Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.069
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 565(7739): 356-360, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30626971

RESUMEN

The development of neural circuits relies on axon projections establishing diverse, yet well-defined, connections between areas of the nervous system. Each projection is formed by growth cones-subcellular specializations at the tips of growing axons, encompassing sets of molecules that control projection-specific growth, guidance, and target selection1. To investigate the set of molecules within native growth cones that form specific connections, here we developed growth cone sorting and subcellular RNA-proteome mapping, an approach that identifies and quantifies local transcriptomes and proteomes from labelled growth cones of single projections in vivo. Using this approach on the developing callosal projection of the mouse cerebral cortex, we mapped molecular enrichments in trans-hemispheric growth cones relative to their parent cell bodies, producing paired subcellular proteomes and transcriptomes from single neuron subtypes directly from the brain. These data provide generalizable proof-of-principle for this approach, and reveal molecular specializations of the growth cone, including accumulations of the growth-regulating kinase mTOR2, together with mRNAs that contain mTOR-dependent motifs3,4. These findings illuminate the relationships between subcellular distributions of RNA and protein in developing projection neurons, and provide a systems-level approach for the discovery of subtype- and stage-specific molecular substrates of circuit wiring, miswiring, and the potential for regeneration.


Asunto(s)
Axones/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Proteoma/metabolismo , Transcriptoma/genética , Animales , Axones/enzimología , Procesos de Crecimiento Celular , Movimiento Celular , Separación Celular , Femenino , Conos de Crecimiento/enzimología , Conos de Crecimiento/metabolismo , Masculino , Ratones , Proteoma/genética , Serina-Treonina Quinasas TOR/metabolismo
2.
J Biol Chem ; 298(3): 101647, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35101451

RESUMEN

The dual leucine zipper kinase (DLK) is a key regulator of axon regeneration and degeneration in response to neuronal injury; however, regulatory mechanisms of the DLK function via its interacting proteins are largely unknown. To better understand the molecular mechanism of DLK function, we performed yeast two-hybrid screening analysis and identified FK506-binding protein-like (FKBPL, also known as WAF-1/CIP1 stabilizing protein 39) as a DLK-binding protein. FKBPL binds to the kinase domain of DLK and inhibits its kinase activity. In addition, FKBPL induces DLK protein degradation through ubiquitin-dependent pathways. We further assessed other members in the FKBP protein family and found that FK506-binding protein 8 (FKBP8) also induced DLK degradation. We identified the lysine 271 residue in the kinase domain as a major site of DLK ubiquitination and SUMO3 conjugation and was thus responsible for regulating FKBP8-mediated proteasomal degradation that was inhibited by the substitution of the lysine 271 to arginine. FKBP8-mediated degradation of DLK is mediated by autophagy pathway because knockdown of Atg5 inhibited DLK destabilization. We show that in vivo overexpression of FKBP8 delayed the progression of axon degeneration and suppressed neuronal death after axotomy in sciatic and optic nerves. Taken together, this study identified FKBPL and FKBP8 as novel DLK-interacting proteins that regulate DLK stability via the ubiquitin-proteasome and lysosomal protein degradation pathways.


Asunto(s)
Axones , Quinasas Quinasa Quinasa PAM , Degeneración Nerviosa , Proteínas de Unión a Tacrolimus , Axones/enzimología , Axones/metabolismo , Axones/patología , Leucina Zippers , Lisina/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Degeneración Nerviosa/enzimología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Regeneración Nerviosa , Proteínas de Unión a Tacrolimus/metabolismo , Ubiquitina/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(52): 33597-33607, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318207

RESUMEN

Axon injury is a hallmark of many neurodegenerative diseases, often resulting in neuronal cell death and functional impairment. Dual leucine zipper kinase (DLK) has emerged as a key mediator of this process. However, while DLK inhibition is robustly protective in a wide range of neurodegenerative disease models, it also inhibits axonal regeneration. Indeed, there are no genetic perturbations that are known to both improve long-term survival and promote regeneration. To identify such a neuroprotective target, we conducted a set of complementary high-throughput screens using a protein kinase inhibitor library in human stem cell-derived retinal ganglion cells (hRGCs). Overlapping compounds that promoted both neuroprotection and neurite outgrowth were bioinformatically deconvoluted to identify specific kinases that regulated neuronal death and axon regeneration. This work identified the role of germinal cell kinase four (GCK-IV) kinases in cell death and additionally revealed their unexpected activity in suppressing axon regeneration. Using an adeno-associated virus (AAV) approach, coupled with genome editing, we validated that GCK-IV kinase knockout improves neuronal survival, comparable to that of DLK knockout, while simultaneously promoting axon regeneration. Finally, we also found that GCK-IV kinase inhibition also prevented the attrition of RGCs in developing retinal organoid cultures without compromising axon outgrowth, addressing a major issue in the field of stem cell-derived retinas. Together, these results demonstrate a role for the GCK-IV kinases in dissociating the cell death and axonal outgrowth in neurons and their druggability provides for therapeutic options for neurodegenerative diseases.


Asunto(s)
Axones/enzimología , Axones/patología , Sistema Nervioso Central/patología , Quinasas del Centro Germinal/metabolismo , Regeneración Nerviosa , Animales , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones Endogámicos C57BL , Regeneración Nerviosa/efectos de los fármacos , Proyección Neuronal/efectos de los fármacos , Traumatismos del Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/patología , Organoides/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Transducción de Señal/efectos de los fármacos
4.
Nucleic Acids Res ; 48(8): 3999-4012, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32201888

RESUMEN

In eukaryotic cells, with the exception of the specialized genomes of mitochondria and plastids, all genetic information is sequestered within the nucleus. This arrangement imposes constraints on how the information can be tailored for different cellular regions, particularly in cells with complex morphologies like neurons. Although messenger RNAs (mRNAs), and the proteins that they encode, can be differentially sorted between cellular regions, the information itself does not change. RNA editing by adenosine deamination can alter the genome's blueprint by recoding mRNAs; however, this process too is thought to be restricted to the nucleus. In this work, we show that ADAR2 (adenosine deaminase that acts on RNA), an RNA editing enzyme, is expressed outside of the nucleus in squid neurons. Furthermore, purified axoplasm exhibits adenosine-to-inosine activity and can specifically edit adenosines in a known substrate. Finally, a transcriptome-wide analysis of RNA editing reveals that tens of thousands of editing sites (>70% of all sites) are edited more extensively in the squid giant axon than in its cell bodies. These results indicate that within a neuron RNA editing can recode genetic information in a region-specific manner.


Asunto(s)
Adenosina Desaminasa/metabolismo , Neuronas/enzimología , Edición de ARN , Adenosina/metabolismo , Animales , Axones/enzimología , Citoplasma/enzimología , Decapodiformes/enzimología , Células HEK293 , Humanos , Inosina/metabolismo , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Sinapsis/enzimología
5.
Proc Natl Acad Sci U S A ; 116(10): 4643-4650, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30760601

RESUMEN

Ubiquitin C-terminal hydrolase L1 (UCHL1) is a unique brain-specific deubiquitinating enzyme. Mutations in and aberrant function of UCHL1 have been linked to many neurological disorders. UCHL1 activity protects neurons from hypoxic injury, and binding of stroke-induced reactive lipid species to the cysteine 152 (C152) of UCHL1 unfolds the protein and disrupts its function. To investigate the role of UCHL1 and its adduction by reactive lipids in inhibiting repair and recovery of function following ischemic injury, a knock-in (KI) mouse expressing the UCHL1 C152A mutation was generated. Neurons derived from KI mice had less cell death and neurite injury after hypoxia. UCHL1 C152A KI and WT mice underwent middle cerebral artery occlusion (MCAO) or sham surgery. White matter injury was significantly decreased in KI compared with WT mice 7 d after MCAO. Histological analysis revealed decreased tissue loss at 21 d after injury in KI mice. There was also significantly improved sensorimotor recovery in postischemic KI mice. K63- and K48-linked polyubiquitinated proteins were increased in penumbra of WT mouse brains but not in KI mouse brains at 24 h post MCAO. The UCHL1 C152A mutation preserved excitatory synaptic drive to pyramidal neurons and their excitability in the periinfarct zone; axonal conduction velocity recovered by 21 d post MCAO in KI mice in corpus callosum. These results demonstrate that UCHL1 activity is an important determinant of function after ischemia and further demonstrate that the C152 site of UCHL1 plays a significant role in functional recovery after stroke.


Asunto(s)
Axones/enzimología , Isquemia Encefálica/enzimología , Isquemia Encefálica/fisiopatología , Ubiquitina Tiolesterasa/metabolismo , Animales , Isquemia Encefálica/genética , Muerte Celular , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Mutación , Neuronas/citología , Neuronas/enzimología , Recuperación de la Función , Ubiquitina Tiolesterasa/genética
6.
J Neurosci ; 40(42): 8103-8118, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32917789

RESUMEN

Interstitial axon branching is an essential step during the establishment of neuronal connectivity. However, the exact mechanisms on how the number and position of branches are determined are still not fully understood. Here, we investigated the role of Arl8B, an adaptor molecule between lysosomes and kinesins. In chick retinal ganglion cells (RGCs), downregulation of Arl8B reduces axon branch density and shifts their location more proximally, while Arl8B overexpression leads to increased density and more distal positions of branches. These alterations correlate with changes in the location and density of lysosomes and autophagosomes along the axon shaft. Diminishing autophagy directly by knock-down of atg7, a key autophagy gene, reduces branch density, while induction of autophagy by rapamycin increases axon branching, indicating that autophagy plays a prominent role in axon branch formation. In vivo, local inactivation of autophagy in the retina using a mouse conditional knock-out approach disturbs retino-collicular map formation which is dependent on the formation of interstitial axon branches. These data suggest that Arl8B plays a principal role in the positioning of axon branches by spatially controlling autophagy, thus directly controlling formation of neural connectivity in the brain.SIGNIFICANCE STATEMENT The formation of interstitial axonal branches plays a prominent role in numerous places of the developing brain during neural circuit establishment. We show here that the GTPase Arl8B controls density and location of interstitial axon branches, and at the same time controls also density and location of the autophagy machinery. Upregulation or downregulation of autophagy in vitro promotes or inhibits axon branching. Local disruption of autophagy in vivo disturbs retino-collicular mapping. Our data suggest that Arl8B controls axon branching by controlling locally autophagy. This work is one of the first reports showing a role of autophagy during early neural circuit development and suggests that autophagy in general plays a much more prominent role during brain development than previously anticipated.


Asunto(s)
Factores de Ribosilacion-ADP/fisiología , Autofagosomas/fisiología , Axones/fisiología , Lisosomas/fisiología , Factores de Ribosilacion-ADP/metabolismo , Animales , Autofagosomas/enzimología , Autofagosomas/ultraestructura , Autofagia/genética , Axones/enzimología , Axones/ultraestructura , Embrión de Pollo , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Lisosomas/enzimología , Lisosomas/ultraestructura , Ratones Noqueados , Cultivo Primario de Células , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/ultraestructura
7.
Nature ; 526(7575): 710-4, 2015 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-26503042

RESUMEN

Selective neuronal loss is a hallmark of neurodegenerative diseases, which, counterintuitively, are often caused by mutations in widely expressed genes. Charcot-Marie-Tooth (CMT) diseases are the most common hereditary peripheral neuropathies, for which there are no effective therapies. A subtype of these diseases--CMT type 2D (CMT2D)--is caused by dominant mutations in GARS, encoding the ubiquitously expressed enzyme glycyl-transfer RNA (tRNA) synthetase (GlyRS). Despite the broad requirement of GlyRS for protein biosynthesis in all cells, mutations in this gene cause a selective degeneration of peripheral axons, leading to deficits in distal motor function. How mutations in GlyRS (GlyRS(CMT2D)) are linked to motor neuron vulnerability has remained elusive. Here we report that GlyRS(CMT2D) acquires a neomorphic binding activity that directly antagonizes an essential signalling pathway for motor neuron survival. We find that CMT2D mutations alter the conformation of GlyRS, enabling GlyRS(CMT2D) to bind the neuropilin 1 (Nrp1) receptor. This aberrant interaction competitively interferes with the binding of the cognate ligand vascular endothelial growth factor (VEGF) to Nrp1. Genetic reduction of Nrp1 in mice worsens CMT2D symptoms, whereas enhanced expression of VEGF improves motor function. These findings link the selective pathology of CMT2D to the neomorphic binding activity of GlyRS(CMT2D) that antagonizes the VEGF-Nrp1 interaction, and indicate that the VEGF-Nrp1 signalling axis is an actionable target for treating CMT2D.


Asunto(s)
Unión Competitiva , Enfermedad de Charcot-Marie-Tooth/metabolismo , Glicina-ARNt Ligasa/metabolismo , Animales , Axones/enzimología , Axones/metabolismo , Axones/patología , Línea Celular , Supervivencia Celular , Enfermedad de Charcot-Marie-Tooth/tratamiento farmacológico , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Femenino , Glicina-ARNt Ligasa/química , Glicina-ARNt Ligasa/genética , Ligandos , Masculino , Ratones , Modelos Moleculares , Neuronas Motoras/enzimología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Destreza Motora/efectos de los fármacos , Mutación/genética , Neuropilina-1/deficiencia , Neuropilina-1/genética , Neuropilina-1/metabolismo , Unión Proteica , Multimerización de Proteína , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Factor A de Crecimiento Endotelial Vascular/uso terapéutico
8.
Cereb Cortex ; 29(9): 3738-3751, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30307479

RESUMEN

SAD kinases regulate presynaptic vesicle clustering and neuronal polarization. A previous report demonstrated that Sada-/- and Sadb-/- double-mutant mice showed perinatal lethality with a severe defect in axon/dendrite differentiation, but their single mutants did not. These results indicated that they were functionally redundant. Surprisingly, we show that on a C57BL/6N background, SAD-A is essential for cortical development whereas SAD-B is dispensable. Sada-/- mice died within a few days after birth. Their cortical lamination pattern was disorganized and radial migration of cortical neurons was perturbed. Birth date analyses with BrdU and in utero electroporation using pCAG-EGFP vector showed a delayed migration of cortical neurons to the pial surface in Sada-/- mice. Time-lapse imaging of these mice confirmed slow migration velocity in the cortical plate. While the neurites of hippocampal neurons in Sada-/- mice could ultimately differentiate in culture to form axons and dendrites, the average length of their axons was shorter than that of the wild type. Thus, analysis on a different genetic background than that used initially revealed a nonredundant role for SAD-A in neuronal migration and differentiation.


Asunto(s)
Movimiento Celular/fisiología , Corteza Cerebral/embriología , Corteza Cerebral/enzimología , Neuronas/enzimología , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Axones/enzimología , Células Cultivadas , Femenino , Isoenzimas , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética
9.
J Neurogenet ; 33(3): 157-163, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30955404

RESUMEN

Axonal extension and synaptic targeting are usually completed during early development, but the axonal length and synaptic integrity need to be actively maintained during later developmental stages and the adult life. Failure in the axonal length maintenance and the subsequent axonal degeneration have been associated with neurological disorders, but currently little is known about the genetic factors controlling this process. Here, we show that regulated intracellular levels of cAMP-dependent protein kinase A (PKA) are critical for the axon maintenance during the transition from the early to the later larval stages in the Drosophila class IV dendritic arborization (da) sensory neurons. Our data indicate that when the intracellular levels of PKA are increased via genetic manipulations, these peripheral neurons initially form synapses with wild-type appearance, at their predicted ventral nerve cord (VNC) target sites (in the first and second instar larval stages), but that their synapses disintegrate, and the axons retract and become fragmented in the subsequent larval stages (third larval stage). The affected axonal endings at the disintegrated synaptic sites still express the characteristic presynaptic and cytoskeletal markers such as Bruchpilot and Fascin, indicating that the synapse had been initially properly formed, but that it later lost its integrity. Finally, the phenotype is significantly more prominent in the axons of the neurons whose cell bodies are located in the posterior body segments. We propose that the reason for this is the fact that during the larval development the posterior neurons face a much greater challenge while trying to keep up with the fast-paced growth of the larval body, and that PKA is critical for this process. Our data reveal PKA as a novel factor in the axonal length and synapse integrity maintenance in sensory neurons. These results could be of help in understanding neurological disorders characterized by destabilized synapses.


Asunto(s)
Axones/enzimología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Neurogénesis/fisiología , Células Receptoras Sensoriales/enzimología , Sinapsis/enzimología , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Larva/enzimología , Larva/crecimiento & desarrollo
10.
Genes Dev ; 25(18): 1968-81, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21937714

RESUMEN

Suppression of glycogen synthase kinase 3 (GSK3) activity in neurons yields pleiotropic outcomes, causing both axon growth promotion and inhibition. Previous studies have suggested that specific GSK3 substrates, such as adenomatous polyposis coli (APC) and collapsin response mediator protein 2 (CRMP2), support axon growth by regulating the stability of axonal microtubules (MTs), but the substrate(s) and mechanisms conveying axon growth inhibition remain elusive. Here we show that CLIP (cytoplasmic linker protein)-associated protein (CLASP), originally identified as a MT plus end-binding protein, displays both plus end-binding and lattice-binding activities in nerve growth cones, and reveal that the two MT-binding activities regulate axon growth in an opposing manner: The lattice-binding activity mediates axon growth inhibition induced by suppression of GSK3 activity via preventing MT protrusion into the growth cone periphery, whereas the plus end-binding property supports axon extension via stabilizing the growing ends of axonal MTs. We propose a model in which CLASP transduces GSK3 activity levels to differentially control axon growth by coordinating the stability and configuration of growth cone MTs.


Asunto(s)
Axones/fisiología , Regulación del Desarrollo de la Expresión Génica , Glucógeno Sintasa Quinasa 3/metabolismo , Conos de Crecimiento/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Animales , Axones/enzimología , Citoesqueleto/metabolismo , Técnicas de Silenciamiento del Gen , Glucógeno Sintasa Quinasa 3/genética , Conos de Crecimiento/enzimología , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Miosina Tipo II/metabolismo , Neuronas/citología , Unión Proteica
11.
Glia ; 66(9): 1960-1971, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29726608

RESUMEN

Myelinating glial cells (MGCs), oligodendrocytes (OLs) in the central nervous system (CNS) and Schwann cells (SCs) in the peripheral nervous system (PNS), generate myelin sheaths that insulate axons. After myelination is completed in adulthood, MGC functions independent from myelin are required to support axon survival, but the underlying mechanisms are still unclear. Dicer is a key enzyme that is responsible for generating functional micro-RNAs (miRNAs). Despite the importance of Dicer in initiating myelination, the role of Dicer in mature MGCs is still unclear. Here, Dicer was specifically deleted in mature MGCs in 2-month old mice (PLP-CreERT; Dicer fl/fl) by tamoxifen administration. Progressive motor dysfunction was observed in the Dicer conditional knockout mice, which displayed hind limb ataxia at 3 months post recombination that deteriorated into paralysis within 5 months. Massive axonal degeneration/atrophy in peripheral nerves was responsible for this phenomenon, but overt demyelination was not observed in either the CNS or PNS. In contrast to the PNS, signs of axonal degeneration were not observed in the CNS of these animals. We induced a Dicer deletion in oligodendroglia at postnatal day 5 in NG2-CreERT; Dicer fl/fl mice to evaluate whether Dicer expression in OLs is essential for axonal survival. Dicer deletion in oligodendroglia did not cause motor dysfunction at the age of 7 months. Neither axonal atrophy nor demyelination was observed in the CNS. Based on our results, Dicer expression in SCs is required to maintain axon integrity in adult PNS, and Dicer is dispensable for maintaining myelin sheaths in MGCs.


Asunto(s)
Axones/enzimología , ARN Helicasas DEAD-box/deficiencia , Vaina de Mielina/enzimología , Degeneración Nerviosa/enzimología , Ribonucleasa III/deficiencia , Animales , Ataxia/enzimología , Ataxia/patología , Atrofia , Axones/patología , ARN Helicasas DEAD-box/genética , Progresión de la Enfermedad , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/fisiología , Vaina de Mielina/patología , Degeneración Nerviosa/patología , Nervio Óptico/enzimología , Nervio Óptico/patología , Parálisis/enzimología , Parálisis/patología , Ribonucleasa III/genética , Nervio Ciático/enzimología , Nervio Ciático/patología , Médula Espinal/enzimología , Médula Espinal/patología , Sustancia Blanca/enzimología , Sustancia Blanca/patología
12.
Annu Rev Neurosci ; 33: 245-67, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20345246

RESUMEN

Traditionally, researchers have believed that axons are highly dependent on their cell bodies for long-term survival. However, recent studies point to the existence of axon-autonomous mechanism(s) that regulate rapid axon degeneration after axotomy. Here, we review the cellular and molecular events that underlie this process, termed Wallerian degeneration. We describe the biphasic nature of axon degeneration after axotomy and our current understanding of how Wld(S)--an extraordinary protein formed by fusing a Ube4b sequence to Nmnat1--acts to protect severed axons. Interestingly, the neuroprotective effects of Wld(S) span all species tested, which suggests that there is an ancient, Wld(S)-sensitive axon destruction program. Recent studies with Wld(S) also reveal that Wallerian degeneration is genetically related to several dying back axonopathies, thus arguing that Wallerian degeneration can serve as a useful model to understand, and potentially treat, axon degeneration in diverse traumatic or disease contexts.


Asunto(s)
Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/química , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Degeneración Walleriana/metabolismo , Animales , Axones/química , Axones/enzimología , Axones/metabolismo , Axotomía , Fusión Génica/genética , Humanos , Proteínas del Tejido Nervioso/genética , Nicotinamida-Nucleótido Adenililtransferasa/genética , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Degeneración Walleriana/enzimología , Degeneración Walleriana/genética
13.
RNA ; 22(6): 883-95, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27095027

RESUMEN

Synthesis and regulation of catecholamine neurotransmitters in the central nervous system are implicated in the pathogenesis of a number of neuropsychiatric disorders. To identify factors that regulate the presynaptic synthesis of catecholamines, we tested the hypothesis that the rate-limiting enzyme of the catecholamine biosynthetic pathway, tyrosine hydroxylase (TH), is locally synthesized in axons and presynaptic nerve terminals of noradrenergic neurons. To isolate pure axonal mRNA and protein, rat superior cervical ganglion sympathetic neurons were cultured in compartmentalized Campenot chambers. qRT-PCR and RNA in situ hybridization analyses showed that TH mRNA is present in distal axons. Colocalization experiments with nerve terminal marker proteins suggested that both TH mRNA and protein localize in regions of the axon that resemble nerve terminals (i.e., synaptic boutons). Analysis of polysome-bound RNA showed that TH mRNA is present in polysomes isolated from distal axons. Metabolic labeling of axonally synthesized proteins labeled with the methionine analog, L-azidohomoalanine, showed that TH is locally synthesized in axons. Moreover, the local transfection and translation of exogenous TH mRNA into distal axons facilitated axonal dopamine synthesis. Finally, using chimeric td-Tomato-tagged constructs, we identified a sequence element within the TH 3'UTR that is required for the axonal localization of the reporter mRNA. Taken together, our results provide the first direct evidence that TH mRNA is trafficked to the axon and that the mRNA is locally translated. These findings raise the interesting possibility that the biosynthesis of the catecholamine neurotransmitters is locally regulated in the axon and/or presynaptic nerve terminal.


Asunto(s)
Axones/enzimología , Neuronas/enzimología , ARN Mensajero/genética , Sistema Nervioso Simpático/citología , Tirosina 3-Monooxigenasa/genética , Regiones no Traducidas 3' , Animales , Dopamina/biosíntesis , Ratas , Ratas Sprague-Dawley
14.
Proc Natl Acad Sci U S A ; 112(28): E3699-708, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26124111

RESUMEN

Through a comprehensive analysis of organellar markers in mouse models of Alzheimer's disease, we document a massive accumulation of lysosome-like organelles at amyloid plaques and establish that the majority of these organelles reside within swollen axons that contact the amyloid deposits. This close spatial relationship between axonal lysosome accumulation and extracellular amyloid aggregates was observed from the earliest stages of ß-amyloid deposition. Notably, we discovered that lysosomes that accumulate in such axons are lacking in multiple soluble luminal proteases and thus are predicted to be unable to efficiently degrade proteinaceous cargos. Of relevance to Alzheimer's disease, ß-secretase (BACE1), the protein that initiates amyloidogenic processing of the amyloid precursor protein and which is a substrate for these proteases, builds up at these sites. Furthermore, through a comparison between the axonal lysosome accumulations at amyloid plaques and neuronal lysosomes of the wild-type brain, we identified a similar, naturally occurring population of lysosome-like organelles in neuronal processes that is also defined by its low luminal protease content. In conjunction with emerging evidence that the lysosomal maturation of endosomes and autophagosomes is coupled to their retrograde transport, our results suggest that extracellular ß-amyloid deposits cause a local impairment in the retrograde axonal transport of lysosome precursors, leading to their accumulation and a blockade in their further maturation. This study both advances understanding of Alzheimer's disease brain pathology and provides new insights into the subcellular organization of neuronal lysosomes that may have broader relevance to other neurodegenerative diseases with a lysosomal component to their pathology.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Axones/enzimología , Lisosomas/enzimología , Placa Amiloide/enzimología , Animales , Modelos Animales de Enfermedad , Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones
15.
Biochim Biophys Acta ; 1863(11): 2574-2583, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27421985

RESUMEN

PI3K proteins family have multiple and essential functions in most cellular events. This family is composed of class I, class II and class III PI3Ks, which upstream and downstream elements are not completely elucidated. Previous studies using the broad PI3K inhibitor, LY294002 allowed to propose that PI3 kinase>Akt pathway is a key element in the determination of axonal polarity in hippocampal neurons. Recently, new inhibitors with a higher selectivity for class I PI3K have been characterized. In the present study we have examined this widely accepted theory using a new class I PI3K inhibitor (GDC-0941), as well as Akt inhibitors, and PTEN phosphatase constructs to reduce PIP3 levels. Our present data show that both, class I PI3K inhibitor and Akt inhibitor did not alter axon specification in hippocampal neurons, but greatly reduced axon length. However, in the same experiments LY294002 effectively impeded axonal polarization, as previously reported. Our biochemical data show that both, class I PI3K and Akt inhibitors, effectively block downstream elements from Akt to S6K1 activity. Both inhibitors are stable in culture medium along the time period analysed, maintaining the inhibition better than LY294002. Besides, we found evidence that LY294002 directly inhibits mTORC1. However, further analysis using an mTORC1 inhibitor showed no change in neuron polarity. Same result was obtained using a general class III PI3K inhibitor. Interestingly, we found that either, wild-type PTEN, or a phosphatase-dead form of PTEN, disrupted axonal polarization, strongly suggesting that the role of PTEN in axonal polarity can be independent of PIP3.


Asunto(s)
Axones/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Cromonas/farmacología , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Hipocampo/efectos de los fármacos , Indazoles/farmacología , Morfolinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Sulfonamidas/farmacología , Animales , Axones/enzimología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Corteza Cerebral/citología , Corteza Cerebral/enzimología , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Relación Dosis-Respuesta a Droga , Edad Gestacional , Hipocampo/citología , Hipocampo/enzimología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Transfección
16.
Glia ; 65(9): 1452-1470, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28617998

RESUMEN

The PI 3-kinase Vps34 (Pik3c3) synthesizes phosphatidylinositol 3-phosphate (PI3P), a lipid critical for both endosomal membrane traffic and macroautophagy. Human genetics have implicated PI3P dysregulation, and endosomal trafficking in general, as a recurring cause of demyelinating Charcot-Marie-Tooth (CMT) peripheral neuropathy. Here, we investigated the role of Vps34, and PI3P, in mouse Schwann cells by selectively deleting Vps34 in this cell type. Vps34-Schwann cell knockout (Vps34SCKO ) mice show severe hypomyelination in peripheral nerves. Vps34-/- Schwann cells interact abnormally with axons, and there is a delay in radial sorting, a process by which large axons are selected for myelination. Upon reaching the promyelinating stage, Vps34-/- Schwann cells are significantly impaired in the elaboration of myelin. Nerves from Vps34SCKO mice contain elevated levels of the LC3 and p62 proteins, indicating impaired autophagy. However, in the light of recent demonstrations that autophagy is dispensable for myelination, it is unlikely that hypomyelination in Vps34SCKO mice is caused by impaired autophagy. Endosomal trafficking is also disturbed in Vps34-/- Schwann cells. We investigated the activation of the ErbB2/3 receptor tyrosine kinases in Vps34SCKO nerves, as these proteins, which play essential roles in Schwann cell myelination, are known to traffic through endosomes. In Vps34SCKO nerves, ErbB3 was hyperphosphorylated on a tyrosine known to be phosphorylated in response to neuregulin 1 exposure. ErbB2 protein levels were also decreased during myelination. Our findings suggest that the loss of Vps34 alters the trafficking of ErbB2/3 through endosomes. Abnormal ErbB2/3 signaling to downstream targets may contribute to the hypomyelination observed in Vps34SCKO mice.


Asunto(s)
Axones/enzimología , Fosfatidilinositol 3-Quinasas Clase III/deficiencia , Proyección Neuronal/fisiología , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Células de Schwann/enzimología , Animales , Autofagia/fisiología , Axones/patología , Proliferación Celular/fisiología , Fosfatidilinositol 3-Quinasas Clase III/genética , Endosomas/enzimología , Endosomas/patología , Femenino , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/fisiología , Nervios Periféricos/enzimología , Nervios Periféricos/crecimiento & desarrollo , Nervios Periféricos/patología , Fosforilación , Células de Schwann/patología , Nervio Ciático/enzimología , Nervio Ciático/crecimiento & desarrollo , Nervio Ciático/patología , Transducción de Señal
17.
Neurobiol Dis ; 106: 147-157, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28687442

RESUMEN

Axons of the peripheral nervous system possess the capacity to regenerate following injury. Previously, we showed that genetically knocking out Beta-Site APP-Cleaving Enzyme 1 (BACE1) leads to increased nerve regeneration. Two cellular components, macrophages and neurons, contribute to enhanced nerve regeneration in BACE1 knockout mice. Here, we utilized a transgenic mouse model that overexpresses BACE1 in its neurons to investigate whether neuronal BACE1 has an inverse effect on regeneration following nerve injury. We performed a sciatic nerve crush in BACE1 transgenic mice and control wild-type littermates, and evaluated the extent of both morphological and physiological improvements over time. At the earliest time point of 3days, we observed a significant decrease in the length of axonal sprouts growing out from the crush site in BACE1 transgenic mice. At later times (10 and 15days post-crush), there were significant reductions in the number of myelinated axons in the sciatic nerve and the percentage of re-innervated neuromuscular junctions in the gastrocnemius muscle. Transgenic mice had a functional electrophysiological delay in the recovery up to 8weeks post-crush compared to controls. These results indicate that BACE1 activity levels have an inverse effect on peripheral nerve repair after injury. The results obtained in this study provide evidence that neuronal BACE1 activity levels impact peripheral nerve regeneration. This data has clinical relevance by highlighting a novel drug target to enhance peripheral nerve repair, an area which currently does not have any approved therapeutics.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Axones/enzimología , Regeneración Nerviosa/fisiología , Recuperación de la Función/fisiología , Nervio Ciático/enzimología , Nervio Ciático/lesiones , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Axones/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Macrófagos/enzimología , Macrófagos/patología , Masculino , Ratones Transgénicos , Músculo Esquelético/enzimología , Músculo Esquelético/inervación , Músculo Esquelético/patología , Fibras Nerviosas Mielínicas/enzimología , Fibras Nerviosas Mielínicas/patología , Unión Neuromuscular/enzimología , Unión Neuromuscular/patología , Distribución Aleatoria , Nervio Ciático/patología
18.
Bioessays ; 37(8): 888-98, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26126792

RESUMEN

Neurons have developed elaborate mechanisms for sorting of proteins to their destination in dendrites and axons as well as dynamic local trafficking. Recent evidence suggests that polarized axonal sorting of ß-site converting enzyme 1 (BACE1), a type I transmembrane aspartyl protease involved in Alzheimer's disease (AD) pathogenesis, entails an unusual journey. In hippocampal neurons, BACE1 internalized from dendrites is conveyed in recycling endosomes via unidirectional retrograde transport towards the soma and sorted to axons where BACE1 becomes enriched. In comparison to other transmembrane proteins that undergo transcytosis or elimination in somatodendritic compartment, vectorial transport of internalized BACE1 in dendrites is unique and intriguing. Dysfunction of protein transport contributes to pathogenesis of AD and other neurodegenerative diseases. Therefore, characterization of BACE1 transcytosis is an important addition to the multiple lines of evidence that highlight the crucial role played by endosomal trafficking pathway as well as axonal sorting mechanisms in AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Axones/enzimología , Transcitosis , Enfermedad de Alzheimer/patología , Animales , Transporte Axonal , Endocitosis , Endosomas/enzimología , Humanos
19.
J Neurosci ; 35(9): 3806-14, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25740511

RESUMEN

Inhibition of ß-site APP cleaving enzyme 1 (BACE1) is being pursued as a therapeutic target for treating patients with Alzheimer's disease because BACE1 is the sole ß-secretase for generating ß-amyloid peptide. Knowledge regarding the other cellular functions of BACE1 is therefore critical for the safe use of BACE1 inhibitors in human patients. BACE1 deficiency in mice causes hypomyelination during development and impairs remyelination in injured sciatic nerves. Since BACE1 is expected to be ubiquitously expressed, we asked whether axonal or Schwann cell BACE1 is required for optimal remyelination. By swapping sciatic nerve segments from BACE1-null mice with the corresponding wild-type nerve segments or vice versa, we tested how a deficiency of BACE1 in Schwann cells or axons affects remyelination. Our results show that BACE1 in axons and Schwann cells is similarly important for remyelination of regenerated axons. Nerve injury induces BACE1 transcription and protein levels are elevated in Schwann cells. Expression of type I neuregulin 1 (Nrg1), rather than type III Nrg1, was induced by Schwann cells, and the abolished Nrg1 cleavage in BACE1-null Schwann cells contributed to decreased remyelination of regenerated axons. Hence, this study is the first to demonstrate the equal importance of axonal and Schwann cell BACE1 for remyelination of injured nerves.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/fisiología , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/fisiología , Axones/fisiología , Vaina de Mielina/fisiología , Regeneración Nerviosa/fisiología , Nervios Periféricos/fisiología , Células de Schwann/fisiología , Animales , Axones/enzimología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Vaina de Mielina/genética , Regeneración Nerviosa/genética , Tejido Nervioso/trasplante , Neurregulina-1/biosíntesis , Neurregulina-1/genética , Células de Schwann/enzimología , Nervio Ciático/fisiología , Nervio Ciático/trasplante
20.
Eur J Neurosci ; 44(12): 2991-3000, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27740716

RESUMEN

A cyclic GMP (cGMP) signaling pathway, comprising C-type natriuretic peptide (CNP), its guanylate cyclase receptor Npr2, and cGMP-dependent protein kinase I, is critical for the bifurcation of dorsal root ganglion (DRG) and cranial sensory ganglion axons when entering the mouse spinal cord and the hindbrain respectively. However, the identity and functional relevance of phosphodiesterases (PDEs) that degrade cGMP in DRG neurons are not completely understood. Here, we asked whether regulation of the intracellular cGMP concentration by PDEs modulates the branching of sensory axons. Real-time imaging of cGMP with a genetically encoded fluorescent cGMP sensor, RT-PCR screens, in situ hybridization, and immunohistology combined with the analysis of mutant mice identified PDE2A as the major enzyme for the degradation of CNP-induced cGMP in embryonic DRG neurons. Tracking of PDE2A-deficient DRG sensory axons in conjunction with cGMP measurements indicated that axon bifurcation tolerates increased cGMP concentrations. As we found that the natriuretic peptide scavenger receptor Npr3 is expressed by cells associated with dorsal roots but not in DRG neurons itself at early developmental stages, we analyzed axonal branching in the absence of Npr3. In Npr3-deficient mice, the majority of sensory axons showed normal bifurcation, but a small population of axons (13%) was unable to form T-like branches and generated turns in rostral or caudal directions only. Taken together, this study shows that sensory axon bifurcation is insensitive to increases of CNP-induced cGMP levels and Npr3 does not have an important scavenging function in this axonal system.


Asunto(s)
Axones/enzimología , GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/metabolismo , Ganglios Espinales/embriología , Ganglios Espinales/enzimología , Péptido Natriurético Tipo-C/metabolismo , Receptores del Factor Natriurético Atrial/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Péptido Natriurético Tipo-C/administración & dosificación , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA