Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.687
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Cell ; 83(6): 827-828, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36931253

RESUMEN

Osipova et al.1 recently identified an inactivating gene mutation that contributed to the evolution of the hummingbird species by increasing flux of pathways for energy production that are necessary for the unique ability for hovering flight. Lessons from the natural selection for this mutation are applied to physiology and medicine.


Asunto(s)
Aves , Vuelo Animal , Animales , Vuelo Animal/fisiología , Aves/genética , Aves/metabolismo , Metabolismo Energético/genética , Consumo de Oxígeno , Selección Genética
2.
Nature ; 629(8013): 851-860, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38560995

RESUMEN

Despite tremendous efforts in the past decades, relationships among main avian lineages remain heavily debated without a clear resolution. Discrepancies have been attributed to diversity of species sampled, phylogenetic method and the choice of genomic regions1-3. Here we address these issues by analysing the genomes of 363 bird species4 (218 taxonomic families, 92% of total). Using intergenic regions and coalescent methods, we present a well-supported tree but also a marked degree of discordance. The tree confirms that Neoaves experienced rapid radiation at or near the Cretaceous-Palaeogene boundary. Sufficient loci rather than extensive taxon sampling were more effective in resolving difficult nodes. Remaining recalcitrant nodes involve species that are a challenge to model due to either extreme DNA composition, variable substitution rates, incomplete lineage sorting or complex evolutionary events such as ancient hybridization. Assessment of the effects of different genomic partitions showed high heterogeneity across the genome. We discovered sharp increases in effective population size, substitution rates and relative brain size following the Cretaceous-Palaeogene extinction event, supporting the hypothesis that emerging ecological opportunities catalysed the diversification of modern birds. The resulting phylogenetic estimate offers fresh insights into the rapid radiation of modern birds and provides a taxon-rich backbone tree for future comparative studies.


Asunto(s)
Aves , Evolución Molecular , Genoma , Filogenia , Animales , Aves/genética , Aves/clasificación , Aves/anatomía & histología , Encéfalo/anatomía & histología , Extinción Biológica , Genoma/genética , Genómica , Densidad de Población , Masculino , Femenino
3.
Nature ; 615(7951): 285-291, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36859541

RESUMEN

The germline mutation rate determines the pace of genome evolution and is an evolving parameter itself1. However, little is known about what determines its evolution, as most studies of mutation rates have focused on single species with different methodologies2. Here we quantify germline mutation rates across vertebrates by sequencing and comparing the high-coverage genomes of 151 parent-offspring trios from 68 species of mammals, fishes, birds and reptiles. We show that the per-generation mutation rate varies among species by a factor of 40, with mutation rates being higher for males than for females in mammals and birds, but not in reptiles and fishes. The generation time, age at maturity and species-level fecundity are the key life-history traits affecting this variation among species. Furthermore, species with higher long-term effective population sizes tend to have lower mutation rates per generation, providing support for the drift barrier hypothesis3. The exceptionally high yearly mutation rates of domesticated animals, which have been continually selected on fecundity traits including shorter generation times, further support the importance of generation time in the evolution of mutation rates. Overall, our comparative analysis of pedigree-based mutation rates provides ecological insights on the mutation rate evolution in vertebrates.


Asunto(s)
Evolución Molecular , Mutación de Línea Germinal , Tasa de Mutación , Vertebrados , Animales , Femenino , Masculino , Aves/genética , Peces/genética , Mutación de Línea Germinal/genética , Mamíferos/genética , Reptiles/genética , Vertebrados/genética
4.
Nature ; 613(7943): 308-316, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36544022

RESUMEN

The testis produces gametes through spermatogenesis and evolves rapidly at both the morphological and molecular level in mammals1-6, probably owing to the evolutionary pressure on males to be reproductively successful7. However, the molecular evolution of individual spermatogenic cell types across mammals remains largely uncharacterized. Here we report evolutionary analyses of single-nucleus transcriptome data for testes from 11 species that cover the three main mammalian lineages (eutherians, marsupials and monotremes) and birds (the evolutionary outgroup), and include seven primates. We find that the rapid evolution of the testis was driven by accelerated fixation rates of gene expression changes, amino acid substitutions and new genes in late spermatogenic stages, probably facilitated by reduced pleiotropic constraints, haploid selection and transcriptionally permissive chromatin. We identify temporal expression changes of individual genes across species and conserved expression programs controlling ancestral spermatogenic processes. Genes predominantly expressed in spermatogonia (germ cells fuelling spermatogenesis) and Sertoli (somatic support) cells accumulated on X chromosomes during evolution, presumably owing to male-beneficial selective forces. Further work identified transcriptomal differences between X- and Y-bearing spermatids and uncovered that meiotic sex-chromosome inactivation (MSCI) also occurs in monotremes and hence is common to mammalian sex-chromosome systems. Thus, the mechanism of meiotic silencing of unsynapsed chromatin, which underlies MSCI, is an ancestral mammalian feature. Our study illuminates the molecular evolution of spermatogenesis and associated selective forces, and provides a resource for investigating the biology of the testis across mammals.


Asunto(s)
Evolución Molecular , Mamíferos , Espermatogénesis , Testículo , Animales , Masculino , Cromatina/genética , Mamíferos/genética , Meiosis/genética , Espermatogénesis/genética , Testículo/citología , Transcriptoma , Análisis de la Célula Individual , Aves/genética , Primates/genética , Regulación de la Expresión Génica , Espermatogonias/citología , Células de Sertoli/citología , Cromosoma X/genética , Cromosoma Y/genética , Compensación de Dosificación (Genética) , Silenciador del Gen
5.
Proc Natl Acad Sci U S A ; 121(21): e2313599121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739790

RESUMEN

The ecoevolutionary drivers of species niche expansion or contraction are critical for biodiversity but challenging to infer. Niche expansion may be promoted by local adaptation or constrained by physiological performance trade-offs. For birds, evolutionary shifts in migratory behavior permit the broadening of the climatic niche by expansion into varied, seasonal environments. Broader niches can be short-lived if diversifying selection and geography promote speciation and niche subdivision across climatic gradients. To illuminate niche breadth dynamics, we can ask how "outlier" species defy constraints. Of the 363 hummingbird species, the giant hummingbird (Patagona gigas) has the broadest climatic niche by a large margin. To test the roles of migratory behavior, performance trade-offs, and genetic structure in maintaining its exceptional niche breadth, we studied its movements, respiratory traits, and population genomics. Satellite and light-level geolocator tracks revealed an >8,300-km loop migration over the Central Andean Plateau. This migration included a 3-wk, ~4,100-m ascent punctuated by upward bursts and pauses, resembling the acclimatization routines of human mountain climbers, and accompanied by surging blood-hemoglobin concentrations. Extreme migration was accompanied by deep genomic divergence from high-elevation resident populations, with decisive postzygotic barriers to gene flow. The two forms occur side-by-side but differ almost imperceptibly in size, plumage, and respiratory traits. The high-elevation resident taxon is the world's largest hummingbird, a previously undiscovered species that we describe and name here. The giant hummingbirds demonstrate evolutionary limits on niche breadth: when the ancestral niche expanded due to evolution (or loss) of an extreme migratory behavior, speciation followed.


Asunto(s)
Migración Animal , Aves , Especiación Genética , Animales , Migración Animal/fisiología , Aves/genética , Aves/fisiología , Aves/clasificación , Ecosistema , Altitud , Evolución Biológica
6.
Proc Natl Acad Sci U S A ; 121(8): e2319696121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38346181

RESUMEN

The phylogeny and divergence timing of the Neoavian radiation remain controversial despite recent progress. We analyzed the genomes of 124 species across all Neoavian orders, using data from 25,460 loci spanning four DNA classes, including 5,756 coding sequences, 12,449 conserved nonexonic elements, 4,871 introns, and 2,384 intergenic segments. We conducted a comprehensive sensitivity analysis to account for the heterogeneity across different DNA classes, leading to an optimal tree of Neoaves with high resolution. This phylogeny features a novel Neoavian dichotomy comprising two monophyletic clades: a previously recognized Telluraves (land birds) and a newly circumscribed Aquaterraves (waterbirds and relatives). Molecular dating analyses with 20 fossil calibrations indicate that the diversification of modern birds began in the Late Cretaceous and underwent a constant and steady radiation across the KPg boundary, concurrent with the rise of angiosperms as well as other major Cenozoic animal groups including placental and multituberculate mammals. The KPg catastrophe had a limited impact on avian evolution compared to the Paleocene-Eocene Thermal Maximum, which triggered a rapid diversification of seabirds. Our findings suggest that the evolution of modern birds followed a slow process of gradualism rather than a rapid process of punctuated equilibrium, with limited interruption by the KPg catastrophe. This study places bird evolution into a new context within vertebrates, with ramifications for the evolution of the Earth's biota.


Asunto(s)
Fósiles , Magnoliopsida , Embarazo , Femenino , Animales , Magnoliopsida/genética , Placenta , Filogenia , Aves/genética , Mamíferos/genética , ADN Mitocondrial/genética , Evolución Biológica
7.
Genome Res ; 33(5): 703-714, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37156619

RESUMEN

Hummingbirds are very well adapted to sustain efficient and rapid metabolic shifts. They oxidize ingested nectar to directly fuel flight when foraging but have to switch to oxidizing stored lipids derived from ingested sugars during the night or long-distance migratory flights. Understanding how this organism moderates energy turnover is hampered by a lack of information regarding how relevant enzymes differ in sequence, expression, and regulation. To explore these questions, we generated a chromosome-scale genome assembly of the ruby-throated hummingbird (A. colubris) using a combination of long- and short-read sequencing, scaffolding it using existing assemblies. We then used hybrid long- and short-read RNA sequencing of liver and muscle tissue in fasted and fed metabolic states for a comprehensive transcriptome assembly and annotation. Our genomic and transcriptomic data found positive selection of key metabolic genes in nectivorous avian species and deletion of critical genes (SLC2A4, GCK) involved in glucostasis in other vertebrates. We found expression of a fructose-specific version of SLC2A5 putatively in place of insulin-sensitive SLC2A5, with predicted protein models suggesting affinity for both fructose and glucose. Alternative isoforms may even act to sequester fructose to preclude limitations from transport in metabolism. Finally, we identified differentially expressed genes from fasted and fed hummingbirds, suggesting key pathways for the rapid metabolic switch hummingbirds undergo.


Asunto(s)
Aves , Metabolismo Energético , Animales , Aves/genética , Músculos/metabolismo , Genómica , Fructosa/metabolismo
8.
Genome Res ; 33(10): 1673-1689, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37884342

RESUMEN

Ultraconserved elements (UCEs) are the most conserved regions among the genomes of evolutionarily distant species and are thought to play critical biological functions. However, some UCEs rapidly evolved in specific lineages, and whether they contributed to adaptive evolution is still controversial. Here, using an increased number of sequenced genomes with high taxonomic coverage, we identified 2191 mammalian UCEs and 5938 avian UCEs from 95 mammal and 94 bird genomes, respectively. Our results show that these UCEs are functionally constrained and that their adjacent genes are prone to widespread expression with low expression diversity across tissues. Functional enrichment of mammalian and avian UCEs shows different trends indicating that UCEs may contribute to adaptive evolution of taxa. Focusing on lineage-specific accelerated evolution, we discover that the proportion of fast-evolving UCEs in nine mammalian and 10 avian test lineages range from 0.19% to 13.2%. Notably, up to 62.1% of fast-evolving UCEs in test lineages are much more likely to result from GC-biased gene conversion (gBGC). A single cervid-specific gBGC region embracing the uc.359 allele significantly alters the expression of Nova1 and other neural-related genes in the rat brain. Combined with the altered regulatory activity of ancient gBGC-induced fast-evolving UCEs in eutherians, our results provide evidence that synergy between gBGC and selection shaped lineage-specific substitution patterns, even in the most constrained regulatory elements. In summary, our results show that gBGC played an important role in facilitating lineage-specific accelerated evolution of UCEs, and further support the idea that a combination of multiple evolutionary forces shapes adaptive evolution.


Asunto(s)
Conversión Génica , Mamíferos , Animales , Ratas , Mamíferos/genética , Alelos , Aves/genética , Evolución Molecular , Antígeno Ventral Neuro-Oncológico
9.
Nature ; 587(7833): 252-257, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177665

RESUMEN

Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity1-4. Sparse taxon sampling has previously been proposed to confound phylogenetic inference5, and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species.


Asunto(s)
Aves/clasificación , Aves/genética , Genoma/genética , Genómica/métodos , Genómica/normas , Filogenia , Animales , Pollos/genética , Conservación de los Recursos Naturales , Conjuntos de Datos como Asunto , Pinzones/genética , Humanos , Selección Genética/genética , Sintenía/genética
10.
Proc Natl Acad Sci U S A ; 120(7): e2201945119, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36745783

RESUMEN

Despite evidence of declining biosphere integrity, we currently lack understanding of how the functional diversity associated with changes in abundance among ecological communities has varied over time and before widespread human disturbances. We combine morphological, ecological, and life-history trait data for >260 extant bird species with genomic-based estimates of changing effective population size (Ne) to quantify demographic-based shifts in avian functional diversity over the past million years and under pre-anthropogenic climate warming. We show that functional diversity was relatively stable over this period, but underwent significant changes in some key areas of trait space due to changing species abundances. Our results suggest that patterns of population decline over the Pleistocene have been concentrated in particular regions of trait space associated with extreme reproductive strategies and low dispersal ability, consistent with an overall erosion of functional diversity. Further, species most sensitive to climate warming occupied a relatively narrow region of functional space, indicating that the largest potential population increases and decreases under climate change will occur among species with relatively similar trait sets. Overall, our results identify fluctuations in functional space of extant species over evolutionary timescales and represent the demographic-based vulnerability of different regions of functional space among these taxa. The integration of paleodemographic dynamics with functional trait data enhances our ability to quantify losses of biosphere integrity before anthropogenic disturbances and attribute contemporary biodiversity loss to different drivers over time.


Asunto(s)
Biodiversidad , Biota , Humanos , Animales , Factores de Tiempo , Aves/genética , Cambio Climático , Ecosistema
11.
Proc Natl Acad Sci U S A ; 120(43): e2307340120, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37844245

RESUMEN

Echolocation, the detection of objects by means of sound waves, has evolved independently in diverse animals. Echolocators include not only mammals such as toothed whales and yangochiropteran and rhinolophoid bats but also Rousettus fruit bats, as well as two bird lineages, oilbirds and swiftlets. In whales and yangochiropteran and rhinolophoid bats, positive selection and molecular convergence has been documented in key hearing-related genes, such as prestin (SLC26A5), but few studies have examined these loci in other echolocators. Here, we examine patterns of selection and convergence in echolocation-related genes in echolocating birds and Rousettus bats. Fewer of these loci were under selection in Rousettus or birds compared with classically recognized echolocators, and elevated convergence (compared to outgroups) was not evident across this gene set. In certain genes, however, we detected convergent substitutions with potential functional relevance, including convergence between Rousettus and classic echolocators in prestin at a site known to affect hair cell electromotility. We also detected convergence between Yangochiroptera, Rhinolophidea, and oilbirds in TMC1, an important mechanosensory transduction channel in vertebrate hair cells, and observed an amino acid change at the same site within the pore domain. Our results suggest that although most proteins implicated in echolocation in specialized mammals may not have been recruited in birds or Rousettus fruit bats, certain hearing-related loci may have undergone convergent functional changes. Investigating adaptations in diverse echolocators will deepen our understanding of this unusual sensory modality.


Asunto(s)
Quirópteros , Ecolocación , Animales , Quirópteros/fisiología , Filogenia , Evolución Molecular , Mamíferos/genética , Audición/genética , Ballenas/fisiología , Aves/genética , Ecolocación/fisiología
12.
Proc Natl Acad Sci U S A ; 119(43): e2109326119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-35609205

RESUMEN

The realization that ancient biomolecules are preserved in "fossil" samples has revolutionized archaeological science. Protein sequences survive longer than DNA, but their phylogenetic resolution is inferior; therefore, careful assessment of the research questions is required. Here, we show the potential of ancient proteins preserved in Pleistocene eggshell in addressing a longstanding controversy in human and animal evolution: the identity of the extinct bird that laid large eggs which were exploited by Australia's indigenous people. The eggs had been originally attributed to the iconic extinct flightless bird Genyornis newtoni (†Dromornithidae, Galloanseres) and were subsequently dated to before 50 ± 5 ka by Miller et al. [Nat. Commun. 7, 10496 (2016)]. This was taken to represent the likely extinction date for this endemic megafaunal species and thus implied a role of humans in its demise. A contrasting hypothesis, according to which the eggs were laid by a large mound-builder megapode (Megapodiidae, Galliformes), would therefore acquit humans of their responsibility in the extinction of Genyornis. Ancient protein sequences were reconstructed and used to assess the evolutionary proximity of the undetermined eggshell to extant birds, rejecting the megapode hypothesis. Authentic ancient DNA could not be confirmed from these highly degraded samples, but morphometric data also support the attribution of the eggshell to Genyornis. When used in triangulation to address well-defined hypotheses, paleoproteomics is a powerful tool for reconstructing the evolutionary history in ancient samples. In addition to the clarification of phylogenetic placement, these data provide a more nuanced understanding of the modes of interactions between humans and their environment.


Asunto(s)
Aves , Cáscara de Huevo , Animales , Humanos , Filogenia , Aves/genética , ADN/genética , Evolución Biológica , Fósiles , ADN Antiguo
13.
J Biol Chem ; 299(12): 105409, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37918802

RESUMEN

Maintenance of the proteasome requires oxidative phosphorylation (ATP) and mitigation of oxidative damage, in an increasingly dysfunctional relationship with aging. SLC3A2 plays a role on both sides of this dichotomy as an adaptor to SLC7A5, a transporter of branched-chain amino acids (BCAA: Leu, Ile, Val), and to SLC7A11, a cystine importer supplying cysteine to the synthesis of the antioxidant glutathione. Endurance in mammalian muscle depends in part on oxidation of BCAA; however, elevated serum levels are associated with insulin resistance and shortened lifespans. Intriguingly, the evolution of modern birds (Neoaves) has entailed the purging of genes including SLC3A2, SLC7A5, -7, -8, -10, and SLC1A4, -5, largely removing BCAA exchangers and their interacting Na+/Gln symporters in pursuit of improved energetics. Additional gene purging included mitochondrial BCAA aminotransferase (BCAT2), pointing to reduced oxidation of BCAA and increased hepatic conversion to triglycerides and glucose. Fat deposits are anhydrous and highly reduced, maximizing the fuel/weight ratio for prolonged flight, but fat accumulation in muscle cells of aging humans contributes to inflammation and senescence. Duplications of the bidirectional α-ketoacid transporters SLC16A3, SLC16A7, the cystine transporters SLC7A9, SLC7A11, and N-glycan branching enzymes MGAT4B, MGAT4C in Neoaves suggests a shift to the transport of deaminated essential amino acid, and stronger mitigation of oxidative stress supported by the galectin lattice. We suggest that Alfred Lotka's theory of natural selection as a maximum power organizer (PNAS 8:151,1922) made an unusually large contribution to Neoave evolution. Further molecular analysis of Neoaves may reveal novel rewiring with applications for human health and longevity.


Asunto(s)
Aves , Evolución Molecular , Longevidad , Animales , Humanos , Aminoácidos de Cadena Ramificada/metabolismo , Cistina/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Hígado/metabolismo , Longevidad/genética , Aves/genética , Aves/metabolismo , Cadena Pesada de la Proteína-1 Reguladora de Fusión/genética , Cadena Pesada de la Proteína-1 Reguladora de Fusión/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Selección Genética
14.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37995319

RESUMEN

High genetic diversity is a good predictor of long-term population viability, yet some species persevere despite having low genetic diversity. Here we study the genomic erosion of the Seychelles paradise flycatcher (Terpsiphone corvina), a species that narrowly avoided extinction after having declined to 28 individuals in the 1960s. The species recovered unassisted to over 250 individuals in the 1990s and was downlisted from Critically Endangered to Vulnerable in the International Union for the Conservation of Nature Red List in 2020. By comparing historical, prebottleneck (130+ years old) and modern genomes, we uncovered a 10-fold loss of genetic diversity. Highly deleterious mutations were partly purged during the bottleneck, but mildly deleterious mutations accumulated. The genome shows signs of historical inbreeding during the bottleneck in the 1960s, but low levels of recent inbreeding after demographic recovery. Computer simulations suggest that the species long-term small Ne reduced the masked genetic load and made the species more resilient to inbreeding and extinction. However, the reduction in genetic diversity due to the chronically small Ne and the severe bottleneck is likely to have reduced the species adaptive potential to face environmental change, which together with a higher load, compromises its long-term population viability. Thus, small ancestral Ne offers short-term bottleneck resilience but hampers long-term adaptability to environmental shifts. In light of rapid global rates of population decline, our work shows that species can continue to suffer the effect of their decline even after recovery, highlighting the importance of considering genomic erosion and computer modeling in conservation assessments.


Asunto(s)
Especies en Peligro de Extinción , Variación Genética , Humanos , Animales , Carga Genética , Endogamia , Aves/genética
15.
Mol Biol Evol ; 40(7)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37326290

RESUMEN

How host-associated microbial communities evolve as their hosts diversify remains equivocal: how conserved is their composition? What was the composition of ancestral microbiota? Do microbial taxa covary in abundance over millions of years? Multivariate phylogenetic models of trait evolution are key to answering similar questions for complex host phenotypes, yet they are not directly applicable to relative abundances, which usually characterize microbiota. Here, we extend these models in this context, thereby providing a powerful approach for estimating phylosymbiosis (the extent to which closely related host species harbor similar microbiota), ancestral microbiota composition, and integration (evolutionary covariations in bacterial abundances). We apply our model to the gut microbiota of mammals and birds. We find significant phylosymbiosis that is not entirely explained by diet and geographic location, indicating that other evolutionary-conserved traits shape microbiota composition. We identify main shifts in microbiota composition during the evolution of the two groups and infer an ancestral mammalian microbiota consistent with an insectivorous diet. We also find remarkably consistent evolutionary covariations among bacterial orders in mammals and birds. Surprisingly, despite the substantial variability of present-day gut microbiota, some aspects of their composition are conserved over millions of years of host evolutionary history.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Filogenia , Microbioma Gastrointestinal/genética , Vertebrados/genética , Microbiota/genética , Mamíferos/genética , Mamíferos/microbiología , Aves/genética , Bacterias/genética , ARN Ribosómico 16S/genética
16.
Am Nat ; 203(1): 55-72, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38207134

RESUMEN

AbstractPlumage patterns of melanerpine (Melanerpes-Sphyrapicus) woodpeckers are strikingly diverse. Understanding the evolution and function of this diversity is challenging because of the difficulty of quantifying plumage patterns. We use a three-dimensional space to characterize the evolution of melanerpine achromatic plumage patterns. The axes of the space are three pattern features (spatial frequency, orientation, and contrast) quantified using two-dimensional fast Fourier transformation of museum specimen images. Mapping plumage in pattern space reveals differences in how species and subclades occupy the space. To quantify these differences, we derive two new measures of pattern: pattern diversity (diversity across plumage patches within a species) and pattern uniqueness (divergence of patterns from those of other species). We estimate that the melanerpine ancestor had mottled plumage and find that pattern traits across patches and subclades evolve at different rates. We also find that smaller species are more likely to display horizontal face patterning. We promote pattern spaces as powerful tools for investigating animal pattern evolution.


Asunto(s)
Evolución Biológica , Plumas , Animales , Filogenia , Aves/genética , Fenotipo , Pigmentación
17.
Am Nat ; 203(3): 362-381, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38358813

RESUMEN

AbstractA key question about macroevolutionary speciation rates is whether they are controlled by microevolutionary processes operating at the population level. For example, does spatial variation in population genetic differentiation underlie geographical gradients in speciation rates? Previous work suggests that speciation rates increase with elevation in Neotropical birds, but underlying population-level gradients remain unexplored. Here, we characterize elevational phylogeographic diversity between montane and lowland birds in the megadiverse Andes-Amazonian system and assess its relationship to speciation rates to evaluate the link between population-level differentiation and species-level diversification. We aggregated and georeferenced nearly 7,000 mitochondrial DNA sequences across 103 species or species complexes in the Andes and Amazonia and used these sequences to describe phylogeographic differentiation across both regions. Our results show increased levels of both discrete and continuous metrics of population structure in the Andean mountains compared with the Amazonian lowlands. However, higher levels of population differentiation do not predict higher rates of speciation in our dataset. Multiple potential factors may lead to our observed decoupling of initial population divergence and speciation rates, including the ephemerality of incipient species and the multifaceted nature of the speciation process, as well as methodological challenges associated with estimating rates of population differentiation and speciation.


Asunto(s)
Aves , ADN Mitocondrial , Animales , Filogenia , Filogeografía , Aves/genética , ADN Mitocondrial/genética , Flujo Genético , Especiación Genética
18.
Mol Ecol ; 33(8): e17324, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38506491

RESUMEN

Agriculture is vital for supporting human populations, but its intensification often leads to landscape homogenization and a decline in non-provisioning ecosystem services. Ecological intensification and multifunctional landscapes are suggested as nature-based alternatives to intensive agriculture, using ecological processes like natural pest regulation to maximize food production. Birds are recognized for their role in increasing crop yields by consuming invertebrate pests in several agroecosystems. However, the understanding of how bird species, their traits and agricultural land cover influence the structure of bird-pest interactions remains limited. We sampled bird-pest interactions monthly for 1 year, at four sites within a multifunctional landscape, following a gradient of increasing agricultural land cover. We analysed 2583 droppings of 55 bird species with DNA metabarcoding and detected 225 pest species in 1139 samples of 42 bird species. As expected, bird-pest interactions were highly variable across bird species. Dietary pest richness was lower in the fully agricultural site, while predation frequency remained consistent across the agricultural land cover gradient. Network analysis revealed a reduction in the complexity of bird-pest interactions as agricultural coverage increased. Bird species abundance affected the bird's contribution to the network structure more than any of the bird traits analysed (weight, phenology, invertebrate frequency in diet and foraging strata), with more common birds being more important to network structure. Overall, our results show that increasing agricultural land cover increases the homogenization of bird-pest interactions. This shows the importance of maintaining natural patches within agricultural landscapes for biodiversity conservation and enhanced biocontrol.


A agricultura é essencial para suportar a população humana, mas a sua intensificação geralmente leva à homogeneização da paisagem e à redução dos serviços do ecossistema que não sejam de provisão. A intensificação ecológica e paisagens multifuncionais são sugeridas como alternativas naturais à agricultura intensiva, utilizando processos ecológicos como a regulação natural de pragas para maximizar a produção de alimentos. As aves são conhecidas pelo seu papel no aumento da produtividade das culturas por consumirem pragas em diversos agroecossistemas. Contudo, o conhecimento de como as espécies de aves, as suas características e a cobertura agrícola influenciam as interações entre aves e pragas são limitados. Nós amostrámos estas interações mensalmente durante um ano, em quatro locais, numa paisagem multifuncional, ao longo um gradiente de aumento da cobertura agrícola. Analisamos 2583 dejetos de 55 espécies de aves com DNA metabarcoding e detetamos 225 espécies praga em 1139 amostras de 42 espécies de aves. Como esperado, as interações entre aves e pragas foram muito distintas entre as várias espécies de aves. A riqueza de pragas na dieta foi menor no local completamente dominado por área agrícola, enquanto a frequência de predação de pragas foi constante ao longo do gradiente de cobertura agrícola. A análise de redes demonstrou uma redução na complexidade das interações entre aves e pragas à medida que a cobertura agrícola aumenta. A abundância das espécies de aves influenciou mais a contribuição das aves para a estrutura da rede do que qualquer uma das características analisadas (peso, fenologia, frequência de invertebrados na dieta e estrato de alimentação), sendo as aves mais comuns as mais importantes na estrutura da rede. De forma geral, os nossos resultados indicam que o aumento da cobertura agrícola aumenta a homogeneização das interações entre aves e pragas. Isto demonstra a importância de preservar áreas naturais em paisagem agrícolas para a conservação de biodiversidade e melhor controlo biológico.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Agricultura , Aves/genética , Productos Agrícolas/fisiología , Dieta
19.
Mol Ecol ; 33(11): e17364, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38651830

RESUMEN

Despite receiving significant recent attention, the relevance of structural variation (SV) in driving phenotypic diversity remains understudied, although recent advances in long-read sequencing, bioinformatics and pangenomic approaches have enhanced SV detection. We review the role of SVs in shaping phenotypes in avian model systems, and identify some general patterns in SV type, length and their associated traits. We found that most of the avian SVs so far identified are short indels in chickens, which are frequently associated with changes in body weight and plumage colouration. Overall, we found that relatively short SVs are more frequently detected, likely due to a combination of their prevalence compared to large SVs, and a detection bias, stemming primarily from the widespread use of short-read sequencing and associated analytical methods. SVs most commonly involve non-coding regions, especially introns, and when patterns of inheritance were reported, SVs associated primarily with dominant discrete traits. We summarise several examples of phenotypic convergence across different species, mediated by different SVs in the same or different genes and different types of changes in the same gene that can lead to various phenotypes. Complex rearrangements and supergenes, which can simultaneously affect and link several genes, tend to have pleiotropic phenotypic effects. Additionally, SVs commonly co-occur with single-nucleotide polymorphisms, highlighting the need to consider all types of genetic changes to understand the basis of phenotypic traits. We end by summarising expectations for when long-read technologies become commonly implemented in non-model birds, likely leading to an increase in SV discovery and characterisation. The growing interest in this subject suggests an increase in our understanding of the phenotypic effects of SVs in upcoming years.


Asunto(s)
Pollos , Fenotipo , Animales , Pollos/genética , Aves/genética , Variación Estructural del Genoma , Mutación INDEL
20.
Mol Ecol ; 33(3): e17221, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38018028

RESUMEN

The annual flooding cycle of Amazonian rivers sustains the largest floodplains on Earth, which harbour a unique bird community. Recent studies suggest that habitat specialization drove different patterns of population structure and gene flow in floodplain birds. However, the lack of a direct estimate of habitat affinity prevents a proper test of its effects on population histories. In this work, we used occurrence data, satellite images and genomic data (ultra-conserved elements) from 24 bird species specialized on a variety of seasonally flooded environments to classify habitat affinities and test its influence on evolutionary histories of Amazonian floodplain birds. We demonstrate that birds with higher specialization in river islands and dynamic environments have gone through more recent demographic expansion and currently have less genetic diversity than floodplain generalist birds. Our results indicate that there is an intrinsic relationship between habitat affinity and environmental dynamics, influencing patterns of population structure, demographic history and genetic diversity. Within the floodplains, historical landscape changes have had more severe impacts on island specialists, making them more vulnerable to current and future anthropogenic changes, as those imposed by hydroelectric dams in the Amazon Basin.


Asunto(s)
Evolución Biológica , Ecosistema , Animales , Brasil , Aves/genética , Ríos , Demografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA