Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Archaea ; 2016: 4706532, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27194953

RESUMEN

Inorganic storage granules have long been recognized in bacterial and eukaryotic cells but were only recently identified in archaeal cells. Here, we report the cellular organization and chemical compositions of storage granules in the Euryarchaeon, Archaeoglobus fulgidus strain VC16, a hyperthermophilic, anaerobic, and sulfate-reducing microorganism. Dense granules were apparent in A. fulgidus cells imaged by cryo electron microscopy (cryoEM) but not so by negative stain electron microscopy. Cryo electron tomography (cryoET) revealed that each cell contains one to several dense granules located near the cell membrane. Energy dispersive X-ray (EDX) spectroscopy and scanning transmission electron microscopy (STEM) show that, surprisingly, each cell contains not just one but often two types of granules with different elemental compositions. One type, named iron sulfide body (ISB), is composed mainly of the elements iron and sulfur plus copper; and the other one, called polyphosphate body (PPB), is composed of phosphorus and oxygen plus magnesium, calcium, and aluminum. PPBs are likely used for energy storage and/or metal sequestration/detoxification. ISBs could result from the reduction of sulfate to sulfide via anaerobic energy harvesting pathways and may be associated with energy and/or metal storage or detoxification. The exceptional ability of these archaeal cells to sequester different elements may have novel bioengineering applications.


Asunto(s)
Archaeoglobus fulgidus/química , Gránulos Citoplasmáticos/química , Compuestos de Hierro/análisis , Polifosfatos/análisis , Sulfuros/análisis , Aerobiosis , Anaerobiosis , Archaeoglobus fulgidus/ultraestructura , Microscopía por Crioelectrón , Gránulos Citoplasmáticos/ultraestructura , Tomografía con Microscopio Electrónico , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Espectrometría por Rayos X
2.
Langmuir ; 25(9): 5219-25, 2009 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-19260687

RESUMEN

Interfacing biological systems with inorganic nanoparticles is of great interest, as it offers means of particle stabilization and spatial control in electronic or biomedical applications. We report on the particle-directed assembly of hyperthermophile Archaeoglobus fulgidus ferritin subunits around negatively charged colloidal gold. An annealing process allows rapid assembly of the protein in near-native stoichiometry. Transmission electron microscopy suggests that greater than 95% of nanoparticles are encapsulated while the self-assembly process ensures that almost 100% of the assembled ferritin cavities are occupied.


Asunto(s)
Archaeoglobus fulgidus/química , Ferritinas/química , Nanopartículas del Metal/química , Archaeoglobus fulgidus/ultraestructura , Ferritinas/metabolismo , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Transmisión , Modelos Moleculares , Multimerización de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA