Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Proteome Res ; 15(2): 540-53, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26650791

RESUMEN

Investigation of influenza-A-virus (IAV)-infected lung proteomes will greatly promote our understanding on the virus-host crosstalk. Using a detergent-cocktail extraction and digestion procedure and a reproducible ion-current-based method, we performed the first comprehensive temporal analysis of mouse IAV infection. Mouse lung tissues at three time points post-inoculation were compared with controls (n = 4/group), and >1600 proteins were quantified without missing value in any animal. Significantly changed proteins were identified at 4 days (n = 144), 7 days (n = 695), and 10 days (n = 396) after infection, with low false altered protein rates (1.73-8.39%). Functional annotation revealed several key biological processes involved in the systemic host responses. Intriguingly, decreased levels of several cell junction proteins as well as increased levels of tissue metalloproteinase MMP9 were observed, reflecting the IAV-induced structural breakdown of lung epithelial barrier. Supporting evidence of MMP9 activation came from immunoassays examining the abundance and phosphorylation states of all MAPKs and several relevant molecules. Importantly, IAV-induced MMP gelatinase expression was suggested to be specific to MMP9, and p38 MAPK may contribute predominantly to MMP9 elevation. These findings help to resolve the long-lasting debate regarding the signaling pathways of IAV-induced MMP9 expression and shed light on the molecular mechanisms underlying pulmonary capillary-alveolar leak syndrome that can occur during influenza infection.


Asunto(s)
Barrera Alveolocapilar/metabolismo , Pulmón/metabolismo , Infecciones por Orthomyxoviridae/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Animales , Barrera Alveolocapilar/virología , Western Blotting , Cromatografía de Fase Inversa , Subtipo H3N2 del Virus de la Influenza A/fisiología , Modelos Lineales , Pulmón/irrigación sanguínea , Pulmón/virología , Masculino , Espectrometría de Masas , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/virología
2.
Redox Biol ; 38: 101794, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33248422

RESUMEN

Acute lung injury (ALI), a devastating illness induced by systemic inflammation e.g., sepsis or local lung inflammation e.g., COVID-19 mediated severe pneumonia, has an unacceptably high mortality and has no effective therapy. ALI is associated with increased pulmonary microvascular hyperpermeability and alveolar flooding. The small Rho GTPases, RhoA and Rac1 are central regulators of vascular permeability through cytoskeleton rearrangements. RhoA and Rac1 have opposing functional outcome: RhoA induces an endothelial contractile phenotype and barrier disruption, while Rac1 stabilizes endothelial junctions and increases barrier integrity. In ALI, RhoA activity is increased while Rac1 activity is reduced. We have shown that the activation of RhoA in lipopolysaccharide (LPS)-mediated ALI, is dependent, at least in part, on a single nitration event at tyrosine (Y)34. Thus, the purpose of this study was to determine if the inhibition of Rac1 is also dependent on its nitration. Our data show that Rac1 inhibition by LPS is associated with its nitration that mass spectrometry identified as Y32, within the switch I region adjacent to the nucleotide-binding site. Using a molecular modeling approach, we designed a nitration shielding peptide for Rac1, designated NipR2 (nitration inhibitor peptide for the Rho GTPases 2), which attenuated the LPS-induced nitration of Rac1 at Y32, preserves Rac1 activity and attenuates the LPS-mediated disruption of the endothelial barrier in human lung microvascular endothelial cells (HLMVEC). Using a murine model of ALI induced by intratracheal installation of LPS we found that NipR2 successfully prevented Rac1 nitration and Rac1 inhibition, and more importantly attenuated pulmonary inflammation, reduced lung injury and prevented the loss of lung function. Together, our data identify a new post-translational mechanism of Rac1 inhibition through its nitration at Y32. As NipR2 also reduces sepsis induced ALI in the mouse lung, we conclude that Rac1 nitration is a therapeutic target in ALI.


Asunto(s)
Lesión Pulmonar Aguda , Barrera Alveolocapilar , COVID-19 , Células Endoteliales , Lipopolisacáridos/toxicidad , Neuropéptidos/metabolismo , SARS-CoV-2/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/enzimología , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/virología , Animales , Barrera Alveolocapilar/enzimología , Barrera Alveolocapilar/patología , Barrera Alveolocapilar/virología , COVID-19/inducido químicamente , COVID-19/enzimología , COVID-19/patología , Línea Celular , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Endoteliales/virología , Humanos , Masculino , Ratones , Neuropéptidos/genética , Proteína de Unión al GTP rac1/genética
3.
Mucosal Immunol ; 12(5): 1231-1243, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31296910

RESUMEN

Secondary bacterial pneumonia is a significant complication of severe influenza infection and Staphylococcus aureus and Streptococcus pneumoniae are the primary pathogens of interest. IL-22 promotes S. aureus and S. pneumoniae host defense in the lung through epithelial integrity and induction of antimicrobial peptides and is inhibited by the soluble decoy receptor IL-22-binding protein (IL-22BP). Little is known about the effect of the IL-22/IL-22BP regulatory pathway on lung infection, and it has not been studied in the setting of super-infection. We exposed wild-type and IL-22BP-/- mice to influenza A/PR/8/34 for 6 days prior to infection with S. aureus (USA300) S. pneumoniae. Super-infected IL-22BP-/- mice had decreased bacterial burden and improved survival compared to controls. IL-22BP-/- mice exhibited decreased inflammation, increased lipocalin 2 expression, and deletion of IL-22BP was associated with preserved epithelial barrier function with evidence of improved tight junction stability. Human bronchial epithelial cells treated with IL-22Fc showed evidence of improved tight junctions compared to untreated cells. This study revealed that IL-22BP-/- mice are protected during influenza, bacterial super-infection, suggesting that IL-22BP has a pro-inflammatory role and impairs epithelial barrier function likely through interaction with IL-22.


Asunto(s)
Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/microbiología , Proteínas Portadoras/metabolismo , Interleucinas/metabolismo , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/virología , Sobreinfección , Animales , Infecciones Bacterianas/genética , Infecciones Bacterianas/patología , Carga Bacteriana , Barrera Alveolocapilar/metabolismo , Barrera Alveolocapilar/patología , Barrera Alveolocapilar/virología , Proteínas Portadoras/genética , Modelos Animales de Enfermedad , Expresión Génica , Interleucinas/genética , Recuento de Leucocitos , Masculino , Ratones , Ratones Noqueados , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/patología , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/patología , Permeabilidad , Unión Proteica , Staphylococcus aureus , Streptococcus pneumoniae , Uniones Estrechas , Interleucina-22
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA