesthesia exposure. Importantly, our results suggest that progesterone treatments given before general anaesthesia may help to protect the developing brain.


Asunto(s)
Anestésicos por Inhalación/toxicidad , Disfunción Cognitiva/prevención & control , Progesterona/farmacología , Sevoflurano/toxicidad , Anestésicos por Inhalación/administración & dosificación , Animales , Animales Recién Nacidos , Conducta Animal/efectos de los fármacos , Disfunción Cognitiva/inducido químicamente , Femenino , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/prevención & control , Progesterona/administración & dosificación , Ratas , Ratas Long-Evans , Sevoflurano/administración & dosificación , Factores de Tiempo
13.
Acta Pharmacol Sin ; 43(11): 2828-2840, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35577909

RESUMEN

Sevoflurane inhalation is prone to initiate cognitive deficits in infants. The early growth response-2 (Egr-2) gene is DNA-binding transcription factor, involving in cognitive function. In this study we explored the molecular mechanisms underlying the vulnerability to cognitive deficits after sevoflurane administration. Six-day-old (young) and 6-week-old (early adult) mice received anesthesia with 3% sevoflurane for 2 h daily for 3 days. We showed that multiple exposures of sevoflurane induced significant learning ability impairment in young but not early adult mice, assessed in Morris water maze test on postnatal days 65. The integrated differential expression analysis revealed distinct transcription responses of Egr family members in the hippocampus of the young and early adult mice after sevoflurane administration. Particularly, Egr2 was significantly upregulated after sevoflurane exposure only in young mice. Microinjection of Egr2 shRNA recombinant adeno-associated virus into the dentate gyrus alleviated sevoflurane-induced cognitive deficits, and abolished sevoflurane-induced dendritic spins loss and BDNF downregulation in young mice. On the contrary, microinjection of the Egr2 overexpression virus in the dentate gyrus aggravated learning ability impairment induced by sevoflurane in young mice but not early adult mice. Furthermore, we revealed that sevoflurane markedly upregulated the nuclear factors of activated T-cells NFATC1 and NFATC2 in young mice, which were involved in Egr2 regulation. In conclusion, Egr2 serves as a critical factor for age-dependent vulnerability to sevoflurane-induced cognitive deficits.


Asunto(s)
Anestésicos por Inhalación , Disfunción Cognitiva , Proteína 2 de la Respuesta de Crecimiento Precoz , Éteres Metílicos , Animales , Ratones , Anestésicos por Inhalación/toxicidad , Animales Recién Nacidos , Cognición , Disfunción Cognitiva/inducido químicamente , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Hipocampo/metabolismo , Aprendizaje por Laberinto , Sevoflurano/efectos adversos
14.
Neuroimage ; 234: 117987, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33762218

RESUMEN

Isoflurane, the most commonly used preclinical anesthetic, induces brain plasticity and long-term cellular and molecular changes leading to behavioral and/or cognitive consequences. These changes are most likely associated with network-level changes in brain function. To elucidate the mechanisms underlying long-term effects of isoflurane, we investigated the influence of a single isoflurane exposure on functional connectivity, brain electrical activity, and gene expression. Male Wistar rats (n = 22) were exposed to 1.8% isoflurane for 3 h. Control rats (n = 22) spent 3 h in the same room without exposure to anesthesia. After 1 month, functional connectivity was evaluated with resting-state functional magnetic resonance imaging (fMRI; n = 6 + 6) and local field potential measurements (n = 6 + 6) in anesthetized animals. A whole genome expression analysis (n = 10+10) was also conducted with mRNA-sequencing from cortical and hippocampal tissue samples. Isoflurane treatment strengthened thalamo-cortical and hippocampal-cortical functional connectivity. Cortical low-frequency fMRI power was also significantly increased in response to the isoflurane treatment. The local field potential results indicating strengthened hippocampal-cortical alpha and beta coherence were in good agreement with the fMRI findings. Furthermore, altered expression was found in 20 cortical genes, several of which are involved in neuronal signal transmission, but no gene expression changes were noted in the hippocampus. Isoflurane induced prolonged changes in thalamo-cortical and hippocampal-cortical function and expression of genes contributing to signal transmission in the cortex. Further studies are required to investigate whether these changes are associated with the postoperative behavioral and cognitive symptoms commonly observed in patients and animals.


Asunto(s)
Anestésicos por Inhalación/administración & dosificación , Encéfalo/diagnóstico por imagen , Isoflurano/administración & dosificación , Imagen por Resonancia Magnética/tendencias , Red Nerviosa/diagnóstico por imagen , Plasticidad Neuronal/efectos de los fármacos , Anestésicos por Inhalación/toxicidad , Animales , Encéfalo/efectos de los fármacos , Isoflurano/toxicidad , Masculino , Red Nerviosa/efectos de los fármacos , Plasticidad Neuronal/fisiología , Ratas , Ratas Wistar , Factores de Tiempo
15.
J Neurochem ; 156(1): 76-87, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32639632

RESUMEN

While recent studies strongly suggest that a single, short anesthetic exposure does not affect neurodevelopment, the effects of multiple exposures remain unclear. Unfortunately, studying "multiple exposures" is challenging as it is an extremely heterogeneous descriptor comprising diverse factors. One potentially important, but unrecognized factor is the interval between anesthetic exposures. In order to evaluate the significance of interval, we exposed post-natal day 16, 17 mice to three sevoflurane exposures (2.5%, 1 hr) with short (2 hr) or long (24 hr) intervals. Changes in synaptic transmission, plasticity, protein expression, and behavior were assessed in male and female mice. We discovered that short-interval exposures induced a female-dependent decrease in miniature inhibitory post-synaptic current (mIPSC) frequency 5 days after the last exposure (control: 18.44 ± 2.86 Hz, sevoflurane:14.65 ± 4.54 Hz). Short-interval sevoflurane exposed mice also displayed long-term behavioral deficits at adult age (hypoactivity, anxiety). These behavioral changes were consistent with the sex-dependent changes in inhibitory transmission, as they were more robust in female mice. Although there was no change in learning and memory, short-interval sevoflurane exposures also impaired LTP in a non-sex-dependent manner (control: 171.10 ± 26.90%, sevoflurane: 149.80 ± 26.48 %). Most importantly, we were unable to find long-lasting consequences in mice that received long-interval sevoflurane exposures. Our study provides novel insights regarding the significance of the interval between multiple exposures, and also suggests that the neurotoxic effects of multiple anesthetic exposures may be reduced by simply increasing the interval between each exposure.


Asunto(s)
Anestésicos por Inhalación/toxicidad , Conducta Animal/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Sevoflurano/toxicidad , Transmisión Sináptica/efectos de los fármacos , Anestésicos por Inhalación/administración & dosificación , Animales , Animales Recién Nacidos , Encéfalo/efectos de los fármacos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Sevoflurano/administración & dosificación , Caracteres Sexuales
16.
J Neuroinflammation ; 18(1): 41, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33541361

RESUMEN

BACKGROUND: Postoperative cognitive dysfunction (POCD) is a very common complication that might increase the morbidity and mortality of elderly patients after surgery. However, the mechanism of POCD remains largely unknown. The NAD-dependent deacetylase protein Sirtuin 3 (SIRT3) is located in the mitochondria and regulates mitochondrial function. SIRT3 is the only sirtuin that specifically plays a role in extending lifespan in humans and is associated with neurodegenerative diseases. Therefore, the aim of this study was to evaluate the effect of SIRT3 on anesthesia/surgery-induced cognitive impairment in aged mice. METHODS: SIRT3 expression levels were decreased after surgery. For the interventional study, an adeno-associated virus (AAV)-SIRT3 vector or an empty vector was microinjected into hippocampal CA1 region before anesthesia/surgery. Western blotting, immunofluorescence staining, and enzyme-linked immune-sorbent assay (ELISA) were used to measure the oxidative stress response and downstream microglial activation and proinflammatory cytokines, and Golgi staining and long-term potentiation (LTP) recording were applied to evaluate synaptic plasticity. RESULTS: Overexpression of SIRT3 in the CA1 region attenuated anesthesia/surgery-induced learning and memory dysfunction as well as synaptic plasticity dysfunction and the oxidative stress response (superoxide dismutase [SOD] and malondialdehyde [MDA]) in aged mice with POCD. In addition, microglia activation (ionized calcium binding adapter molecule 1 [Iba1]) and neuroinflammatory cytokine levels (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-1ß and IL-6) were regulated after anesthesia/surgery in a SIRT3-dependent manner. CONCLUSION: The results of the current study demonstrate that SIRT3 has a critical effect in the mechanism of POCD in aged mice by suppressing hippocampal neuroinflammation and reveal that SIRT3 may be a promising therapeutic and diagnostic target for POCD.


Asunto(s)
Envejecimiento/metabolismo , Anestésicos por Inhalación/toxicidad , Hipocampo/metabolismo , Mediadores de Inflamación/metabolismo , Complicaciones Cognitivas Postoperatorias/metabolismo , Sirtuina 3/biosíntesis , Envejecimiento/efectos de los fármacos , Envejecimiento/patología , Animales , Hipocampo/efectos de los fármacos , Hipocampo/patología , Mediadores de Inflamación/antagonistas & inhibidores , Isoflurano/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Neuroprotección/efectos de los fármacos , Neuroprotección/fisiología , Complicaciones Cognitivas Postoperatorias/inducido químicamente , Complicaciones Cognitivas Postoperatorias/etiología , Complicaciones Cognitivas Postoperatorias/prevención & control , Fracturas de la Tibia/cirugía
17.
Neurochem Res ; 46(12): 3356-3364, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34524595

RESUMEN

Sevoflurane is a widely used volatile anesthetic, that can cause long-term neurotoxicity and learning and memory impairment. Long non-coding RNAs (lncRNAs) have been demonstrated to function as key mediators in neurotoxicity. This study aimed to investigate the effects of lncRNA Neat1 on sevoflurane-induced neurotoxicity. The expression of Neat1, miR-298-5p, and Srpk1 was measured by RT-qPCR. Cell viability, cell apoptosis, inflammation markers, and reactive oxygen species (ROS) generation were examined by CCK-8, TUNEL, ELISA, and the ROS kit. The interaction between miR-298-5p and Neat1 or Srpk1 was confirmed by luciferase reporter assay. In our study, it was found that sevoflurane aggravated neurotoxicity through inhibiting cell viability and enhancing cell apoptosis, neuroinflammation, and ROS generation. Neat1 was up-regulated in sevoflurane-treated HT22 cells, and Neat1 knockdown improved sevoflurane-mediated neurotoxicity. Through the exploration of the ceRNA mechanism, we found that Neat1 bound with miR-298-5p, and Srpk1 was a direct target gene of miR-298-5p. Finally, rescue assays proved that up-regulation of Srpk1 reversed the effects of Neat1 knockdown on neurotoxicity. In conclusion, our study revealed that lncRNA Neat1 facilitated sevoflurane-stimulated neurotoxicity by sponging miR-298-5p to up-regulate Srpk1. These findings might provide novel insights into the treatment of sevoflurane-induced neurotoxicity.


Asunto(s)
Regulación de la Expresión Génica , MicroARNs/metabolismo , Neuronas/patología , Síndromes de Neurotoxicidad/patología , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Largo no Codificante/genética , Sevoflurano/toxicidad , Anestésicos por Inhalación/toxicidad , Animales , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Ratones , MicroARNs/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/metabolismo , Proteínas Serina-Treonina Quinasas/genética
18.
Neurochem Res ; 46(3): 468-481, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33237472

RESUMEN

General anesthetics interfere with dendritic development and synaptogenesis, resulting in cognitive impairment in the developing animals. RhoA signal pathway plays important roles in dendritic development by regulating cytoskeleton protein such as tubulin and actin. However, it's not clear whether RhoA pathway is involved in inhaled general anesthetics sevoflurane-induced synaptic development abnormalities and long-term cognitive dysfunction. Rats at postnatal day 7 (PND7) were injected intraperitoneally with RhoA pathway inhibitor Y27632 or saline 20 min before exposed to 2.8% sevoflurane for 4 h. The apoptosis-related proteins and RhoA/CRMP2 pathway proteins in the hippocampus were measured 6 h after sevoflurane exposure. Cognitive functions were evaluated by the open field test on PND25 rats and contextual fear conditioning test on PND32-33 rats. The dendritic morphology and density of dendritic spines in the pyramidal neurons of hippocampus were determined by Golgi staining and the synaptic plasticity-related proteins were also measured on PND33 rats. Long term potentiation (LTP) from hippocampal slices was recorded on PND34-37 rats. Sevoflurane induced caspase-3 activation, decreased the ratio of Bcl-2/Bax and increased TUNEL-positive neurons in hippocampus of PND7 rats, which were attenuated by inhibition of RhoA. However, sevoflurane had no significant effects on activity of RhoA/CRMP2 pathway. Sevoflurane disturbed dendritic morphogenesis, reduced the number of dendritic spines, decreased proteins expression of PSD-95, drebrin and synaptophysin, inhibited LTP in hippocampal slices and impaired memory ability in the adolescent rats, while inhibition of RhoA activity did not rescue the changes above induced by sevoflurane. RhoA signal pathway did not participate in sevoflurane-induced dendritic and synaptic development abnormalities and cognitive dysfunction in developing rats.


Asunto(s)
Anestésicos por Inhalación/toxicidad , Disfunción Cognitiva/metabolismo , Sevoflurano/toxicidad , Sinapsis/efectos de los fármacos , Proteínas de Unión al GTP rho/metabolismo , Amidas/farmacología , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/enzimología , Espinas Dendríticas/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Femenino , Hipocampo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Prueba de Campo Abierto/efectos de los fármacos , Embarazo , Piridinas/farmacología , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Proteínas de Unión al GTP rho/antagonistas & inhibidores , Quinasas Asociadas a rho/metabolismo
19.
J Biochem Mol Toxicol ; 35(12): e22919, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34590382

RESUMEN

Sevoflurane (Sev), a widely used volatile anesthetic, can cause long-term neurotoxicity and learning and memory impairment. Dexmedetomidine (Dex) has been reported to exhibit neuroprotective effects in numerous neurological disorders. Our work aimed to evaluate the molecular mechanisms of Dex in Sev-induced neurotoxicity. In this study, it was found that Dex mitigated Sev-induced neurotoxicity. Moreover, Sev treatment upregulated the miR-330-3p expression in hippocampus tissues, while this effect was reversed by the Dex treatment. Additionally, microRNA-330-3p (miR-330-3p) inhibition was verified to inhibit cell apoptosis and facilitate mitophagy. ULK1 was confirmed as a downstream target of miR-330-3p and miR-330-3p could negatively regulate ULK1 expression. Finally, the effects of miR-330-3p inhibition on Sev-induced neurotoxicity could be offset by ULK1 knockdown or further intensified by Dex treatment. In summary, our study demonstrated that Dex regulated cell apoptosis and mitophagy in Sev-induced neurotoxicity through the miR-330-3p/ULK1 axis. These findings might provide novel insights into the treatment of Sev-induced neurotoxicity.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Dexmedetomidina/farmacología , MicroARNs/metabolismo , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/prevención & control , Sevoflurano/toxicidad , Anestésicos por Inhalación/toxicidad , Animales , Apoptosis/fisiología , MicroARNs/fisiología , Mitofagia/fisiología , Ratas , Ratas Sprague-Dawley
20.
Br J Anaesth ; 127(3): 447-457, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34266661

RESUMEN

BACKGROUND: Infant anaesthesia causes acute brain cell apoptosis, and later in life cognitive deficits and behavioural alterations, in non-human primates (NHPs). Various brain injuries and neurodegenerative conditions are characterised by chronic astrocyte activation (astrogliosis). Glial fibrillary acidic protein (GFAP), an astrocyte-specific protein, increases during astrogliosis and remains elevated after an injury. Whether infant anaesthesia is associated with a sustained increase in GFAP is unknown. We hypothesised that GFAP is increased in specific brain areas of NHPs 2 yr after infant anaesthesia, consistent with prior injury. METHODS: Eight 6-day-old NHPs per group were exposed to 5 h isoflurane once (1×) or three times (3×), or to room air as a control (Ctr). Two years after exposure, their brains were assessed for GFAP density changes in the primary visual cortex (V1), perirhinal cortex (PRC), hippocampal subiculum, amygdala, and orbitofrontal cortex (OFC). We also assessed concomitant microglia activation and hippocampal neurogenesis. RESULTS: Compared with controls, GFAP densities in V1 were increased in exposed groups (Ctr: 0.208 [0.085-0.427], 1×: 0.313 [0.108-0.533], 3×: 0.389 [0.262-0.652]), whereas the density of activated microglia was unchanged. In addition, GFAP densities were increased in the 3× group in the PRC and the subiculum, and in both exposure groups in the amygdala, but there was no increase in the OFC. There were no differences in hippocampal neurogenesis among groups. CONCLUSIONS: Two years after infant anaesthesia, NHPs show increased GFAP without concomitant microglia activation in specific brain areas. These long-lasting structural changes in the brain caused by infant anaesthesia exposure may be associated with functional alterations at this age.


Asunto(s)
Anestesia por Inhalación/efectos adversos , Anestésicos por Inhalación/toxicidad , Encéfalo/efectos de los fármacos , Gliosis/inducido químicamente , Isoflurano/toxicidad , Microglía/efectos de los fármacos , Administración por Inhalación , Factores de Edad , Anestésicos por Inhalación/administración & dosificación , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Proteínas de Unión al Calcio/metabolismo , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/metabolismo , Gliosis/patología , Isoflurano/administración & dosificación , Macaca mulatta , Masculino , Proteínas de Microfilamentos/metabolismo , Microglía/metabolismo , Microglía/patología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA