Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Glycobiology ; 30(7): 454-462, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-31897478

RESUMEN

Cells are covered with glycans. The expression and distribution of specific glycans on the surface of a cell are important for various cellular functions. Imaging these glycans is essential to aid elucidation of their biological roles. Here, utilizing methods of direct fluorescent glycan imaging, in which fluorescent sialic acids are directly incorporated into substrate glycans via recombinant sialyltranferases, we report the differential distribution of N- and O-glycans and variable expression of sialyl-T antigen on HeLa cells. While the expression of N-glycans tends to be more peripheral at positions where cell-cell interaction occurs, O-glycan expression is more granular but relatively evenly distributed on positive cells. While N-glycans are expressed on all cells, sialyl-T antigen expression exhibits a wide spectrum of variation with some cells being strongly positive and some cells being almost completely negative. The differential distribution of N- and O-glycans on cell surface reflects their distinctive roles in cell biology.


Asunto(s)
Antígenos Virales de Tumores/biosíntesis , Imagen Óptica , Polisacáridos/biosíntesis , Ácidos Siálicos/biosíntesis , Antígenos Virales de Tumores/química , Células HeLa , Humanos , Polisacáridos/química , Ácidos Siálicos/química , Sialiltransferasas/metabolismo
2.
J Virol ; 93(1)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30333173

RESUMEN

Host range (HR) mutants of simian virus 40 (SV40) containing mutations in the C terminus of large T antigen fail to replicate efficiently or form plaques in restrictive cell types. HR mutant viruses exhibit impairments at several stages of the viral life cycle, including early and late gene and protein expression, DNA replication, and virion assembly, although the underlying mechanism for these defects is unknown. Host protein FAM111A, whose depletion rescues early and late gene expression and plaque formation for SV40 HR viruses, has been shown to play a role in cellular DNA replication. SV40 viral DNA replication occurs in the nucleus of infected cells in viral replication centers where viral proteins and cellular replication factors localize. Here, we examined the role of viral replication center formation and DNA replication in the FAM111A-mediated HR phenotype. We found that SV40 HR virus rarely formed viral replication centers in restrictive cells, a phenotype that could be rescued by FAM111A depletion. Furthermore, while FAM111A localized to nucleoli in uninfected cells in a cell cycle-dependent manner, FAM111A relocalized to viral replication centers after infection with SV40 wild-type or HR viruses. We also found that inhibition of viral DNA replication through aphidicolin treatment or through the use of replication-defective SV40 mutants diminished the effects of FAM111A depletion on viral gene expression. These results indicate that FAM111A restricts SV40 HR viral replication center formation and that viral DNA replication contributes to the FAM111A-mediated effect on early gene expression.IMPORTANCE SV40 has served as a powerful tool for understanding fundamental viral and cellular processes; however, despite extensive study, the SV40 HR mutant phenotype remains poorly understood. Mutations in the C terminus of large T antigen that disrupt binding to the host protein FAM111A render SV40 HR viruses unable to replicate in restrictive cell types. Our work reveals a defect of HR mutant viruses in the formation of viral replication centers that can be rescued by depletion of FAM111A. Furthermore, inhibition of viral DNA replication reduces the effects of FAM111A restriction on viral gene expression. Additionally, FAM111A is a poorly characterized cellular protein whose mutation leads to two severe human syndromes, Kenny-Caffey syndrome and osteocraniostenosis. Our findings regarding the role of FAM111A in restricting viral replication and its localization to nucleoli and viral replication centers provide further insight into FAM111A function that could help reveal the underlying disease-associated mechanisms.


Asunto(s)
Antígenos Virales de Tumores/genética , Proteínas de Ciclo Celular/metabolismo , ADN Viral/metabolismo , Virus 40 de los Simios/fisiología , Animales , Antígenos Virales de Tumores/química , Proteínas de Ciclo Celular/genética , Línea Celular , Núcleo Celular/virología , Chlorocebus aethiops , Regulación Viral de la Expresión Génica , Especificidad del Huésped , Humanos , Mutación , Fenotipo , Virus 40 de los Simios/genética , Virus 40 de los Simios/inmunología , Replicación Viral
3.
J Gen Virol ; 99(4): 567-573, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29517483

RESUMEN

The Polyomaviridae is a diverse family of circular double-stranded DNA viruses. Polyomaviruses have been isolated from a wide array of animal hosts. An understanding of the evolutionary and ecological dynamics of these viruses is essential to understanding the pathogenicity of polyomaviruses. Using a high throughput sequencing approach, we identified a novel polyomavirus in an emerald notothen (Trematomus bernacchii) sampled in the Ross sea (Antarctica), expanding the known number of fish-associated polyomaviruses. Our analysis suggests that polyomaviruses belong to three main evolutionary clades; the first clade is made up of all recognized terrestrial polyomaviruses. The fish-associated polyomaviruses are not monophyletic, and belong to two divergent evolutionary lineages. The fish viruses provide evidence that the evolution of the key viral large T protein involves gain and loss of distinct domains.


Asunto(s)
Evolución Molecular , Enfermedades de los Peces/virología , Infecciones por Polyomavirus/veterinaria , Poliomavirus/clasificación , Poliomavirus/aislamiento & purificación , Animales , Regiones Antárticas , Antígenos Virales de Tumores/química , Antígenos Virales de Tumores/genética , Perciformes/virología , Filogenia , Poliomavirus/química , Poliomavirus/genética , Infecciones por Polyomavirus/virología , Dominios Proteicos
4.
PLoS Pathog ; 12(1): e1005362, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26735515

RESUMEN

The replication of human polyomavirus JCV, which causes Progressive Multifocal Leukoencephalopathy, is initiated by the virally encoded T-antigen (T-ag). The structure of the JC virus T-ag origin-binding domain (OBD) was recently solved by X-ray crystallography. This structure revealed that the OBD contains a C-terminal pocket, and that residues from the multifunctional A1 and B2 motifs situated on a neighboring OBD molecule dock into the pocket. Related studies established that a mutation in a pocket residue (F258L) rendered JCV T-ag unable to support JCV DNA replication. To establish why this mutation inactivated JCV T-ag, we have solved the structure of the F258L JCV T-ag OBD mutant. Based on this structure, it is concluded that the structural consequences of the F258L mutation are limited to the pocket region. Further analyses, utilizing the available polyomavirus OBD structures, indicate that the F258 region is highly dynamic and that the relative positions of F258 are governed by DNA binding. The possible functional consequences of the DNA dependent rearrangements, including promotion of OBD cycling at the replication fork, are discussed.


Asunto(s)
Antígenos Virales de Tumores/metabolismo , Replicación del ADN/fisiología , ADN Viral/metabolismo , Virus JC/fisiología , Replicación Viral/fisiología , Secuencia de Aminoácidos , Antígenos Virales de Tumores/química , Sitios de Unión , Rastreo Diferencial de Calorimetría , Cristalografía por Rayos X , ADN Viral/química , Técnica del Anticuerpo Fluorescente , Humanos , Datos de Secuencia Molecular , Conformación Proteica
5.
J Virol ; 90(3): 1544-56, 2016 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26608318

RESUMEN

UNLABELLED: Merkel cell polyomavirus (MCPyV) plays an important role in Merkel cell carcinoma (MCC). MCPyV small T (sT) antigen has emerged as the key oncogenic driver in MCC carcinogenesis. It has also been shown to promote MCPyV LT-mediated replication by stabilizing LT. The importance of MCPyV sT led us to investigate sT functions and to identify potential ways to target this protein. We discovered that MCPyV sT purified from bacteria contains iron-sulfur (Fe/S) clusters. Electron paramagnetic resonance analysis showed that MCPyV sT coordinates a [2Fe-2S] and a [4Fe-4S] cluster. We also observed phenotypic conservation of Fe/S coordination in the sTs of other polyomaviruses. Since Fe/S clusters are critical cofactors in many nucleic acid processing enzymes involved in DNA unwinding and polymerization, our results suggested the hypothesis that MCPyV sT might be directly involved in viral replication. Indeed, we demonstrated that MCPyV sT enhances LT-mediated replication in a manner that is independent of its previously reported ability to stabilize LT. MCPyV sT translocates to nuclear foci containing actively replicating viral DNA, supporting a direct role for sT in promoting viral replication. Mutations of Fe/S cluster-coordinating cysteines in MCPyV sT abolish its ability to stimulate viral replication. Moreover, treatment with cidofovir, a potent antiviral agent, robustly inhibits the sT-mediated enhancement of MCPyV replication but has little effect on the basal viral replication driven by LT alone. This finding further indicates that MCPyV sT plays a direct role in stimulating viral DNA replication and introduces cidofovir as a possible drug for controlling MCPyV infection. IMPORTANCE: MCPyV is associated with a highly aggressive form of skin cancer in humans. Epidemiological surveys for MCPyV seropositivity and sequencing analyses of healthy human skin suggest that MCPyV may represent a common component of the human skin microbial flora. However, much of the biology of the virus and its oncogenic ability remain to be investigated. In this report, we identify MCPyV sT as a novel Fe/S cluster protein and show that conserved cysteine clusters are important for sT's ability to enhance viral replication. Moreover, we show that sT sensitizes MCPyV replication to cidofovir inhibition. The discovery of Fe/S clusters in MCPyV sT opens new avenues to the study of the structure and functionality of this protein. Moreover, this study supports the notion that sT is a potential drug target for dampening MCPyV infection.


Asunto(s)
Antígenos Virales de Tumores/metabolismo , Replicación del ADN , Proteínas Hierro-Azufre/metabolismo , Poliomavirus de Células de Merkel/fisiología , Replicación Viral , Antígenos Virales de Tumores/química , Antígenos Virales de Tumores/aislamiento & purificación , Antivirales/metabolismo , Línea Celular , Núcleo Celular/química , Cidofovir , Citosina/análogos & derivados , Citosina/metabolismo , Análisis Mutacional de ADN , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/aislamiento & purificación , Poliomavirus de Células de Merkel/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Organofosfonatos/metabolismo , Transporte de Proteínas
6.
Biosci Biotechnol Biochem ; 81(12): 2268-2278, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29113555

RESUMEN

Herein we describe the linear synthesis of a tetrasaccharyl sialoglycan found in both the Chol-1 ganglioside core and disialyl T antigen. The synthesis featured sialylation with a C5-ureido-modified sialyl donor followed by selective isolation of the desired α-sialoside via 1,5-lactamization. This methodology enables the linear synthesis of sialoglycans and provides practical access to biologically important carbohydrate molecules.


Asunto(s)
Antígenos Virales de Tumores/química , Gangliósidos/química , Ácido N-Acetilneuramínico/química , Oligosacáridos/química , Oligosacáridos/síntesis química , Técnicas de Química Sintética
7.
PLoS Pathog ; 10(2): e1003966, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24586168

RESUMEN

JC virus is a member of the Polyomavirus family of DNA tumor viruses and the causative agent of progressive multifocal leukoencephalopathy (PML). PML is a disease that occurs primarily in people who are immunocompromised and is usually fatal. As with other Polyomavirus family members, the replication of JC virus (JCV) DNA is dependent upon the virally encoded protein T-antigen. To further our understanding of JCV replication, we have determined the crystal structure of the origin-binding domain (OBD) of JCV T-antigen. This structure provides the first molecular understanding of JCV T-ag replication functions; for example, it suggests how the JCV T-ag OBD site-specifically binds to the major groove of GAGGC sequences in the origin. Furthermore, these studies suggest how the JCV OBDs interact during subsequent oligomerization events. We also report that the OBD contains a novel "pocket"; which sequesters the A1 & B2 loops of neighboring molecules. Mutagenesis of a residue in the pocket associated with the JCV T-ag OBD interfered with viral replication. Finally, we report that relative to the SV40 OBD, the surface of the JCV OBD contains one hemisphere that is highly conserved and one that is highly variable.


Asunto(s)
Antígenos Virales de Tumores/química , Replicación del ADN/genética , Virus JC/química , Virus JC/genética , Replicación Viral/genética , Secuencia de Aminoácidos , Sitios de Unión/fisiología , Cristalización , Cristalografía por Rayos X , Virus JC/fisiología , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína
8.
Biol Pharm Bull ; 39(11): 1897-1902, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27803463

RESUMEN

Herpes simplex virus type 1 (HSV-1) is a causative agent for a variety of diseases. Although antiherpetic drugs such as acyclovir have been developed to inhibit virus replication through interaction with DNA kinases, their continuous administration leads to an increase in the frequency of drug-resistant HSV-1, which is an important clinical issue that requires urgent solution. Recently, we reported that the sialylated O-linked sugar T antigen (sTn) and its attached peptide region (O-glycosylated sTn peptide) derived from the HSV-1 glycoprotein B (gB) protein inhibited HSV-1 infection by specifically targeting paired immunoglobulin-like type 2 receptor alpha (PILRα) in vitro. In this study, to further identify novel inhibitors of gB-mediated HSV-1 infection in vitro, we established a cell-based fusion assay for rapid drug screening. Chinese hamster ovary (CHO) cells were transfected with expression plasmids for HSV-1 gB, gD, gH, and gL, and T7 RNA polymerase, and were designated as the effector cells. The CHO-K1 cells stably expressing PILRα were transfected with the expression plasmid for firefly luciferase under the T7 promoter, and were designated as the target cells. The effector and target cells were co-cultured, and luminescence was measured when both cells were successfully fused. Importantly, we found that cell-to-cell fusion was specifically inhibited by O-glycosylated sTn peptide in a dose dependent manner. Our results suggested that this virus-free cell-based fusion assay system could be a useful and promising approach to identify novel inhibitors of gB-mediated HSV-1 infection, and will aid in the development of antiviral therapeutic strategies for HSV-1-associated diseases.


Asunto(s)
Antígenos Virales de Tumores/química , Antivirales/farmacología , Herpesvirus Humano 1 , Péptidos/farmacología , Proteínas del Envoltorio Viral/genética , Animales , Bioensayo , Células CHO , Fusión Celular , Técnicas de Cocultivo , Cricetinae , Cricetulus , ARN Polimerasas Dirigidas por ADN/genética , Herpes Simple/tratamiento farmacológico , Herpesvirus Humano 1/inmunología , Herpesvirus Humano 1/patogenicidad , Luciferasas de Luciérnaga/genética , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/genética , Proteínas Virales/genética
9.
Int J Cancer ; 136(5): E290-300, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25208506

RESUMEN

Merkel cell polyomavirus (MCPyV)--positive Merkel cell carcinoma (MCC) tumor cell growth is dependent on the expression of a viral Large T antigen (LT) with an intact retinoblastoma protein (RB)-binding site. This RB-binding domain in MCPyV-LT is--in contrast to other polyomavirus LTs (e.g., SV40)--embedded between two large MCPyV unique regions (MUR1 and MUR2). To identify elements of the MCPyV-LT necessary for tumor cell growth, we analyzed the rescue activity of LT variants following knockdown of the endogenous LT in MCC cells. These experiments demonstrate that nuclear localization is essential for LT function, but that a motif previously described to be a nuclear localization sequence is neither required for nuclear accumulation of truncated MCPyV-LT nor for promotion of MCC cell proliferation. Furthermore, large parts of the MURs distal to the RB binding domain as well as ALTO--a second protein encoded by an alternative reading frame in the MCPyV-LT mRNA--are completely dispensable for MCPyV-driven tumor cell proliferation. Notably, even MCPyV-LTs in which the entire MURs have been removed are still able to promote MCC cellular growth although rescue activity is reduced which may be due to MUR1 being required for stable LT expression in MCC cells. Finally, we provide evidence implying that--while binding to Vam6p is not essential--HSC-70 interaction is significantly involved in mediating MCPyV-LT function in MCC cells including growth promotion and induction of E2F target genes.


Asunto(s)
Antígenos Virales de Tumores/metabolismo , Carcinoma de Células de Merkel/metabolismo , Poliomavirus de Células de Merkel/fisiología , Infecciones por Polyomavirus/metabolismo , Infecciones Tumorales por Virus/metabolismo , Secuencias de Aminoácidos , Antígenos Virales de Tumores/química , Antígenos Virales de Tumores/genética , Apoptosis , Western Blotting , Carcinoma de Células de Merkel/patología , Carcinoma de Células de Merkel/virología , Proliferación Celular , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Técnicas para Inmunoenzimas , Infecciones por Polyomavirus/patología , Infecciones por Polyomavirus/virología , Estructura Terciaria de Proteína , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas , Infecciones Tumorales por Virus/patología , Infecciones Tumorales por Virus/virología
10.
J Virol ; 88(6): 3144-60, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24371076

RESUMEN

UNLABELLED: Interference with tumor suppressor pathways by polyomavirus-encoded tumor antigens (T-Ags) can result in transformation. Consequently, it is thought that T-Ags encoded by Merkel cell polyomavirus (MCPyV), a virus integrated in ∼90% of all Merkel cell carcinoma (MCC) cases, are major contributors to tumorigenesis. The MCPyV large T-Ag (LT-Ag) has preserved the key functional domains present in all family members but has also acquired unique regions that flank the LxCxE motif. As these regions may mediate unique functions, or may modulate those shared with T-Ags of other polyomaviruses, functional studies of MCPyV T-Ags are required. Here, we have performed a comparative study of full-length or MCC-derived truncated LT-Ags with regard to their biochemical characteristics, their ability to bind to retinoblastoma (Rb) and p53 proteins, and their transforming potential. We provide evidence that full-length MCPyV LT-Ag may not directly bind to p53 but nevertheless can significantly reduce p53-dependent transcription in reporter assays. Although early region expression constructs harboring either full-length or MCC-derived truncated LT-Ag genes can transform primary baby rat kidney cells, truncated LT-Ags do not bind to p53 or reduce p53-dependent transcription. Interestingly, shortened LT-Ags exhibit a very high binding affinity for Rb, as shown by coimmunoprecipitation and in vitro binding studies. Additionally, we show that truncated MCPyV LT-Ag proteins are expressed at higher levels than those for the wild-type protein and are able to partially relocalize Rb to the cytoplasm, indicating that truncated LT proteins may have gained additional features that distinguish them from the full-length protein. IMPORTANCE: MCPyV is one of the 12 known polyomaviruses that naturally infect humans. Among these, it is of particular interest since it is the only human polyomavirus known to be involved in tumorigenesis. MCPyV is thought to be causally linked to MCC, a rare skin tumor. In these tumors, viral DNA is monoclonally integrated into the genome of the tumor cells in up to 90% of all MCC cases, and the integrated MCV genomes, furthermore, harbor signature mutations in the so-called early region that selectively abrogate viral replication while preserving cell cycle deregulating functions of the virus. This study describes comparative studies of early region T-Ag protein characteristics, their ability to bind to Rb and p53, and their transforming potential.


Asunto(s)
Antígenos Virales de Tumores/metabolismo , Carcinoma de Células de Merkel/metabolismo , Poliomavirus de Células de Merkel/metabolismo , Infecciones por Polyomavirus/metabolismo , Proteína de Retinoblastoma/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Infecciones Tumorales por Virus/metabolismo , Secuencias de Aminoácidos , Animales , Antígenos Virales de Tumores/química , Antígenos Virales de Tumores/genética , Carcinoma de Células de Merkel/genética , Carcinoma de Células de Merkel/patología , Carcinoma de Células de Merkel/virología , Línea Celular Tumoral , Transformación Celular Viral , Regulación hacia Abajo , Humanos , Cinética , Poliomavirus de Células de Merkel/química , Poliomavirus de Células de Merkel/genética , Infecciones por Polyomavirus/genética , Infecciones por Polyomavirus/patología , Infecciones por Polyomavirus/virología , Unión Proteica , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley , Proteína de Retinoblastoma/química , Proteína de Retinoblastoma/genética , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética , Infecciones Tumorales por Virus/genética , Infecciones Tumorales por Virus/patología , Infecciones Tumorales por Virus/virología
11.
Arch Biochem Biophys ; 573: 23-31, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25752954

RESUMEN

Several human polyomaviruses including JCV, BKV and TSV are associated with diseases, particularly in immunosuppressed patients. While the large T antigen (LT) encoded by the monkey polyomavirus SV40 is well studied, and possesses intrinsic ATPase and DNA helicase activities, the LTs of the human polyomaviruses are relatively uncharacterized. In order to evaluate whether these enzymatic activities, which are required for viral DNA replication, are conserved between polyomaviruses, we performed a comparative study using the LTs from JCV, TSV and SV40. The ATPase and DNA helicase activities and the interaction with the cellular tumor suppressor p53 were assayed for the purified Zn-ATPase domains of the three LTs. We found that all Zn-ATPases were active ATPases. The Zn-ATPase domains also functioned as DNA helicases, although the measured kinetic constants differed among the three proteins. In addition, when tested against four small molecule ATPase inhibitors, the Zn-ATPase domains of TSV was more resistant than that of SV40 and JCV. Our results show that, while LTs from JCV and TSV share the core ATPase and DNA helicase activities, they possess important functional differences that might translate into their respective abilities to infect and replicate in hosts.


Asunto(s)
Adenosina Trifosfatasas/química , Antígenos Virales de Tumores/química , ADN Helicasas/química , Poliomavirus/enzimología , Secuencia de Aminoácidos , Virus JC/enzimología , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Virus 40 de los Simios/enzimología
12.
Bioorg Med Chem ; 22(22): 6490-6502, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25440730

RESUMEN

Polyomavirus infections are common and relatively benign in the general human population but can become pathogenic in immunosuppressed patients. Because most treatments for polyomavirusassociated diseases nonspecifically target DNA replication, existing treatments for polyomavirus infection possess undesirable side effects. However, all polyomaviruses express Large Tumor Antigen (T Ag), which is unique to this virus family and may serve as a therapeutic target. Previous screening of pyrimidinone­peptoid hybrid compounds identified MAL2-11B and a MAL2-11B tetrazole derivative as inhibitors of viral replication and T Ag ATPase activity (IC50 of ~20-50 µM. To improve upon this scaffold and to develop a structure­activity relationship for this new class of antiviral agents, several iterative series of MAL2-11B derivatives were synthesized. The replacement of a flexible methylene chain linker with a benzyl group or, alternatively, the addition of an ortho-methyl substituent on the biphenyl side chain in MAL2-11B yielded an IC50 of 50 µM, which retained antiviral activity. After combining both structural motifs, a new lead compound was identified that inhibited T Ag ATPase activity with an IC50 of 50 µM. We suggest that the knowledge gained from the structure­activity relationship and a further refinement cycle of the MAL2-11B scaffold will provide a specific, novel therapeutic treatment option for polyomavirus infections and their associated diseases.


Asunto(s)
Antígenos Virales de Tumores/química , Antivirales/síntesis química , Virus 40 de los Simios/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Antígenos Virales de Tumores/metabolismo , Antivirales/farmacología , Antivirales/toxicidad , Supervivencia Celular/efectos de los fármacos , Células HEK293 , Humanos , Peptoides/química , Poliomavirus/efectos de los fármacos , Unión Proteica , Pirimidinonas/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacos
13.
Bioorg Med Chem ; 21(16): 4778-85, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23535562

RESUMEN

A series of STn-MUC1 and ST-MUC1 glycopeptides containing naturally occurring and non-natural sialic acids have been chemoenzymatically synthesized from Tn-MUC1 glycopeptide using one-pot multienzyme (OPME) approaches. In situ generation of the sialyltransferase donor cytidine 5'-monophosphate-sialic acid (CMP-Sia) using a CMP-sialic acid synthetase in the presence of an extra amount of cytidine 5'-triphosphate (CTP) and removal of CMP from the reaction mixture by flash C18 cartridge purification allow the complete consumption of Tn-MUC1 glycopeptide for quantitative synthesis of STn-MUC1. A Campylobacter jejuni ß1-3GalT (CjCgtBΔ30-His6) mutant has been found to catalyze the transfer of one or more galactose residues to Tn-MUC1 for the synthesis of T-MUC1 and galactosylated T-MUC1. Sialylation of T-MUC1 using Pasteurella multocida α2-3-sialyltransferase 3 (PmST3) with Neisseria meningitidis CMP-sialic acid synthetase (NmCSS) and Escherichia coli sialic acid aldolase in one pot produced ST-MUC1 efficiently. These glycopeptides are potential cancer vaccine candidates.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glicopéptidos/biosíntesis , Ácidos Siálicos/química , Antígenos Virales de Tumores/química , Proteínas Bacterianas/genética , Secuencia de Bases , Campylobacter jejuni/enzimología , Clonación Molecular , Escherichia coli/enzimología , Glicopéptidos/química , Datos de Secuencia Molecular , Mutación , Neisseria meningitidis/enzimología , Oxo-Ácido-Liasas/genética , Oxo-Ácido-Liasas/metabolismo , Pasteurella multocida/enzimología , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Sialiltransferasas/genética , Sialiltransferasas/metabolismo
14.
J Virol ; 85(2): 818-27, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20980496

RESUMEN

The origin-binding domain (OBD) of simian virus 40 (SV40) large T-antigen (T-Ag) is essential for many of T-Ag's interactions with DNA. Nevertheless, many important issues related to DNA binding, for example, how single-stranded DNA (ssDNA) transits along the T-Ag OBD, have yet to be established. Therefore, X-ray crystallography was used to determine the costructure of the T-Ag OBD bound to DNA substrates such as the single-stranded region of a forked oligonucleotide. A second structure of the T-Ag OBD crystallized in the presence of poly(dT)(12) is also reported. To test the conclusions derived from these structures, residues identified as being involved in binding to ssDNA by crystallography or by an earlier nuclear magnetic resonance study were mutated, and their binding to DNA was characterized via fluorescence anisotropy. In addition, these mutations were introduced into full-length T-Ag, and these mutants were tested for their ability to support replication. When considered in terms of additional homology-based sequence alignments, our studies refine our understanding of how the T-Ag OBDs encoded by the polyomavirus family interact with ssDNA, a critical step during the initiation of DNA replication.


Asunto(s)
Antígenos Virales de Tumores/química , Antígenos Virales de Tumores/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Virus 40 de los Simios/fisiología , Secuencia de Aminoácidos , Animales , Antígenos Virales de Tumores/genética , Cristalografía por Rayos X , Polarización de Fluorescencia , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia
15.
Proc Natl Acad Sci U S A ; 106(18): 7449-54, 2009 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-19383795

RESUMEN

The molecular origin of the action of helicases is explored, starting with a model built based on the different X-ray structures of the large tumor antigen (LTag) hexameric helicase and a simplified model containing the ionized phosphate backbones of a single-strand DNA. The coupling between the protein structural changes and the translocation process is quantified using an effective electrostatic free-energy surface for the protein/DNA complex. This surface is then used in Langevin dynamics simulations of the time dependence of the translocation process. Remarkably, the simulated motion along the free-energy surface results in a vectorial translocation of the DNA, consistent with the biological process. The electrostatic energy of the system appears to reproduce the directionality of this process. Thus, we are able to provide a consistent structure-based molecular description of the energetic and dynamics of the translocation process. This analysis may have general implications for relating structural models to translocation directionality in helicases and other DNA translocases.


Asunto(s)
Antígenos Virales de Tumores/química , ADN Helicasas/química , ADN de Cadena Simple/química , Modelos Biológicos , Modelos Moleculares , Antígenos Virales de Tumores/metabolismo , Cristalografía por Rayos X , ADN Helicasas/metabolismo , ADN de Cadena Simple/metabolismo , Conformación Proteica , Multimerización de Proteína , Electricidad Estática
16.
Bioorg Khim ; 38(1): 31-9, 2012.
Artículo en Ruso | MEDLINE | ID: mdl-22792703

RESUMEN

A set of GnRH analogues containing nuclear localization signal (NLS) of SV-40 virus large T-antigen have been synthesized using solid phase peptide synthesis and chemical ligation technique. Selective chemical ligation was achieved as a result of hydrazone formation in the course of interaction between NLS hydrazide and GnRH analog modified by pyruvic acid. The efficiency of synthesized peptide carriers was demonstrated in experiments with human cancer cells transfected by reporter luciferase and beta-galactosidase genes or suicide HSV-1 thymidine kinase gene. It was shown that selectivity of action on cancer cells can be achieved as a result of peptide/DNA complex penetration through the cell membrane by GnRH receptor-mediated endocytosis pathway.


Asunto(s)
Técnicas de Transferencia de Gen , Hormona Liberadora de Gonadotropina , Señales de Localización Nuclear , Antígenos Virales de Tumores/química , Antígenos Virales de Tumores/farmacología , Membrana Celular/química , Membrana Celular/metabolismo , ADN/química , ADN/farmacología , Hormona Liberadora de Gonadotropina/análogos & derivados , Hormona Liberadora de Gonadotropina/síntesis química , Hormona Liberadora de Gonadotropina/química , Hormona Liberadora de Gonadotropina/farmacología , Células Hep G2 , Humanos , Señales de Localización Nuclear/química , Señales de Localización Nuclear/farmacología , Virus 40 de los Simios/química
17.
J Biomol Struct Dyn ; 40(11): 5243-5252, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-33416027

RESUMEN

Polyomaviruses such as Simian Virus 40 (SV40) and John Cunningham Virus (JCV) have been extensively studied for their potential role in aiding oncogenic transformation. One of the mechanisms through which they do this is by inactivating p53, a known tumor suppressor, through one of their viral proteins, large T-antigen (LT). However, these two viruses represent only a fraction of existing polyomaviruses. Using Clustal Omega, we aligned the protein sequences of LT for 12 different polyomaviruses and found high similarity across polyomavirus LT. We then utilized Molecular Operating Environment (MOE) v2019.01 to compare the binding of SV40 LT to p53 and p53 to DNA to more precisely define the mechanism with which SV40 LT inactivates p53. By binding to p53 residues essential to DNA binding, SV40 LT prevents the proper interaction of p53 with DNA and consequently its fulfillment of transcription factor functions. To further explore the possibility for other polyomavirus LT to do the same, we either retrieved existing 3D structures from RCSB Protein Data Bank or generated 3D homology models of other polyomavirus LT and modeled their interactions with p53. These models interacted with p53 in a similar manner as SV40 LT and provide further evidence of the potential of other polyomavirus LT to inactivate p53. This work demonstrates the importance of investigating the oncogenic potential of polyomaviruses and elucidates future targets for cancer treatment.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antígenos Virales de Tumores , Proteína p53 Supresora de Tumor , Secuencia de Aminoácidos , Antígenos Virales de Tumores/química , Antígenos Virales de Tumores/genética , Antígenos Virales de Tumores/metabolismo , Virus 40 de los Simios/genética , Virus 40 de los Simios/metabolismo , Proteína p53 Supresora de Tumor/genética
18.
J Biol Chem ; 285(22): 17112-22, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20234039

RESUMEN

DNA polymerase alpha-primase (pol-prim) plays a central role in DNA replication in higher eukaryotes, initiating synthesis on both leading and lagging strand single-stranded DNA templates. Pol-prim consists of a primase heterodimer that synthesizes RNA primers, a DNA polymerase that extends them, and a fourth subunit, p68 (also termed B-subunit), that is thought to regulate the complex. Although significant knowledge about single-subunit primases of prokaryotes has accumulated, the functions and regulation of pol-prim remain poorly understood. In the SV40 replication model, the p68 subunit is required for primosome activity and binds directly to the hexameric viral helicase T antigen, suggesting a functional link between T antigen-p68 interaction and primosome activity. To explore this link, we first mapped the interacting regions of the two proteins and discovered a previously unrecognized N-terminal globular domain of p68 (p68N) that physically interacts with the T antigen helicase domain. NMR spectroscopy was used to determine the solution structure of p68N and map its interface with the T antigen helicase domain. Structure-guided mutagenesis of p68 residues in the interface diminished T antigen-p68 interaction, confirming the interaction site. SV40 primosome activity of corresponding pol-prim mutants decreased in proportion to the reduction in p68N-T antigen affinity, confirming that p68-T antigen interaction is vital for primosome function. A model is presented for how this interaction regulates SV40 primosome activity, and the implications of our findings are discussed in regard to the molecular mechanisms of eukaryotic DNA replication initiation.


Asunto(s)
ADN Polimerasa I/química , ADN Primasa/química , Virus 40 de los Simios/enzimología , Antígenos Virales de Tumores/química , Cartilla de ADN/genética , Replicación del ADN , Espectroscopía de Resonancia Magnética , Conformación Molecular , Mutagénesis , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Técnicas del Sistema de Dos Híbridos
19.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 6): 560-7, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21636896

RESUMEN

The modular multifunctional protein large T antigen (T-ag) from simian virus 40 orchestrates many of the events needed for replication of the viral double-stranded DNA genome. This protein assembles into single and double hexamers on specific DNA sequences located at the origin of replication. This complicated process begins when the origin-binding domain of large T antigen (T-ag ODB) binds the GAGGC sequences in the central region (site II) of the viral origin of replication. While many of the functions of purified T-ag OBD can be studied in isolation, it is primarily monomeric in solution and cannot assemble into hexamers. To overcome this limitation, the possibility of engineering intermolecular disulfide bonds in the origin-binding domain which could oligomerize in solution was investigated. A recent crystal structure of the wild-type T-ag OBD showed that this domain forms a left-handed spiral in the crystal with six subunits per turn. Therefore, we analyzed the protein interface of this structure and identified two residues that could potentially support an intermolecular disulfide bond if changed to cysteines. SDS-PAGE analysis established that the mutant T-ag OBD formed higher oligomeric products in a redox-dependent manner. In addition, the 1.7 Å resolution crystal structure of the engineered disulfide-linked T-ag OBD is reported, which establishes that oligomerization took place in the expected manner.


Asunto(s)
Antígenos Virales de Tumores/química , ADN/química , Disulfuros/química , Virus 40 de los Simios/química , Antígenos Virales de Tumores/genética , Antígenos Virales de Tumores/metabolismo , Biocatálisis , ADN/metabolismo , Replicación del ADN , Modelos Moleculares , Mutación , Estructura Cuaternaria de Proteína , Virus 40 de los Simios/genética , Virus 40 de los Simios/metabolismo
20.
Proc Natl Acad Sci U S A ; 105(42): 16272-7, 2008 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-18812503

RESUMEN

Merkel cell polyomavirus (MCV) is a virus discovered in our laboratory at the University of Pittsburgh that is monoclonally integrated into the genome of approximately 80% of human Merkel cell carcinomas (MCCs). Transcript mapping was performed to show that MCV expresses transcripts in MCCs similar to large T (LT), small T (ST), and 17kT transcripts of SV40. Nine MCC tumor-derived LT genomic sequences have been examined, and all were found to harbor mutations prematurely truncating the MCV LT helicase. In contrast, four presumed episomal viruses from nontumor sources did not possess this T antigen signature mutation. Using coimmunoprecipitation and origin replication assays, we show that tumor-derived virus mutations do not affect retinoblastoma tumor suppressor protein (Rb) binding by LT but do eliminate viral DNA replication capacity. Identification of an MCC cell line (MKL-1) having monoclonal MCV integration and the signature LT mutation allowed us to functionally test both tumor-derived and wild type (WT) T antigens. Only WT LT expression activates replication of integrated MCV DNA in MKL-1 cells. Our findings suggest that MCV-positive MCC tumor cells undergo selection for LT mutations to prevent autoactivation of integrated virus replication that would be detrimental to cell survival. Because these mutations render the virus replication-incompetent, MCV is not a "passenger virus" that secondarily infects MCC tumors.


Asunto(s)
Antígenos Virales de Tumores/inmunología , Carcinoma de Células de Merkel/metabolismo , Carcinoma de Células de Merkel/virología , Poliomavirus/fisiología , Secuencia de Aminoácidos , Antígenos Virales de Tumores/química , Antígenos Virales de Tumores/genética , Carcinoma de Células de Merkel/genética , Carcinoma de Células de Merkel/inmunología , Línea Celular Tumoral , Secuencia Conservada , Humanos , Datos de Secuencia Molecular , Mutación/genética , Alineación de Secuencia , Transcripción Genética/genética , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA