RESUMEN
G-protein-coupled receptors (GPCRs) play critical roles in regulating physiological processes ranging from neurotransmission to cardiovascular function. Current methods for tracking GPCR signaling suffer from low throughput, modification or overexpression of effector proteins, and low temporal resolution. Here, we show that peroxidase-catalyzed proximity labeling can be combined with isobaric tagging and mass spectrometry to enable quantitative, time-resolved measurement of GPCR agonist response in living cells. Using this technique, termed "GPCR-APEX," we track activation and internalization of the angiotensin II type 1 receptor and the ß2 adrenoceptor. These receptors co-localize with a variety of G proteins even before receptor activation, and activated receptors are largely sequestered from G proteins upon internalization. Additionally, the two receptors show differing internalization kinetics, and we identify the membrane protein LMBRD2 as a potential regulator of ß2 adrenoceptor signaling, underscoring the value of a dynamic view of receptor function.
Asunto(s)
Ascorbato Peroxidasas/química , Receptor de Angiotensina Tipo 1/análisis , Receptor de Angiotensina Tipo 1/metabolismo , Transducción de Señal , Coloración y Etiquetado/métodos , Ascorbato Peroxidasas/metabolismo , Biotina/química , Proteínas de Unión al GTP/análisis , Células HEK293 , Humanos , Oligopéptidos/farmacología , Ingeniería de Proteínas , Receptor de Angiotensina Tipo 1/agonistas , beta-Arrestinas/químicaRESUMEN
Intracellular calcium (Ca2+) is ubiquitous to cell signaling across biology. While existing fluorescent sensors and reporters can detect activated cells with elevated Ca2+ levels, these approaches require implants to deliver light to deep tissue, precluding their noninvasive use in freely behaving animals. Here we engineered an enzyme-catalyzed approach that rapidly and biochemically tags cells with elevated Ca2+ in vivo. Ca2+-activated split-TurboID (CaST) labels activated cells within 10 min with an exogenously delivered biotin molecule. The enzymatic signal increases with Ca2+ concentration and biotin labeling time, demonstrating that CaST is a time-gated integrator of total Ca2+ activity. Furthermore, the CaST readout can be performed immediately after activity labeling, in contrast to transcriptional reporters that require hours to produce signal. These capabilities allowed us to apply CaST to tag prefrontal cortex neurons activated by psilocybin, and to correlate the CaST signal with psilocybin-induced head-twitch responses in untethered mice.
Asunto(s)
Calcio , Animales , Ratones , Calcio/metabolismo , Neuronas/metabolismo , Humanos , Biotina/química , Biotina/metabolismo , Señalización del Calcio , Corteza Prefrontal/metabolismo , Corteza Prefrontal/citología , Ratones Endogámicos C57BL , MasculinoRESUMEN
Biomolecular condensates are cellular compartments that concentrate biomolecules without an encapsulating membrane. In recent years, significant advances have been made in the understanding of condensates through biochemical reconstitution and microscopic detection of these structures. Quantitative visualization and biochemical assays of biomolecular condensates rely on surface passivation to minimize background and artifacts due to condensate adhesion. However, the challenge of undesired interactions between condensates and glass surfaces, which can alter material properties and impair observational accuracy, remains a critical hurdle. Here, we introduce an efficient, broadly applicable, and simple passivation method employing self-assembly of the surfactant Pluronic F127 (PF127). The method greatly reduces nonspecific binding across a range of condensates systems for both phase-separated droplets and biomolecules in dilute phase. Additionally, by integrating PF127 passivation with the Biotin-NeutrAvidin system, we achieve controlled multipoint attachment of condensates to surfaces. This not only preserves condensate properties but also facilitates long-time fluorescence recovery after photobleaching imaging and high-precision single-molecule analyses. Using this method, we have explored the dynamics of polySIM molecules within polySUMO/polySIM condensates at the single-molecule level. Our observations suggest a potential heterogeneity in the distribution of available polySIM-binding sites within the condensates.
Asunto(s)
Avidina , Condensados Biomoleculares , Biotina , Poloxámero , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo , Poloxámero/química , Biotina/química , Biotina/metabolismo , Avidina/química , Avidina/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Propiedades de Superficie , Tensoactivos/química , Tensoactivos/metabolismo , Imagen Individual de Molécula/métodosRESUMEN
Elucidating enzyme-substrate relationships in posttranslational modification (PTM) networks is crucial for understanding signal transduction pathways but is technically difficult because enzyme-substrate interactions tend to be transient. Here, we demonstrate that TurboID-based proximity labeling (TbPL) effectively and specifically captures the substrates of kinases and phosphatases. TbPL-mass spectrometry (TbPL-MS) identified over 400 proximal proteins of Arabidopsis thaliana BRASSINOSTEROID-INSENSITIVE2 (BIN2), a member of the GLYCOGEN SYNTHASE KINASE 3 (GSK3) family that integrates signaling pathways controlling diverse developmental and acclimation processes. A large portion of the BIN2-proximal proteins showed BIN2-dependent phosphorylation in vivo or in vitro, suggesting that these are BIN2 substrates. Protein-protein interaction network analysis showed that the BIN2-proximal proteins include interactors of BIN2 substrates, revealing a high level of interactions among the BIN2-proximal proteins. Our proteomic analysis establishes the BIN2 signaling network and uncovers BIN2 functions in regulating key cellular processes such as transcription, RNA processing, translation initiation, vesicle trafficking, and cytoskeleton organization. We further discovered significant overlap between the GSK3 phosphorylome and the O-GlcNAcylome, suggesting an evolutionarily ancient relationship between GSK3 and the nutrient-sensing O-glycosylation pathway. Our work presents a powerful method for mapping PTM networks, a large dataset of GSK3 kinase substrates, and important insights into the signaling network that controls key cellular functions underlying plant growth and acclimation.
Asunto(s)
Proteínas Quinasas , Proteómica , Transducción de Señal , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biotina/química , Biotinilación , Brasinoesteroides/metabolismo , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteómica/métodos , Transducción de Señal/fisiologíaRESUMEN
Drug-ID is a novel method applying proximity biotinylation to identify drug-protein interactions inside living cells. The covalent conjugation of a drug with a biotin ligase enables targeted biotinylation and identification of the drug-bound proteome. We established Drug-ID for two small-molecule drugs, JQ1 and SAHA, and applied it for RNaseH-recruiting antisense oligonucleotides (ASOs). Drug-ID profiles the drug-protein interactome de novo under native conditions, directly inside living cells and at pharmacologically effective drug concentrations. It requires minimal amounts of cell material and might even become applicable in vivo. We studied the dose-dependent aggregation of ASOs and the effect of different wing chemistries (locked nucleic acid, 2'-methoxyethyl and 2'-Fluoro) and ASO lengths on the interactome. Finally, we demonstrate the detection of stress-induced, intracellular interactome changes (actinomycin D treatment) with an in situ variant of the approach, which uses a recombinant biotin ligase and does not require genetic manipulation of the target cell.
Asunto(s)
Biotinilación , Humanos , Oligonucleótidos Antisentido/metabolismo , Oligonucleótidos Antisentido/química , Ribonucleasa H/metabolismo , Ligasas de Carbono-Nitrógeno/metabolismo , Biotina/metabolismo , Biotina/química , Unión ProteicaRESUMEN
The quantum spin properties of nitrogen-vacancy defects in diamond enable diverse applications in quantum computing and communications1. However, fluorescent nanodiamonds also have attractive properties for in vitro biosensing, including brightness2, low cost3 and selective manipulation of their emission4. Nanoparticle-based biosensors are essential for the early detection of disease, but they often lack the required sensitivity. Here we investigate fluorescent nanodiamonds as an ultrasensitive label for in vitro diagnostics, using a microwave field to modulate emission intensity5 and frequency-domain analysis6 to separate the signal from background autofluorescence7, which typically limits sensitivity. Focusing on the widely used, low-cost lateral flow format as an exemplar, we achieve a detection limit of 8.2 × 10-19 molar for a biotin-avidin model, 105 times more sensitive than that obtained using gold nanoparticles. Single-copy detection of HIV-1 RNA can be achieved with the addition of a 10-minute isothermal amplification step, and is further demonstrated using a clinical plasma sample with an extraction step. This ultrasensitive quantum diagnostics platform is applicable to numerous diagnostic test formats and diseases, and has the potential to transform early diagnosis of disease for the benefit of patients and populations.
Asunto(s)
Técnicas Biosensibles/métodos , Diagnóstico Precoz , Infecciones por VIH/diagnóstico , Infecciones por VIH/virología , VIH-1/genética , Nanodiamantes/química , ARN Viral/sangre , Avidina/química , Técnicas Biosensibles/instrumentación , Biotina/química , Fluorescencia , Oro/química , VIH-1/aislamiento & purificación , Humanos , Límite de Detección , Nanopartículas del Metal/química , Microfluídica/instrumentación , Microfluídica/métodos , Microondas , Técnicas de Amplificación de Ácido Nucleico , Papel , Plasma/virología , Teoría Cuántica , Sensibilidad y Especificidad , Imagen Individual de Molécula , TemperaturaRESUMEN
Human apurinic/apyrimidinic endonuclease 1 (APE1) plays crucial roles in repairing DNA damage and regulating RNA in the nucleus. However, direct visualization of nuclear APE1 in live cells remains challenging. Here, we report a chaperone@DNA probe for live-cell imaging of APE1 in the nucleus and nucleolus in real time. The probe is based on an assembly of phenylboronic acid modified avidin and biotin-labeled DNA containing an abasic site (named PB-ACP), which cleverly protects DNA from being nonspecifically destroyed while enabling targeted delivery of the probe to the nucleus. The PB-ACP construct specifically detects APE1 due to the high binding affinity of APE1 for both avidin and the abasic site in DNA. It is easy to prepare, biocompatible and allowing for long-term observation of APE1 activity. This molecular tool offers a powerful means to investigate the behavior of APE1 in the nuclei of various types of live cells, particularly for the development of improved cancer therapies targeting this protein.
Asunto(s)
Nucléolo Celular , Núcleo Celular , Sondas de ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Humanos , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Sondas de ADN/química , Células HeLa , Chaperonas Moleculares/metabolismo , Avidina/química , Avidina/metabolismo , ADN/metabolismo , Biotina/químicaRESUMEN
Fluorogenic RNA aptamer tags with high affinity enable RNA purification and imaging. The G-quadruplex (G4) based Mango (M) series of aptamers were selected to bind a thiazole orange based (TO1-Biotin) ligand. Using a chemical biology and reselection approach, we have produced a MII.2 aptamer-ligand complex with a remarkable set of properties: Its unprecedented KD of 45 pM, formaldehyde resistance (8% v/v), temperature stability and ligand photo-recycling properties are all unusual to find simultaneously within a small RNA tag. Crystal structures demonstrate how MII.2, which differs from MII by a single A23U mutation, and modification of the TO1-Biotin ligand to TO1-6A-Biotin achieves these results. MII binds TO1-Biotin heterogeneously via a G4 surface that is surrounded by a stadium of five adenosines. Breaking this pseudo-rotational symmetry results in a highly cooperative and homogeneous ligand binding pocket: A22 of the G4 stadium stacks on the G4 binding surface while the TO1-6A-Biotin ligand completely fills the remaining three quadrants of the G4 ligand binding face. Similar optimization attempts with MIII.1, which already binds TO1-Biotin in a homogeneous manner, did not produce such marked improvements. We use the novel features of the MII.2 complex to demonstrate a powerful optically-based RNA purification system.
Artificial RNA tags that tightly bind fluorogenic ligands have many RNA imaging and RNA-protein biomolecular purification applications. Here, we report and structurally characterize a very small (20-nt) biologically compatible G-quadruplex based aptamer that can be inserted into commonly found GNRA tetraloops. This aptamer binds its fluorogenic ligand with an unprecedented picomolar binding affinity and is very stable against thermal and chemical insults. As the ligand can be modified to include biotin, this RNA tag can also be bound to streptavidin magnetic beads. After washing, tagged RNA can be cleanly eluted by exposing the beads to intense green light, which photobleaches the bound fluorogenic ligand, triggering the release of the bound RNA complex.
Asunto(s)
Aptámeros de Nucleótidos , Colorantes Fluorescentes , G-Cuádruplex , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Colorantes Fluorescentes/química , Ligandos , Benzotiazoles/química , Quinolinas/química , Biotina/química , ARN/química , ARN/metabolismo , Sitios de Unión , Modelos Moleculares , Cristalografía por Rayos X , Conformación de Ácido NucleicoRESUMEN
Protein phosphorylation by kinases regulates mammalian cell functions, such as growth, division, and signal transduction. Among human kinases, NME1 and NME2 are associated with metastatic tumor suppression but remain understudied due to the lack of tools to monitor their cellular substrates. In particular, NME1 and NME2 are multispecificity kinases phosphorylating serine, threonine, histidine, and aspartic acid residues of substrate proteins, and the heat and acid sensitivity of phosphohistidine and phosphoaspartate complicates substrate discovery and validation. To provide new substrate monitoring tools, we established the γ-phosphate-modified ATP analog, ATP-biotin, as a cosubstrate for phosphorylbiotinylation of NME1 and NME2 cellular substrates. Building upon this ATP-biotin compatibility, the Kinase-catalyzed Biotinylation with Inactivated Lysates for Discovery of Substrates method enabled validation of a known substrate and the discovery of seven NME1 and three NME2 substrates. Given the paucity of methods to study kinase substrates, ATP-biotin and the Kinase-catalyzed Biotinylation with Inactivated Lysates for Discovery of Substrates method are valuable tools to characterize the roles of NME1 and NME2 in human cell biology.
Asunto(s)
Biotinilación , Nucleósido Difosfato Quinasas NM23 , Humanos , Nucleósido Difosfato Quinasas NM23/metabolismo , Nucleósido Difosfato Quinasas NM23/química , Nucleósido Difosfato Quinasas NM23/genética , Especificidad por Sustrato , Fosforilación , Biotina/metabolismo , Biotina/química , Biotina/análogos & derivados , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/química , Células HEK293 , CatálisisRESUMEN
Understanding the relationship between protein structural dynamics and function is crucial for both basic research and biotechnology. However, methods for studying the fast dynamics of structural changes are limited. Here, we introduce fluorescent nanoantennas as a spectroscopic technique to sense and report protein conformational changes through noncovalent dye-protein interactions. Using experiments and molecular simulations, we detect and characterize five distinct conformational states of intestinal alkaline phosphatase, including the transient enzyme-substrate complex. We also explored the universality of the nanoantenna strategy with another model protein, Protein G and its interaction with antibodies, and demonstrated a rapid screening strategy to identify efficient nanoantennas. These versatile nanoantennas can be used with diverse dyes to monitor small and large conformational changes, suggesting that they could be used to characterize diverse protein movements or in high-throughput screening applications.
Asunto(s)
Colorantes Fluorescentes/química , Proteínas/química , Fosfatasa Alcalina/química , Fosfatasa Alcalina/metabolismo , Compuestos de Anilina/química , Biotina/química , ADN de Cadena Simple/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Nanoestructuras/química , Compuestos Organofosforados/química , Conformación Proteica , Espectrofotometría UltravioletaRESUMEN
Pseudomonas aeruginosa is an opportunistic pathogen that predominantly causes nosocomial and community-acquired lung infections. As a member of ESKAPE pathogens, carbapenem-resistant P. aeruginosa (CRPA) compromises the limited therapeutic options, raising an urgent demand for the development of lead compounds against previously-unrecognized drug targets. Biotin is an important cofactor, of which the de novo synthesis is an attractive antimicrobial target in certain recalcitrant infections. Here we report genetic and biochemical definition of P. aeruginosa BioH (PA0502) that functions as a gatekeeper enzyme allowing the product pimeloyl-ACP to exit from fatty acid synthesis cycle and to enter the late stage of biotin synthesis pathway. In relative to Escherichia coli, P. aeruginosa physiologically requires 3-fold higher level of cytosolic biotin, which can be attributed to the occurrence of multiple biotinylated enzymes. The BioH protein enables the in vitro reconstitution of biotin synthesis. The repertoire of biotin abundance is assigned to different mouse tissues and/or organ contents, and the plasma biotin level of mouse is around 6-fold higher than that of human. Removal of bioH renders P. aeruginosa biotin auxotrophic and impairs its intra-phagosome persistence. Based on a model of CD-1 mice mimicking the human environment, lung challenge combined with systemic infection suggested that BioH is necessary for the full virulence of P. aeruginosa. As expected, the biotin synthesis inhibitor MAC13772 is capable of dampening the viability of CRPA. Notably, MAC13772 interferes the production of pyocyanin, an important virulence factor of P. aeruginosa. Our data expands our understanding of P. aeruginosa biotin synthesis relevant to bacterial infectivity. In particular, this study represents the first example of an extracellular pathogen P. aeruginosa that exploits biotin cofactor as a fitness determinant, raising the possibility of biotin synthesis as an anti-CRPA target.
Asunto(s)
Biotina , Infecciones por Pseudomonas , Animales , Humanos , Ratones , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Vías Biosintéticas , Biotina/química , Biotina/metabolismo , Pseudomonas aeruginosa/metabolismoRESUMEN
Proximity-dependent biotinylation (PDB) techniques provide information about the molecular neighborhood of a protein of interest, yielding insights into its function and localization. Here, we assessed how different labeling enzymes and streptavidin resins influence PDB results. We compared the high-confidence interactors of the DNA/RNA-binding protein transactive response DNA-binding protein 43 kDa (TDP-43) identified using either miniTurbo (biotin ligase) or APEX2 (peroxidase) enzymes. We also evaluated two commercial affinity resins for purification of biotinylated proteins: conventional streptavidin sepharose versus a new trypsin-resistant streptavidin conjugated to magnetic resin, which significantly reduces the level of contamination by streptavidin peptides following on-bead trypsin digestion. Downstream analyses involved liquid chromatography coupled to mass spectrometry in data-dependent acquisition mode, database searching, and statistical analysis of high-confidence interactors using SAINTexpress. The APEX2-TDP-43 experiment identified more interactors than miniTurbo-TDP-43, although miniTurbo provided greater overlap with previously documented TDP-43 interactors. Purifications on sepharose resin yielded more interactors than magnetic resin in small-scale experiments using a range of magnetic resin volumes. We suggest that resin-specific background protein binding profiles and different lysate-to-resin ratios cumulatively affect the distributions of prey protein abundance in experimental and control samples, which impact statistical confidence scores. Overall, we highlight key experimental variables to consider for the empirical optimization of PDB experiments.
Asunto(s)
Biotina , Proteínas de Unión al ADN , Biotinilación , Estreptavidina/química , Sefarosa , Tripsina , Biotina/químicaRESUMEN
Serotonylation has been identified as a novel protein posttranslational modification for decades, where an isopeptide bond is formed between the glutamine residue and serotonin through transamination. Transglutaminase 2 (also known as TGM2 or TGase2) was proven to act as the main "writer" enzyme for this PTM, and a number of key regulatory proteins (including small GTPases, fibronectin, fibrinogen, serotonin transporter, and histone H3) have been characterized as the substrates of serotonylation. However, due to the lack of pan-specific antibodies for serotonylated glutamine, the precise enrichment and proteomic profiling of serotonylation still remain challenging. In our previous research, we developed an aryldiazonium probe to specifically label protein serotonylation in a bioorthogonal manner, which depended on a pH-controlled chemoselective rapid azo-coupling reaction. Here, we report the application of a photoactive aryldiazonium-biotin probe for the global profiling of serotonylation proteome in cancer cells. Thus, over 1,000 serotonylated proteins were identified from HCT 116 cells, many of which are highly related to carcinogenesis. Moreover, a number of modification sites of these serotonylated proteins were determined, attributed to the successful application of our chemical proteomic approach. Overall, these findings provided new insights into the significant association between cellular protein serotonylation and cancer development, further suggesting that to target TGM2-mediated monoaminylation may serve as a promising strategy for cancer therapeutics.
Asunto(s)
Proteína Glutamina Gamma Glutamiltransferasa 2 , Procesamiento Proteico-Postraduccional , Proteoma , Proteómica , Transglutaminasas , Humanos , Proteoma/análisis , Concentración de Iones de Hidrógeno , Transglutaminasas/metabolismo , Proteína Glutamina Gamma Glutamiltransferasa 2/metabolismo , Proteómica/métodos , Células HCT116 , Proteínas de Unión al GTP/metabolismo , Biotina/química , Biotina/análogos & derivados , Biotina/metabolismo , Serotonina/análogos & derivados , Serotonina/metabolismo , Serotonina/química , Serotonina/análisis , Compuestos Azo/química , Glutamina/metabolismo , Glutamina/química , Neoplasias/metabolismoRESUMEN
Biotin (vitamin H or B7) is a coenzyme essential for all forms of life. Biotin has biological activity only when covalently attached to a few key metabolic enzyme proteins. Most organisms have only one attachment enzyme, biotin protein ligase (BPL), which attaches biotin to all target proteins. The sequences of these proteins and their substrate proteins are strongly conserved throughout biology. Structures of both the biotin ligase- and biotin-acceptor domains of mammals, plants, several bacterial species, and archaea have been determined. These, together with mutational analyses of ligases and their protein substrates, illustrate the exceptional specificity of this protein modification. For example, the Escherichia coli BPL biotinylates only one of the >4000 cellular proteins. Several bifunctional bacterial biotin ligases transcriptionally regulate biotin synthesis and/or transport in concert with biotinylation. The human BPL has been demonstrated to play an important role in that mutations in the BPL encoding gene cause one form of the disease, biotin-responsive multiple carboxylase deficiency. Promiscuous mutant versions of several BPL enzymes release biotinoyl-AMP, the active intermediate of the ligase reaction, to solvent. The released biotinoyl-AMP acts as a chemical biotinylation reagent that modifies lysine residues of neighboring proteins in vivo. This proximity-dependent biotinylation (called BioID) approach has been heavily utilized in cell biology.
Asunto(s)
Ligasas de Carbono-Nitrógeno , Proteínas de Escherichia coli , Animales , Humanos , Biotinilación , Biotina/química , Biotina/metabolismo , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/química , Ligasas de Carbono-Nitrógeno/metabolismo , Proteínas/metabolismo , Escherichia coli/metabolismo , Ligasas/genética , Ligasas/metabolismo , Bacterias/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mamíferos/metabolismoRESUMEN
Biotin synthase (BioB) is a member of the Radical SAM superfamily of enzymes that catalyzes the terminal step of biotin (vitamin B7) biosynthesis, in which it inserts a sulfur atom in desthiobiotin to form a thiolane ring. How BioB accomplishes this difficult reaction has been the subject of much controversy, mainly around the source of the sulfur atom. However, it is now widely accepted that the sulfur atom inserted to form biotin stems from the sacrifice of the auxiliary 2Fe-2S cluster of BioB. Here, we bioinformatically explore the diversity of BioBs available in sequence databases and find an unexpected variation in the coordination of the auxiliary iron-sulfur cluster. After in vitro characterization, including the determination of biotin formation and representative crystal structures, we report a new type of BioB utilized by virtually all obligate anaerobic organisms. Instead of a 2Fe-2S cluster, this novel type of BioB utilizes an auxiliary 4Fe-5S cluster. Interestingly, this auxiliary 4Fe-5S cluster contains a ligated sulfide that we propose is used for biotin formation. We have termed this novel type of BioB, Type II BioB, with the E. coli 2Fe-2S cluster sacrificial BioB representing Type I. This surprisingly ubiquitous Type II BioB has implications for our understanding of the function and evolution of Fe-S clusters in enzyme catalysis, highlighting the difference in strategies between the anaerobic and aerobic world.
Asunto(s)
Proteínas de Escherichia coli , Proteínas Hierro-Azufre , Escherichia coli/metabolismo , Biotina/química , Proteínas de Escherichia coli/química , Azufre/química , Sulfurtransferasas/metabolismo , Proteínas Hierro-Azufre/químicaRESUMEN
Near-infrared (NIR) aggregation-induced emission luminogens (AIEgens) are excellent probes for tumor imaging, but there still is space to improve their imaging specificity and sensitivity. In this work, a strategy of tandem targeting and dual aggregation of an AIEgen is proposed to achieve these two purposes. An AIEgen, ß-tBu-Ala-Cys(StBu)-Lys(Biotin)-Pra(QMT)-CBT (Ala-Biotin-QMT), is designed to tandem target the biotin receptor and leucine aminopeptidase of a cancer cell and thereafter undergo CBT-Cys click reaction-mediated dual aggregations in the cell. Experimental results show that Ala-Biotin-QMT renders 4.8-fold and 7.9-fold higher NIR fluorescence signals over those in the "biotin + LAP inhibitor"-treated control groups in living HepG2 cells and HepG2 tumor-bearing mice, respectively. We anticipate that Ala-Biotin-QMT, which has the tandem targeting and dual aggregation property to simultaneously achieve enhanced tumor enrichment and fluorescence onset, could be applied for accurate cancer diagnosis in the clinic in the future.
Asunto(s)
Colorantes Fluorescentes , Imagen Óptica , Humanos , Animales , Ratones , Células Hep G2 , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Rayos Infrarrojos , Leucil Aminopeptidasa/metabolismo , Biotina/química , Neoplasias/diagnóstico por imagen , Receptores de Factores de CrecimientoRESUMEN
Cell membrane genetic engineering has been utilized to confer cell membranes with functionalities for diagnostic and therapeutic purposes but concerns over cost and variable modification results. Although nongenetic chemical modification and phospholipid insertion strategies are more convenient, they still face bottlenecks in either biosafety or stability of the modifications. Herein, we show that pyrazolone-bearing molecules can bind to proteins with high stability, which is mainly contributed to by the multiple interactions between pyrazolone and basic amino acids. This new binding model offers a simple and versatile noncovalent approach for cell membrane functionalization. By binding to cell membrane proteins, pyrazolone-bearing dyes enabled precise cell tracking in vitro (>96 h) and in vivo (>21 days) without interfering with the protein function or causing cell death. Furthermore, the convenient anchor of pyrazolone-bearing biotin on cell membranes rendered the biorecognition to avidin, showing the potential for artificially creating cell targetability.
Asunto(s)
Membrana Celular , Pirazolonas , Pirazolonas/química , Pirazolonas/farmacología , Membrana Celular/metabolismo , Membrana Celular/química , Humanos , Biotina/química , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Unión ProteicaRESUMEN
A pretargeted strategy that decouples targeting vectors from radionuclides has shown promise for nuclear imaging and/or therapy in vivo. However, the current pretargeted approach relies on the use of antibodies or nanoparticles as the targeting vectors, which may be compromised by poor tissue penetration and limited accumulation of targeting vectors in the tumor tissues. Herein, we present an orthogonal dual-pretargeted approach by combining stimuli-triggered in situ self-assembly strategy with fast inverse electron demand Diels-Alder (IEDDA) reaction and strong biotin-streptavidin (SA) interaction for near-infrared fluorescence (NIR FL) and magnetic resonance (MR) imaging of tumors. This approach uses a small-molecule probe (P-Cy-TCO&Bio) containing both biotin and trans-cyclooctene (TCO) as a tumor-targeting vector. P-Cy-TCO&Bio can efficiently penetrate subcutaneous HeLa tumors through biotin-assisted targeted delivery and undergo in situ self-assembly to form biotinylated TCO-bearing nanoparticles (Cy-TCO&Bio NPs) on tumor cell membranes. Cy-TCO&Bio NPs exhibited an "off-on" NIR FL and retained in the tumors, offering a high density of TCO and biotin groups for the concurrent capture of Gd-chelate-labeled tetrazine (Tz-Gd) and IR780-labeled SA (SA-780) via the orthogonal IEDDA reaction and SA-biotin interaction. Moreover, Cy-TCO&Bio NPs offered multiple-valent binding modes toward SA, which additionally regulated the cross-linking of Cy-Gd&Bio NPs into microparticles (Cy-Gd&Bio/SA MPs). This process could significantly (1) increase r1 relaxivity and (2) enhance the accumulation of Tz-Gd and SA-780 in the tumors, resulting in strong NIR FL, bright MR contrast, and an extended time window for the clear and precise imaging of HeLa tumors.
Asunto(s)
Biotina , Ciclooctanos , Imagen por Resonancia Magnética , Nanopartículas , Ciclooctanos/química , Humanos , Nanopartículas/química , Imagen por Resonancia Magnética/métodos , Células HeLa , Biotina/química , Animales , Imagen Óptica , Biotinilación , Ratones , Estreptavidina/química , Reacción de Cicloadición , FluorescenciaRESUMEN
Cell surface proteins participate in many important biological processes, such as cell-to-cell interaction, signal transduction, cell adhesion, and protein transportation. In-depth study of the cell surface protein group is of great significance. Nevertheless, detection and analysis of the surfaceome remain a significant challenge due to their low abundance and hydrophobicity. Herein, we reported an ultrafast and chemoselective labeling method using our newly developed trifunctional probe, the OPA-S-S-alkyne, which labeled cell surface lysine residues, and then established a novel cell surfaceome profiling approach. According to our experimental results, the OPA-S-S-alkyne probe can react extremely fast with living cells, labeling cells in only 1 min, while traditional NHS (labeling cell surface lysine with N-hydroxysuccinimide ester probe) and CSC (labeling cell surface glycan with hydrazide biotin probe) methods normally take longer time of more than 30 min and 1 h, respectively. Taking advantage of this ultrafast property of the method, we highlight the utility of this method by exploring the temporal dynamic changes of surfaceome upon EGF stimulation in living Hela cells and reported "early" and "late" EGF-regulated cell surface proteins, which are difficult to be distinguished by the current cell surface profiling approaches.
Asunto(s)
Biotinilación , Humanos , Células HeLa , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Membrana Celular/química , Membrana Celular/metabolismo , Biotina/química , Factor de Crecimiento Epidérmico/química , Factor de Crecimiento Epidérmico/metabolismo , Factores de Tiempo , Lisina/químicaRESUMEN
MicroRNAs (miRNAs) are novel tumor biomarkers owing to their important physiological functions in cell communication and the progression of multiple diseases. Due to the small molecular weight, short sequence length, and low concentration levels of miRNA, miRNA detection presents substantial challenges, requiring the advancement of more refined and sensitive techniques. There is an urgent demand for the development of a rapid, user-friendly, and sensitive miRNA analysis method. Here, we developed an enhanced biotin-streptavidin dual-mode phase imaging surface plasmon resonance (PI-SPR) aptasensor for sensitive and rapid detection of miRNA. Initially, we evaluated the linear sensing range for miRNA detection across two distinct sensing modalities and investigated the physical factors that influence the sensing signal in the aptamer-miRNA interaction within the PI-SPR aptasensor. Then, an enhanced biotin-streptavidin amplification strategy was introduced in the PI-SPR aptasensor, which effectively reduced the nonspecific adsorption by 20% and improved the limit of detection by 548 times. Furthermore, we have produced three types of tumor marker chips, which utilize the rapid sensing mode (less than 2 min) of PI-SPR aptasensor to achieve simultaneous detection of multiple miRNA markers in the serum from clinical cancer patients. This work not only developed a new approach to detect miRNA in different application scenarios but also provided a new reference for the application of the biotin-streptavidin amplification system in the detection of other small biomolecules.