Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(6): 107371, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750791

RESUMEN

The sulfite-reducing bacterium Bilophila wadsworthia, a common human intestinal pathobiont, is unique in its ability to metabolize a wide variety of sulfonates to generate sulfite as a terminal electron acceptor (TEA). The resulting formation of H2S is implicated in inflammation and colon cancer. l-cysteate, an oxidation product of l-cysteine, is among the sulfonates metabolized by B. wadsworthia, although the enzymes involved remain unknown. Here we report a pathway for l-cysteate dissimilation in B. wadsworthia RZATAU, involving isomerization of l-cysteate to d-cysteate by a cysteate racemase (BwCuyB), followed by cleavage into pyruvate, ammonia and sulfite by a d-cysteate sulfo-lyase (BwCuyA). The strong selectivity of BwCuyA for d-cysteate over l-cysteate was rationalized by protein structural modeling. A homolog of BwCuyA in the marine bacterium Silicibacter pomeroyi (SpCuyA) was previously reported to be a l-cysteate sulfo-lyase, but our experiments confirm that SpCuyA too displays a strong selectivity for d-cysteate. Growth of B. wadsworthia with cysteate as the electron acceptor is accompanied by production of H2S and induction of BwCuyA. Close homologs of BwCuyA and BwCuyB are present in diverse bacteria, including many sulfate- and sulfite-reducing bacteria, suggesting their involvement in cysteate degradation in different biological environments.


Asunto(s)
Cisteína , Cisteína/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Bilophila/metabolismo , Bilophila/enzimología , Racemasas y Epimerasas/metabolismo , Oxidación-Reducción , Liasas de Carbono-Azufre/metabolismo , Liasas de Carbono-Azufre/química , Sulfitos/metabolismo , Humanos
2.
J Biol Chem ; 299(8): 105010, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37414148

RESUMEN

The obligately anaerobic sulfite-reducing bacterium Bilophila wadsworthia is a common human pathobiont inhabiting the distal intestinal tract. It has a unique ability to utilize a diverse range of food- and host-derived sulfonates to generate sulfite as a terminal electron acceptor (TEA) for anaerobic respiration, converting the sulfonate sulfur to H2S, implicated in inflammatory conditions and colon cancer. The biochemical pathways involved in the metabolism of the C2 sulfonates isethionate and taurine by B. wadsworthia were recently reported. However, its mechanism for metabolizing sulfoacetate, another prevalent C2 sulfonate, remained unknown. Here, we report bioinformatics investigations and in vitro biochemical assays that uncover the molecular basis for the utilization of sulfoacetate as a source of TEA (STEA) for B. wadsworthia, involving conversion to sulfoacetyl-CoA by an ADP-forming sulfoacetate-CoA ligase (SauCD), and stepwise reduction to isethionate by NAD(P)H-dependent enzymes sulfoacetaldehyde dehydrogenase (SauS) and sulfoacetaldehyde reductase (TauF). Isethionate is then cleaved by the O2-sensitive isethionate sulfolyase (IseG), releasing sulfite for dissimilatory reduction to H2S. Sulfoacetate in different environments originates from anthropogenic sources such as detergents, and natural sources such as bacterial metabolism of the highly abundant organosulfonates sulfoquinovose and taurine. Identification of enzymes for anaerobic degradation of this relatively inert and electron-deficient C2 sulfonate provides further insights into sulfur recycling in the anaerobic biosphere, including the human gut microbiome.


Asunto(s)
Bilophila , Humanos , Alcanosulfonatos/metabolismo , Bilophila/metabolismo , Sulfitos/metabolismo , Azufre/metabolismo , Taurina/metabolismo , Microbioma Gastrointestinal
3.
Proc Natl Acad Sci U S A ; 116(8): 3171-3176, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30718429

RESUMEN

Hydrogen sulfide (H2S) production in the intestinal microbiota has many contributions to human health and disease. An important source of H2S in the human gut is anaerobic respiration of sulfite released from the abundant dietary and host-derived organic sulfonate substrate in the gut, taurine (2-aminoethanesulfonate). However, the enzymes that allow intestinal bacteria to access sulfite from taurine have not yet been identified. Here we decipher the complete taurine desulfonation pathway in Bilophila wadsworthia 3.1.6 using differential proteomics, in vitro reconstruction with heterologously produced enzymes, and identification of critical intermediates. An initial deamination of taurine to sulfoacetaldehyde by a known taurine:pyruvate aminotransferase is followed, unexpectedly, by reduction of sulfoacetaldehyde to isethionate (2-hydroxyethanesulfonate) by an NADH-dependent reductase. Isethionate is then cleaved to sulfite and acetaldehyde by a previously uncharacterized glycyl radical enzyme (GRE), isethionate sulfite-lyase (IslA). The acetaldehyde produced is oxidized to acetyl-CoA by a dehydrogenase, and the sulfite is reduced to H2S by dissimilatory sulfite reductase. This unique GRE is also found in Desulfovibrio desulfuricans DSM642 and Desulfovibrio alaskensis G20, which use isethionate but not taurine; corresponding knockout mutants of D. alaskensis G20 did not grow with isethionate as the terminal electron acceptor. In conclusion, the novel radical-based C-S bond-cleavage reaction catalyzed by IslA diversifies the known repertoire of GRE superfamily enzymes and enables the energy metabolism of B. wadsworthia This GRE is widely distributed in gut bacterial genomes and may represent a novel target for control of intestinal H2S production.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Bilophila/enzimología , Sulfuro de Hidrógeno/metabolismo , Proteómica , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/metabolismo , Anaerobiosis/genética , Bilophila/química , Bilophila/metabolismo , Microbioma Gastrointestinal/genética , Humanos , Sulfuro de Hidrógeno/química , Oxidación-Reducción , Taurina/metabolismo
4.
Anaerobe ; 78: 102641, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36108892

RESUMEN

We report a rare case of polymicrobial anaerobic bacteremia caused by four different gut anaerobes: Bacteroides fragilis, Eggerthella lenta, Bilophila wadsworthia, and Ruminococcus gnavus. Early initiation of appropriate therapy and species identification with matrix assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS) resulted in full recovery from the infection. Our case highlights the clinical significance of polymicrobial cultures and the importance of performing anaerobic cultures for blood specimens to ensure proper identification and treatment.


Asunto(s)
Bacteriemia , Infecciones Bacterianas , Neoplasias , Humanos , Bacteroides fragilis , Bilophila , Anaerobiosis , Bacterias Anaerobias , Bacteriemia/diagnóstico , Bacteriemia/tratamiento farmacológico , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
5.
Am J Physiol Endocrinol Metab ; 320(1): E113-E121, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33166187

RESUMEN

Patients with type 2 diabetes mellitus (T2DM) have a high risk of developing cholecystic disease. The gut microbiota has been shown to be strongly associated with cholecystectomy and T2DM pathogenesis. However, alterations of the gut microbiome in patients with T2DM who had undergone cholecystectomy remain unexplored. In this study, the gut microbiomes of 14 long-term patients with T2DM who had undergone cholecystectomy (T2DIIC group) and 21 age- and/or sex-matched subjects with new-onset (T2DI group) and long-term (T2DII group) T2DM without cholecystectomy were assessed using 16S rRNA gene sequencing of stool samples. It was found that cholecystectomy could alleviate the decrease in Pielou's evenness and the increase in the relative abundances of the Firmicutes phylum and Lachnospira genus in long-term patients with T2DM compared with T2DII subjects. Moreover, cholecystectomy also significantly increased the relative abundance of the Fusobacteria phylum, as well as that of the Fusobacterium and Bilophila genera. Interestingly, the T2DIIC and T2DI groups showed higher similarities than the T2DII group with respect to patterns of gut microbiota composition and predicted gut metagenomes. In summary, cholecystectomy could partially alleviate long-term diabetes-induced dysbiosis of the gut microbiota composition and function, but alterations in T2DM patient health warrant further study.NEW & NOTEWORTHY The gut microbiome of long-term T2DM patients who had undergone cholecystectomy and age- and/or sex-matched subjects of new-onset and long-term T2DM without cholecystectomy was assessed using 16S rRNA gene sequencing in stool samples. The findings suggest that, cholecystectomy could partially alleviate long-term diabetes-induced dysbiosis of gut microbiome composition and function.


Asunto(s)
Colecistectomía , Diabetes Mellitus Tipo 2/microbiología , Microbioma Gastrointestinal , Adulto , Anciano , Bilophila , Biología Computacional , Heces/microbiología , Femenino , Fusobacterium , Humanos , Masculino , Persona de Mediana Edad , Periodo Posoperatorio , ARN Ribosómico 16S/metabolismo , Tirotropina/farmacología
6.
Int J Cancer ; 148(7): 1708-1716, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33285000

RESUMEN

The underlying molecular mechanisms involved in the pathogenesis of endometrial cancer (EC) are still not well understood. Our goal was to investigate the composition of the endometrial microbiota and the association with inflammatory cytokines in EC. Endometrial microbiota profiles of women with EC (n = 25) and benign uterine lesions (BUL, n = 25) were assessed by 16S ribosomal RNA gene amplicon sequencing. The expression levels of interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-17 (IL-17) mRNA and protein in the endometrial tissues of the two groups were determined by real-time quantitative polymerase chain reaction and Western blot, respectively. There were significant differences in alpha diversity based on the observed operational taxonomic units (P = .002), Pielou evenness (P = .001), and Shannon index (P < .001) between EC and BUL groups. Significant differences were also found in Bray-Curtis (P = .001) and unweighted UniFrac (P = .001) beta diversity measures between the two groups. At the genus level, Micrococcus was more abundant in the EC group. Pseudoramibacter_Eubacterium, Rhodobacter, Vogesella, Bilophila, Rheinheimera, and Megamonas were enriched in the BUL group. There were no differences in IL-8 and IL-17 protein levels between the two groups, except IL-6 protein levels. However, the mRNA expression levels of IL-6, IL-8, and IL-17 were significantly different. Moreover, the relative abundances of Micrococcus was positively correlated with IL-6, and IL-17 mRNA levels. In conclusion, our results suggested that dysbiosis of endometrial microbiota and the inflammatory cytokines were associated with Micrococcus in EC patients, which might be useful for exploration of the mechanism between the endometrial microbiota and inflammatory responses in future studies.


Asunto(s)
Citocinas/metabolismo , Disbiosis/microbiología , Neoplasias Endometriales/etiología , Microbiota/genética , Micrococcus/aislamiento & purificación , Bilophila/aislamiento & purificación , Correlación de Datos , Citocinas/genética , Disbiosis/etiología , Neoplasias Endometriales/microbiología , Femenino , Firmicutes/aislamiento & purificación , Humanos , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Persona de Mediana Edad , ARN Ribosómico 16S , Reacción en Cadena en Tiempo Real de la Polimerasa , Rhodobacter/aislamiento & purificación
7.
Am J Physiol Gastrointest Liver Physiol ; 321(6): G639-G655, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34643089

RESUMEN

Emerging evidence links dietary fiber with altered gut microbiota composition and bile acid signaling in maintaining metabolic health. Yeast ß-glucan (Y-BG) is a dietary supplement known for its immunomodulatory effect, yet its impact on the gut microbiota and bile acid composition remains unclear. This study investigated whether dietary forms of Y-BG modulate these gut-derived signals. We performed 4-wk dietary supplementation in healthy mice to evaluate the effects of different fiber composition (soluble vs. particulate Y-BG) and dose (0.1% vs. 2%). We found that 2% particulate Y-BG induced robust gut microbiota community shifts with elevated liver Cyp7a1 mRNA abundance and bile acid synthesis. These diet-induced responses were notably different when compared with the prebiotic inulin, and included a marked reduction in fecal Bilophila abundance which we demonstrated as translatable to obesity in population-scale American Gut and TwinsUK clinical cohorts. This prompted us to test whether 2% Y-BG maintained metabolic health in mice fed 60% HFD over 13 wk. Y-BG consistently altered the gut microbiota composition and reduced Bilophila abundance, with trends observed in improvement of metabolic phenotype. Notably, Y-BG improved insulin sensitization and this was associated with enhanced ileal Glpr1r mRNA accumulation and reduced Bilophila abundance. Collectively, our results demonstrate that Y-BG modulates gut microbiota community composition and bile acid signaling, but the dietary regime needs to be optimized to facilitate clinical improvement in metabolic phenotype in an aggressive high-fat diet animal model.NEW & NOTEWORTHY The study shows that dietary Y-BG supplementation modulated gut microbiota, bile acid metabolism and associated signaling pathways. Y-BG significantly reduced Bilophila abundance which is associated with obesity in human cohorts. Correlation analysis confirmed functional interactions between bile acid composition, gut microbiota, and metabolic phenotype, although clinical benefit did not reach significance in an aggressive obesity model. Gut microbiota and bile acids correlated with metabolic parameters, indicating future potential of dietary Y-BG modulation of metabolic pathways.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Bilophila/crecimiento & desarrollo , Fibras de la Dieta/administración & dosificación , Microbioma Gastrointestinal , Intestino Delgado/microbiología , Hígado/metabolismo , Obesidad/dietoterapia , Levaduras/metabolismo , beta-Glucanos/administración & dosificación , Animales , Bilophila/genética , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Receptor del Péptido 1 Similar al Glucagón/genética , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Resistencia a la Insulina , Intestino Delgado/metabolismo , Inulina/administración & dosificación , Masculino , Ratones Endogámicos C57BL , Obesidad/metabolismo , Obesidad/microbiología , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal , beta-Glucanos/aislamiento & purificación
8.
BMC Microbiol ; 21(1): 340, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34903181

RESUMEN

BACKGROUND: Bilophila wadsworthia, a strictly anaerobic, sulfite-reducing bacterium and common member of the human gut microbiota, has been associated with diseases such as appendicitis and colitis. It is specialized on organosulfonate respiration for energy conservation, i.e., utilization of dietary and host-derived organosulfonates, such as taurine (2-aminoethansulfonate), as sulfite donors for sulfite respiration, producing hydrogen sulfide (H2S), an important intestinal metabolite that may have beneficial as well as detrimental effects on the colonic environment. Its taurine desulfonation pathway involves the glycyl radical enzyme (GRE) isethionate sulfite-lyase (IslAB), which cleaves isethionate (2-hydroxyethanesulfonate) into acetaldehyde and sulfite. RESULTS: We demonstrate that taurine metabolism in B. wadsworthia 3.1.6 involves bacterial microcompartments (BMCs). First, we confirmed taurine-inducible production of BMCs by proteomic, transcriptomic and ultra-thin sectioning and electron-microscopical analyses. Then, we isolated BMCs from taurine-grown cells by density-gradient ultracentrifugation and analyzed their composition by proteomics as well as by enzyme assays, which suggested that the GRE IslAB and acetaldehyde dehydrogenase are located inside of the BMCs. Finally, we are discussing the recycling of cofactors in the IslAB-BMCs and a potential shuttling of electrons across the BMC shell by a potential iron-sulfur (FeS) cluster-containing shell protein identified by sequence analysis. CONCLUSIONS: We characterized a novel subclass of BMCs and broadened the spectrum of reactions known to take place enclosed in BMCs, which is of biotechnological interest. We also provided more details on the energy metabolism of the opportunistic pathobiont B. wadsworthia and on microbial H2S production in the human gut.


Asunto(s)
Bilophila/metabolismo , Bilophila/ultraestructura , Ácido Isetiónico/metabolismo , Taurina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bilophila/genética , Compartimento Celular , Microbioma Gastrointestinal , Perfilación de la Expresión Génica , Humanos , Sulfuro de Hidrógeno/metabolismo , Proteómica , Sulfitos/metabolismo
9.
Nature ; 505(7484): 559-63, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24336217

RESUMEN

Long-term dietary intake influences the structure and activity of the trillions of microorganisms residing in the human gut, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals, reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids and the outgrowth of microorganisms capable of triggering inflammatory bowel disease. In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles.


Asunto(s)
Bacterias/genética , Bacterias/aislamiento & purificación , Dieta , Tracto Gastrointestinal/microbiología , Metagenoma , Microbiota , Adulto , Bacterias/efectos de los fármacos , Bacteroides/efectos de los fármacos , Bacteroides/genética , Bacteroides/aislamiento & purificación , Ácidos y Sales Biliares/análisis , Ácidos y Sales Biliares/metabolismo , Bilophila/efectos de los fármacos , Bilophila/genética , Bilophila/aislamiento & purificación , Carnivoría , Dieta/efectos adversos , Dieta Vegetariana , Grasas de la Dieta/efectos adversos , Grasas de la Dieta/farmacología , Heces/química , Heces/microbiología , Femenino , Fermentación/efectos de los fármacos , Microbiología de Alimentos , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/virología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Herbivoria , Humanos , Enfermedades Inflamatorias del Intestino/microbiología , Masculino , Metagenoma/efectos de los fármacos , Metagenoma/genética , Microbiota/efectos de los fármacos , Microbiota/genética , Factores de Tiempo , Adulto Joven
10.
J Infect Chemother ; 25(9): 708-713, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30982727

RESUMEN

PURPOSE: Controversy exists over whether bacterial flora within the appendix differs between patients with and without appendicitis. To examine these potential differences, we cultured the appendiceal luminal microbiota of patients with and without acute appendicitis, and identified the bacterial species therein. METHODS: Fifty-seven patients with acute appendicitis and 37 patients without acute appendicitis who underwent curative resection of colorectal cancer and prophylactic appendectomies (control group) were included. Appendicitis patients were classified into the phlegmonous group or the gangrenous appendicitis group histopathologically. There was no patient with perforated appendicitis. Aerobic isolates were identified using standard identification schemata, and anaerobic isolates were identified according to the Japanese guidelines. RESULTS: There were no significant differences among the three groups in the median number aerobe species present per patient. However, the median number anaerobe species in the gangrenous appendicitis group was significantly higher than that of the control group and the phlegmonous appendicitis group. In addition, the incidence of patients with Bacillus species, Fusobacterium nucleatum, and Bilophila wadsworthia increased as the disease progressed from phlegmonous to gangrenous appendicitis. CONCLUSION: The present results suggest that increased diversity of anaerobes and the translocation of Bacillus species, F. nucleatum, and B. wadsworthia are associated with the progression of acute appendicitis.


Asunto(s)
Apendicitis/microbiología , Apéndice/microbiología , Infecciones Bacterianas/microbiología , Enfermedad Aguda , Adulto , Apendicectomía , Apendicitis/patología , Apendicitis/cirugía , Bacillus/aislamiento & purificación , Bacterias Aerobias/aislamiento & purificación , Bacterias Anaerobias/aislamiento & purificación , Infecciones Bacterianas/patología , Infecciones Bacterianas/cirugía , Bilophila/aislamiento & purificación , Femenino , Fusobacterium nucleatum/aislamiento & purificación , Humanos , Masculino , Microbiota , Persona de Mediana Edad
11.
Appl Environ Microbiol ; 84(17)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29959248

RESUMEN

Increasing evidence suggests that maternal diet during pregnancy modifies an offspring's microbiota composition and intestinal development in a long-term manner. However, the effects of maternal soluble fiber diet during pregnancy on growth traits and the developing intestine are still underexplored. Sows were allocated to either a control or 2.0% pregelatinized waxy maize starch plus guar gum (SF) dietary treatment during gestation. Growth performance, diarrhea incidence, gut microbiota composition and metabolism, and gut permeability and inflammation status of 14-day-old suckling piglets were analyzed. The maternal SF diet improved the growth rate and decreased the incidence of diarrhea in the piglets. Next-generation sequencing analysis revealed that the intestinal microbiota composition was altered by a maternal SF diet. The fecal and plasma levels of acetate and butyrate were also increased. Furthermore, a maternal SF diet reduced the levels of plasma zonulin and fecal lipocalin-2 but increased the plasma concentrations of interleukin 10 (IL-10) and transforming growth factor ß (TGF-ß). Additionally, the increased relative abundances of Lactobacillus spp. in SF piglets were positively correlated with growth rate, while the decreased abundances of Bilophila spp. were positively correlated with fecal lipocalin-2 levels. Our data reveal that a maternal SF diet during pregnancy has remarkable effects on an offspring's growth traits and intestinal permeability and inflammation, perhaps by modulating the composition and metabolism of gut microbiota.IMPORTANCE Although the direct effects of dietary soluble fiber on gut microbiota have been extensively studied, the more indirect effects of maternal nutrition solely during pregnancy on the development of the offspring's intestine are until now largely unexplored. Our data show that a maternal soluble fiber diet during pregnancy is independently associated with changes in the intestinal microbiota composition and metabolism of suckling piglets. These findings have direct implications for refining dietary recommendations in pregnancy. Moreover, a maternal soluble fiber diet reduces intestinal permeability and prevents intestinal inflammation and an excessive systemic immune response of suckling piglets. Therefore, the suckling piglets' resistance to disease was enhanced, diarrhea was reduced, and weight gain was raised. Additionally, the changes in gut microbiota in response to a maternal soluble fiber diet may also be directly correlated with the offspring's growth and gut development.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Fibras de la Dieta/farmacología , Microbioma Gastrointestinal/fisiología , Intestinos/microbiología , Permeabilidad/efectos de los fármacos , Acetatos/sangre , Animales , Bacterias/genética , Bilophila/aislamiento & purificación , Butiratos/sangre , Toxina del Cólera/sangre , Diarrea/prevención & control , Dieta , Resistencia a la Enfermedad/fisiología , Femenino , Microbioma Gastrointestinal/genética , Haptoglobinas , Secuenciación de Nucleótidos de Alto Rendimiento , Interleucina-10/sangre , Lactobacillus/aislamiento & purificación , Lipocalina 2/análisis , Embarazo , Precursores de Proteínas , ARN Ribosómico 16S/genética , Porcinos , Factor de Crecimiento Transformador beta/sangre , Aumento de Peso/fisiología
12.
Nature ; 487(7405): 104-8, 2012 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-22722865

RESUMEN

The composite human microbiome of Western populations has probably changed over the past century, brought on by new environmental triggers that often have a negative impact on human health. Here we show that consumption of a diet high in saturated (milk-derived) fat, but not polyunsaturated (safflower oil) fat, changes the conditions for microbial assemblage and promotes the expansion of a low-abundance, sulphite-reducing pathobiont, Bilophila wadsworthia. This was associated with a pro-inflammatory T helper type 1 (T(H)1) immune response and increased incidence of colitis in genetically susceptible Il10(−/−), but not wild-type mice. These effects are mediated by milk-derived-fat-promoted taurine conjugation of hepatic bile acids, which increases the availability of organic sulphur used by sulphite-reducing microorganisms like B. wadsworthia. When mice were fed a low-fat diet supplemented with taurocholic acid, but not with glycocholic acid, for example, a bloom of B. wadsworthia and development of colitis were observed in Il10(−/−) mice. Together these data show that dietary fats, by promoting changes in host bile acid composition, can markedly alter conditions for gut microbial assemblage, resulting in dysbiosis that can perturb immune homeostasis. The data provide a plausible mechanistic basis by which Western-type diets high in certain saturated fats might increase the prevalence of complex immune-mediated diseases like inflammatory bowel disease in genetically susceptible hosts.


Asunto(s)
Bilophila/efectos de los fármacos , Colitis/inducido químicamente , Colitis/microbiología , Grasas de la Dieta/farmacología , Interleucina-10/deficiencia , Metagenoma/efectos de los fármacos , Ácido Taurocólico/metabolismo , Animales , Ácidos y Sales Biliares/metabolismo , Bilophila/crecimiento & desarrollo , Colitis/inmunología , Colitis/patología , Dieta con Restricción de Grasas , Inflamación/inducido químicamente , Inflamación/inmunología , Inflamación/microbiología , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/patología , Interleucina-10/genética , Ratones , Ratones Endogámicos C57BL , Leche/química , Datos de Secuencia Molecular , Aceite de Cártamo/farmacología , Sulfitos/metabolismo , Taurina/metabolismo , Ácido Taurocólico/farmacología , Células TH1/efectos de los fármacos , Células TH1/inmunología
13.
Dig Dis ; 33(3): 351-6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26045269

RESUMEN

The composite human gut microbiomes of Western populations have changed over the past century, brought on by new environmental triggers that often have a negative impact on human health. Diets high in saturated fats and refined sugars and low in fiber are leading candidates for these events and for triggering the increased prevalence of immune-mediated diseases like inflammatory bowel disease (IBD). Our studies have shown that consumption of a 'Western' diet high in saturated (milk-derived) fat (MF) or n-6 polyunsaturated (safflower oil) fat have similar effects on the structure of the colonic microbiome of wild-type and IL- 10(-/-) mice, characterized by increased Bacteroidetes and decreased Firmicutes. However, the MF diet uniquely promotes the expansion of an immunogenic sulfite-reducing pathobiont, Bilophila wadsworthia, a member of the Deltaproteobacteria and minor component of the gut microbiome. This bacterial bloom results from a MF diet-induced shift in hepatic conjugation of bile acids, from glycocholic to taurocholic (TC) acid, which is important for solubilizing the more hydrophobic MF diet. However, it is also responsible for delivery of taurine-derived sulfur to the distal bowel, promoting the assemblage of bile-tolerant microbes such as B. wadsworthia. The bloom of this species promotes a Th1-mediated immune response and the development of colitis in IL-10(-/-) mice. A similar bloom of B. wadsworthia is seen when IL-10(-/-) mice are fed a low-fat diet supplemented with TC. B. wadsworthia colonization of monoassociated germ-free IL-10(-/-) mice was dependent on the host consuming either a high-saturated MF diet or the gavage with TC. Together, these data provide a plausible explanation for the link between diseases such as IBD and dietary-mediated selection of gut microbial pathobionts in genetically susceptible hosts. With this knowledge, it may be possible to mitigate the bloom of these types of pathobionts by modifying the conjugation states of bile acids.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Bilophila/crecimiento & desarrollo , Grasas de la Dieta/metabolismo , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/microbiología , Animales , Bacteroidetes/crecimiento & desarrollo , Dieta , Firmicutes/crecimiento & desarrollo , Humanos , Enfermedades Inflamatorias del Intestino/inmunología , Interleucina-10/genética , Ratones , Células TH1
14.
Nat Commun ; 15(1): 3612, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684664

RESUMEN

The etiopathogenesis of diverticulitis, among the most common gastrointestinal diagnoses, remains largely unknown. By leveraging stool collected within a large prospective cohort, we performed shotgun metagenomic sequencing and untargeted metabolomics profiling among 121 women diagnosed with diverticulitis requiring antibiotics or hospitalizations (cases), matched to 121 women without diverticulitis (controls) according to age and race. Overall microbial community structure and metabolomic profiles differed in diverticulitis cases compared to controls, including enrichment of pro-inflammatory Ruminococcus gnavus, 1,7-dimethyluric acid, and histidine-related metabolites, and depletion of butyrate-producing bacteria and anti-inflammatory ceramides. Through integrated multi-omic analysis, we detected covarying microbial and metabolic features, such as Bilophila wadsworthia and bile acids, specific to diverticulitis. Additionally, we observed that microbial composition modulated the protective association between a prudent fiber-rich diet and diverticulitis. Our findings offer insights into the perturbations in inflammation-related microbial and metabolic signatures associated with diverticulitis, supporting the potential of microbial-based diagnostics and therapeutic targets.


Asunto(s)
Diverticulitis , Heces , Microbioma Gastrointestinal , Humanos , Femenino , Persona de Mediana Edad , Diverticulitis/metabolismo , Diverticulitis/microbiología , Heces/microbiología , Anciano , Estudios Prospectivos , Bilophila/metabolismo , Metabolómica , Estudios de Casos y Controles , Clostridiales/metabolismo , Clostridiales/aislamiento & purificación , Ácidos y Sales Biliares/metabolismo , Adulto , Fibras de la Dieta/metabolismo , Metaboloma , Metagenómica/métodos
15.
Adv Microb Physiol ; 85: 145-200, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39059820

RESUMEN

The human gut flora comprises a dynamic network of bacterial species that coexist in a finely tuned equilibrium. The interaction with intestinal bacteria profoundly influences the host's development, metabolism, immunity, and overall health. Furthermore, dysbiosis, a disruption of the gut microbiota, can induce a variety of diseases, not exclusively associated with the intestinal tract. The increased consumption of animal protein, high-fat and high-sugar diets in Western countries has been implicated in the rise of chronic and inflammatory illnesses associated with dysbiosis. In particular, this diet leads to the overgrowth of sulfide-producing bacteria, known as sulfidogenic bacteria, which has been linked to inflammatory bowel diseases and colorectal cancer, among other disorders. Sulfidogenic bacteria include sulfate-reducing bacteria (Desulfovibrio spp.) and Bilophila wadsworthia among others, which convert organic and inorganic sulfur compounds to sulfide through the dissimilatory sulfite reduction pathway. At high concentrations, sulfide is cytotoxic and disrupts the integrity of the intestinal epithelium and mucus barrier, triggering inflammation. Besides producing sulfide, B. wadsworthia has revealed significant pathogenic potential, demonstrated in the ability to cause infection, adhere to intestinal cells, promote inflammation, and compromise the integrity of the colonic mucus layer. This review delves into the mechanisms by which taurine and sulfide-driven gut dysbiosis contribute to the pathogenesis of sulfidogenic bacteria, and discusses the role of these gut microbes, particularly B. wadsworthia, in human diseases.


Asunto(s)
Disbiosis , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiología , Disbiosis/microbiología , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/metabolismo , Sulfuros/metabolismo , Desulfovibrio/metabolismo , Bilophila/metabolismo , Taurina/metabolismo , Animales , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/metabolismo , Bacterias/metabolismo , Bacterias/genética
16.
J Gastroenterol Hepatol ; 28(4): 613-9, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23216550

RESUMEN

BACKGROUND AND AIMS: Dysbiosis is thought to be relevant to the etiology and pathogenesis of Crohn's disease (CD). In this study, we investigated the abundance of Faecalibacterium prausnitzii, as well as Bilophila wadsworthia, in the gut microbiota of Japanese CD patients. METHODS: Forty-seven CD patients and 20 healthy controls were enrolled. Abundance of F. prausnitzii in fecal samples was quantified by real-time polymerase chain reaction. The gut microbiota profile was evaluated by terminal restriction fragment length polymorphisms. RESULTS: The abundance of F. prausnitzii significantly decreased in CD patients compared with healthy subjects. B. wadsworthia was scarcely detected in the same samples. Among CD patients, the Crohn's Disease Activity Index, C-reactive protein levels, and erythrocyte sedimentation rate were significantly lower, and serum albumin levels were significantly higher in the high F. prausnitzii group compared with the low group. Terminal restriction fragment length polymorphisms analysis showed that fecal bacterial communities of CD patients differed from those of healthy individuals. The changes in simulated bacterial composition indicated that class Clostridia, including genus Faecalibacterium, was significantly less abundant in CD patients as compared with healthy individuals. The bacterial diversity measured by the Shannon Diversity Index was significantly reduced in CD patients compared with healthy individuals. CONCLUSION: The decreased abundance of class Clostridia, including F. prausnitzii, may translate into a reduction of commensal bacteria-mediated, anti-inflammatory activities in the mucosa, which are relevant to the pathophysiology of CD. In contrast, the role of B. wadsworthia was suspected to be minimal.


Asunto(s)
Bilophila/aislamiento & purificación , Clostridium/fisiología , Enfermedad de Crohn/microbiología , Tracto Gastrointestinal/microbiología , Metagenoma , Adulto , Estudios de Casos y Controles , Cartilla de ADN/química , ADN Bacteriano/análisis , Heces/microbiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Longitud del Fragmento de Restricción , Reacción en Cadena en Tiempo Real de la Polimerasa , Índice de Severidad de la Enfermedad
18.
Int J Biol Macromol ; 240: 124428, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37062383

RESUMEN

Bilophila wadsworthia is one of the prominent sources of hydrogen sulfide (H2S) production in appendices, excessive levels of which can result in a weaker colonic mucus barrier, inflammatory bowel disease, and colorectal cancer. Isethionate sulfite-lyase (IslA) enzyme catalyzes H2S production by cleaving CS bond in isethionate, producing acetaldehyde and sulfite. In this study, we aimed to identify potential substrate antagonists for IsIA using a structure-based drug design. Initially, pharmacophore-based computational screening of the ZINC20 database yielded 66 hits that were subjected to molecular docking targeting the isethionate binding site of IsIA. Based on striking docking scores, nine compounds showed strong interaction with critical IsIA residues (Arg189, Gln193, Glu470, Cys468, and Arg678), drug-like features, appropriate adsorption, metabolism, excretion, and excretion profile with non-toxicity. Molecular dynamics simulations uncovered the significant impact of binding the compounds on protein conformational dynamics. Finally, binding free energies revealed substantial binding affinity (ranging from -35.23 to -53.88 kcal/mol) of compounds (ZINC913876497, ZINC913856647, ZINC914263733, ZINC914137795, ZINC915757996, ZINC914357083, ZINC913934833, ZINC9143362047, and ZINC913854740) for IsIA. The compounds proposed herein through a multi-faceted computational strategy can be experimentally validated as potential substrate antagonists of B. wadsworthia's IsIA for developing new medications to curb gut-associated illness in the future.


Asunto(s)
Bilophila , Liasas , Simulación del Acoplamiento Molecular , Bilophila/metabolismo , Liasas/metabolismo , Simulación de Dinámica Molecular , Sulfitos/metabolismo , Ligandos
19.
Microbiol Spectr ; 10(2): e0204721, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35285706

RESUMEN

The food we eat not only nourishes our bodies but also provides nutrients to the bacteria living in our guts. Gut bacterial communities are known to be affected by many factors, including diet and bowel cleansing, but the impacts of vegetarian and omnivore diets on fecal bacterial composition are still uncertain. In this study, we analyzed the bacterial compositions of fecal samples from vegetarians and omnivores 5 to 7 days after bowel cleansing, and we correlated specific dietary constituents with the relative abundances of specialized fecal bacteria. A total of 46 participants (23 vegetarians and 23 omnivores) were recruited. All participants underwent standard bowel cleansing before colonoscopy screening. Fecal samples were collected from each participant 5 to 7 days after bowel cleansing, and the fecal microbiota compositions were analyzed with next-generation sequencing. Sixteen participants also provided an image-based dietary record for nutritional assessment. No major differences between dietary groups were observed in terms of fecal bacterial richness, alpha diversity, or beta diversity. A minority of potential pathobionts tended to be elevated in omnivores compared to vegetarians, whereas potential probiotic species tended to be higher in the vegetarians. Detailed dietary assessments further revealed that the plant- and animal-derived proteins may oppositely modulate the relative abundances of pathobionts Bilophila and Lachnoclostridium. However, these results were not statistically significant after multiple-comparison correction. These results suggest that specialized probiotic and pathobiont microbiota constituents are sensitive to the plant- or animal-derived dietary components ingested by vegetarians and omnivores after bowel cleansing. IMPORTANCE Dietary pattern and food choice are associated with expansion of gut pathobionts and risk for metabolic and colonic disease. However, the effects of dietary interventions on intestinal microbiota remain unclear. After bowel cleansing, potential pathobionts and probiotic bacteria were increased in omnivores and vegetarians, respectively. The pathobionts Bilophila and Lachnoclostridium were oppositely modulated by dietary animal and plant protein. From a clinical perspective, fecal pathobionts that may indicate risk for metabolic and colonic disease can potentially be modulated with dietary interventions.


Asunto(s)
Bilophila , Enfermedades del Colon , Animales , Bacterias/genética , Clostridiales , Dieta/métodos , Heces/microbiología , Humanos , Vegetarianos
20.
Sci Rep ; 11(1): 7262, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33790336

RESUMEN

Butyrate is the primary energy source for colonocytes and is essential for mucosal integrity and repair. Butyrate deficiency as a result of colonic dysbiosis is a putative factor in ulcerative colitis (UC). Commensal microbes are butyrogenic, while others may inhibit butyrate, through hydrogenotropic activity. The aim of this study was to quantify butyrogenic and hydrogenotropic species and determine their relationship with inflammation within the colonic mucus gel layer (MGL). Mucosal brushings were obtained from 20 healthy controls (HC), 20 patients with active colitis (AC) and 14 with quiescent colitis (QUC). Abundance of each species was determined by RT-PCR. Inflammatory scores were available for each patient. Statistical analyses were performed using Mann-Whitney-U and Kruskall-Wallis tests. Butyrogenic R. hominis was more abundant in health than UC (p < 0.005), prior to normalisation against total bacteria. Hydrogenotropic B. wadsworthia was reduced in AC compared to HC and QUC (p < 0.005). An inverse correlation existed between inflammation and R. hominis (ρ - 0.460, p < 0.005) and B. wadsworthia (ρ - 0.646, p < 0.005). Other hydrogenotropic species did not widely colonise the MGL. These data support a role for butyrogenic bacteria in UC. Butyrate deficiency in UC may be related to reduced microbial production, rather than inhibition by microbial by-products.


Asunto(s)
Bilophila/metabolismo , Clostridiales/metabolismo , Colitis Ulcerosa/microbiología , Colon/microbiología , Mucosa Intestinal/microbiología , Adulto , Anciano , Butiratos/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA