Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 580(7802): 216-219, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32269349

RESUMEN

Present estimates suggest that of the 359 million tons of plastics produced annually worldwide1, 150-200 million tons accumulate in landfill or in the natural environment2. Poly(ethylene terephthalate) (PET) is the most abundant polyester plastic, with almost 70 million tons manufactured annually worldwide for use in textiles and packaging3. The main recycling process for PET, via thermomechanical means, results in a loss of mechanical properties4. Consequently, de novo synthesis is preferred and PET waste continues to accumulate. With a high ratio of aromatic terephthalate units-which reduce chain mobility-PET is a polyester that is extremely difficult to hydrolyse5. Several PET hydrolase enzymes have been reported, but show limited productivity6,7. Here we describe an improved PET hydrolase that ultimately achieves, over 10 hours, a minimum of 90 per cent PET depolymerization into monomers, with a productivity of 16.7 grams of terephthalate per litre per hour (200 grams per kilogram of PET suspension, with an enzyme concentration of 3 milligrams per gram of PET). This highly efficient, optimized enzyme outperforms all PET hydrolases reported so far, including an enzyme8,9 from the bacterium Ideonella sakaiensis strain 201-F6 (even assisted by a secondary enzyme10) and related improved variants11-14 that have attracted recent interest. We also show that biologically recycled PET exhibiting the same properties as petrochemical PET can be produced from enzymatically depolymerized PET waste, before being processed into bottles, thereby contributing towards the concept of a circular PET economy.


Asunto(s)
Hidrolasas/química , Hidrolasas/metabolismo , Plásticos/química , Plásticos/metabolismo , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Ingeniería de Proteínas , Reciclaje , Actinobacteria/enzimología , Burkholderiales/enzimología , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/metabolismo , Disulfuros/química , Disulfuros/metabolismo , Pruebas de Enzimas , Estabilidad de Enzimas , Fusarium/enzimología , Modelos Moleculares , Ácidos Ftálicos/metabolismo , Polimerizacion , Thermobifida
2.
J Biol Chem ; 300(3): 105783, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395309

RESUMEN

Poly(ethylene terephthalate) (PET) is a major plastic polymer utilized in the single-use and textile industries. The discovery of PET-degrading enzymes (PETases) has led to an increased interest in the biological recycling of PET in addition to mechanical recycling. IsPETase from Ideonella sakaiensis is a candidate catalyst, but little is understood about its structure-function relationships with regards to PET degradation. To understand the effects of mutations on IsPETase productivity, we develop a directed evolution assay to identify mutations beneficial to PET film degradation at 30 °C. IsPETase also displays enzyme concentration-dependent inhibition effects, and surface crowding has been proposed as a causal phenomenon. Based on total internal reflectance fluorescence microscopy and adsorption experiments, IsPETase is likely experiencing crowded conditions on PET films. Molecular dynamics simulations of IsPETase variants reveal a decrease in active site flexibility in free enzymes and reduced probability of productive active site formation in substrate-bound enzymes under crowding. Hence, we develop a surface crowding model to analyze the biochemical effects of three hit mutations (T116P, S238N, S290P) that enhanced ambient temperature activity and/or thermostability. We find that T116P decreases susceptibility to crowding, resulting in higher PET degradation product accumulation despite no change in intrinsic catalytic rate. In conclusion, we show that a macromolecular crowding-based biochemical model can be used to analyze the effects of mutations on properties of PETases and that crowding behavior is a major property to be targeted for enzyme engineering for improved PET degradation.


Asunto(s)
Burkholderiales , Hidrolasas , Tereftalatos Polietilenos , Hidrolasas/química , Hidrolasas/genética , Hidrolasas/metabolismo , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Reciclaje , Cinética , Burkholderiales/enzimología , Modelos Químicos
3.
Biochemistry ; 63(13): 1599-1607, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38907702

RESUMEN

Small-scale bioreactors that are affordable and accessible would be of major benefit to the research community. In previous work, an open-source, automated bioreactor system was designed to operate up to the 30 mL scale with online optical monitoring, stirring, and temperature control, and this system, dubbed Chi.Bio, is now commercially available at a cost that is typically 1-2 orders of magnitude less than commercial bioreactors. In this work, we further expand the capabilities of the Chi.Bio system by enabling continuous pH monitoring and control through hardware and software modifications. For hardware modifications, we sourced low-cost, commercial pH circuits and made straightforward modifications to the Chi.Bio head plate to enable continuous pH monitoring. For software integration, we introduced closed-loop feedback control of the pH measured inside the Chi.Bio reactors and integrated a pH-control module into the existing Chi.Bio user interface. We demonstrated the utility of pH control through the small-scale depolymerization of the synthetic polyester, poly(ethylene terephthalate) (PET), using a benchmark cutinase enzyme, and compared this to 250 mL bioreactor hydrolysis reactions. The results in terms of PET conversion and rate, measured both by base addition and product release profiles, are statistically equivalent, with the Chi.Bio system allowing for a 20-fold reduction of purified enzyme required relative to the 250 mL bioreactor setup. Through inexpensive modifications, the ability to conduct pH control in Chi.Bio reactors widens the potential slate of biochemical reactions and biological cultivations for study in this system, and may also be adapted for use in other bioreactor platforms.


Asunto(s)
Reactores Biológicos , Tereftalatos Polietilenos , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Concentración de Iones de Hidrógeno , Hidrólisis , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/química , Burkholderiales/enzimología , Burkholderiales/metabolismo , Programas Informáticos
4.
Biochemistry ; 63(13): 1663-1673, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38885634

RESUMEN

The mono(2-hydroxyethyl) terephthalate hydrolase (MHETase) from Ideonella sakaiensis carries out the second step in the enzymatic depolymerization of poly(ethylene terephthalate) (PET) plastic into the monomers terephthalic acid (TPA) and ethylene glycol (EG). Despite its potential industrial and environmental applications, poor recombinant expression of MHETase has been an obstacle to its industrial application. To overcome this barrier, we developed an assay allowing for the medium-throughput quantification of MHETase activity in cell lysates and whole-cell suspensions, which allowed us to screen a library of engineered variants. Using consensus design, we generated several improved variants that exhibit over 10-fold greater whole-cell activity than wild-type (WT) MHETase. This is revealed to be largely due to increased soluble expression, which biochemical and structural analysis indicates is due to improved protein folding.


Asunto(s)
Burkholderiales , Burkholderiales/enzimología , Burkholderiales/genética , Burkholderiales/metabolismo , Ácidos Ftálicos/metabolismo , Ácidos Ftálicos/química , Hidrolasas/metabolismo , Hidrolasas/genética , Hidrolasas/química , Solubilidad , Tereftalatos Polietilenos/metabolismo , Tereftalatos Polietilenos/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Ingeniería de Proteínas/métodos , Pliegue de Proteína , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Modelos Moleculares
5.
Ecotoxicol Environ Saf ; 280: 116540, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38833982

RESUMEN

The widespread utilization of polyethylene terephthalate (PET) has caused a variety of environmental and health problems. Compared with traditional thermomechanical or chemical PET cycling, the biodegradation of PET may offer a more feasible solution. Though the PETase from Ideonalla sakaiensis (IsPETase) displays interesting PET degrading performance under mild conditions; the relatively low thermal stability of IsPETase limits its practical application. In this study, enzyme-catalysed PET degradation was investigated with the promising IsPETase mutant HotPETase (HP). On this basis, a carbohydrate-binding module from Bacillus anthracis (BaCBM) was fused to the C-terminus of HP to construct the PETase mutant (HLCB) for increased PET degradation. Furthermore, to effectively improve PET accessibility and PET-degrading activity, the truncated outer membrane hybrid protein (FadL) was used to expose PETase and BaCBM on the surface of E. coli (BL21with) to develop regenerable whole-cell biocatalysts (D-HLCB). Results showed that, among the tested small-molecular weight ester compounds (p-nitrophenyl phosphate (pNPP), p-Nitrophenyl acetate (pNPA), 4-Nitrophenyl butyrate (pNPB)), PETase displayed the highest hydrolysing activity against pNPP. HP displayed the highest catalytic activity (1.94 µM(p-NP)/min) at 50 °C and increased longevity at 40 °C. The fused BaCBM could clearly improve the catalytic performance of PETase by increasing the optimal reaction temperature and improving the thermostability. When HLCB was used for PET degradation, the yield of monomeric products (255.7 µM) was ∼25.5 % greater than that obtained after 50 h of HP-catalysed PET degradation. Moreover, the highest yield of monomeric products from the D-HLCB-mediated system reached 1.03 mM. The whole-cell catalyst D-HLCB displayed good reusability and stability and could maintain more than 54.6 % of its initial activity for nine cycles. Finally, molecular docking simulations were utilized to investigate the binding mechanism and the reaction mechanism of HLCB, which may provide theoretical evidence to further increase the PET-degrading activities of PETases through rational design. The proposed strategy and developed variants show potential for achieving complete biodegradation of PET under mild conditions.


Asunto(s)
Biodegradación Ambiental , Burkholderiales , Escherichia coli , Tereftalatos Polietilenos , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Burkholderiales/enzimología , Escherichia coli/genética , Bacillus anthracis/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Ingeniería de Proteínas
6.
Proc Natl Acad Sci U S A ; 117(41): 25476-25485, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32989159

RESUMEN

Plastics pollution represents a global environmental crisis. In response, microbes are evolving the capacity to utilize synthetic polymers as carbon and energy sources. Recently, Ideonella sakaiensis was reported to secrete a two-enzyme system to deconstruct polyethylene terephthalate (PET) to its constituent monomers. Specifically, the I. sakaiensis PETase depolymerizes PET, liberating soluble products, including mono(2-hydroxyethyl) terephthalate (MHET), which is cleaved to terephthalic acid and ethylene glycol by MHETase. Here, we report a 1.6 Å resolution MHETase structure, illustrating that the MHETase core domain is similar to PETase, capped by a lid domain. Simulations of the catalytic itinerary predict that MHETase follows the canonical two-step serine hydrolase mechanism. Bioinformatics analysis suggests that MHETase evolved from ferulic acid esterases, and two homologous enzymes are shown to exhibit MHET turnover. Analysis of the two homologous enzymes and the MHETase S131G mutant demonstrates the importance of this residue for accommodation of MHET in the active site. We also demonstrate that the MHETase lid is crucial for hydrolysis of MHET and, furthermore, that MHETase does not turnover mono(2-hydroxyethyl)-furanoate or mono(2-hydroxyethyl)-isophthalate. A highly synergistic relationship between PETase and MHETase was observed for the conversion of amorphous PET film to monomers across all nonzero MHETase concentrations tested. Finally, we compare the performance of MHETase:PETase chimeric proteins of varying linker lengths, which all exhibit improved PET and MHET turnover relative to the free enzymes. Together, these results offer insights into the two-enzyme PET depolymerization system and will inform future efforts in the biological deconstruction and upcycling of mixed plastics.


Asunto(s)
Proteínas Bacterianas/metabolismo , Burkholderiales/enzimología , Plásticos/metabolismo , Ingeniería de Proteínas/métodos , Modelos Moleculares , Mutación , Plásticos/química , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Conformación Proteica , Dominios Proteicos , Especificidad por Sustrato
7.
Proteins ; 90(2): 504-511, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34553433

RESUMEN

Several plastic degrading enzymes have been described in the literature, most notably PETases that are capable of hydrolyzing polyethylene terephthalate (PET) plastic. One of them, the PETase from Ideonella sakaiensis, a bacterium isolated from environmental samples within a PET bottle recycling site, was a subject of extensive studies. To test how widespread PETase functionality is in other bacterial communities, we used a cascade of BLAST searches in the JGI metagenomic datasets and showed that close homologs of I. sakaiensis PETase can also be found in other metagenomic environmental samples from both human-affected and relatively pristine sites. To confirm their classification as putative PETases, we verified that the newly identified proteins have the PETase sequence signatures common to known PETases and that phylogenetic analyses group them with the experimentally characterized PETases. Additionally, docking analysis was performed in order to further confirm the functional assignment of the putative environmental PETases.


Asunto(s)
Biodegradación Ambiental , Burkholderiales/enzimología , Plásticos/metabolismo , Tereftalatos Polietilenos/metabolismo , Proteínas Bacterianas/metabolismo
8.
BMC Genomics ; 22(1): 464, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34157973

RESUMEN

BACKGROUND: Cylindrospermopsin is a highly persistent cyanobacterial secondary metabolite toxic to humans and other living organisms. Strain OF001 and A210 are manganese-oxidizing bacteria (MOB) able to transform cylindrospermopsin during the oxidation of Mn2+. So far, the enzymes involved in manganese oxidation in strain OF001 and A210 are unknown. Therefore, we analyze the genomes of two cylindrospermopsin-transforming MOB, Pseudomonas sp. OF001 and Rubrivivax sp. A210, to identify enzymes that could catalyze the oxidation of Mn2+. We also investigated specific metabolic features related to pollutant degradation and explored the metabolic potential of these two MOB with respect to the role they may play in biotechnological applications and/or in the environment. RESULTS: Strain OF001 encodes two multicopper oxidases and one haem peroxidase potentially involved in Mn2+ oxidation, with a high similarity to manganese-oxidizing enzymes described for Pseudomonas putida GB-1 (80, 83 and 42% respectively). Strain A210 encodes one multicopper oxidase potentially involved in Mn2+ oxidation, with a high similarity (59%) to the manganese-oxidizing multicopper oxidase in Leptothrix discophora SS-1. Strain OF001 and A210 have genes that might confer them the ability to remove aromatic compounds via the catechol meta- and ortho-cleavage pathway, respectively. Based on the genomic content, both strains may grow over a wide range of O2 concentrations, including microaerophilic conditions, fix nitrogen, and reduce nitrate and sulfate in an assimilatory fashion. Moreover, the strain A210 encodes genes which may convey the ability to reduce nitrate in a dissimilatory manner, and fix carbon via the Calvin cycle. Both MOB encode CRISPR-Cas systems, several predicted genomic islands, and phage proteins, which likely contribute to their genome plasticity. CONCLUSIONS: The genomes of Pseudomonas sp. OF001 and Rubrivivax sp. A210 encode sequences with high similarity to already described MCOs which may catalyze manganese oxidation required for cylindrospermopsin transformation. Furthermore, the analysis of the general metabolism of two MOB strains may contribute to a better understanding of the niches of cylindrospermopsin-removing MOB in natural habitats and their implementation in biotechnological applications to treat water.


Asunto(s)
Alcaloides , Burkholderiales/enzimología , Manganeso , Oxidorreductasas , Pseudomonas/enzimología , Burkholderiales/genética , Toxinas de Cianobacterias , Genoma Bacteriano , Leptothrix , Oxidación-Reducción , Oxidorreductasas/metabolismo , Pseudomonas/genética
9.
Chembiochem ; 22(12): 2032-2050, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33470503

RESUMEN

The bacterium strain Ideonella sakaiensis 201-F6 is able to hydrolyze low-crystallinity PET films at 30 °C due to two enzymes named PETase and MHETase. Since its discovery, many efforts have been dedicated to elucidating the structure and features of those two enzymes, and various authors have highlighted the necessity to optimize both the substrate binding site and the global structure in order to enhance the stability and catalytic activity of these PET biocatalysts so as to make them more suitable for industrial applications. In this review, the strategies adopted by different research groups to investigate the structure and functionality of both PETase and MHETase in depth are described, emphasizing the advantages provided by the use of computational methods to complement and drive experiments. Subsequently, the modifications implemented with protein engineering are discussed. The versatility of the enzymes secreted by I. sakaiensis enables the prediction that they will find several applications in the disposal of PET debris, encouraging a prioritization of efforts in this prolific research field.


Asunto(s)
Hidrolasas/metabolismo , Tereftalatos Polietilenos/metabolismo , Burkholderiales/enzimología , Hidrolasas/química , Hidrólisis , Conformación Molecular , Tereftalatos Polietilenos/química
10.
Chembiochem ; 22(10): 1706-1716, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33434375

RESUMEN

Poly(ethylene terephthalate) (PET) is one of the most widely used synthetic polyesters, but also a major cause of plastic pollution. Because the chemical degradation of PET would be uneconomical and rather burdensome, considerable efforts have been devoted to exploring enzymatic processes for the disposal of PET waste. Many PET-hydrolyzing enzymes have been reported in recent decades, some of which demonstrate excellent potential for industrial applications. This review sets out to summarize the state of investigation into IsPETase, a cutinase-like enzyme from Ideonella sakaiensis possessing ability to degrade crystalline PET, and to gain further insight into the structure-function relationship of IsPETase. Benefiting from the continuing identification of novel cutinase-like proteins and growing availability of the engineered IsPETase, we may anticipate future developments in this type of enzyme would generate suitable biocatalyst for industrial use.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Tereftalatos Polietilenos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Sitios de Unión , Burkholderiales/enzimología , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/clasificación , Hidrólisis , Simulación de Dinámica Molecular , Filogenia , Tereftalatos Polietilenos/química , Estructura Terciaria de Proteína , Especificidad por Sustrato
11.
Protein Expr Purif ; 178: 105779, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33115653

RESUMEN

Glucan branching enzymes (GBEs, EC 2.4.1.18) catalyze the formation of α-1,6-linked branch in starch, which is important for the starch modification with prospective properties. In this study, the aqGBE gene encoding an efficient glucan branching enzyme was cloned from Aquabacterium sp. strain A7-Y and successfully expressed in Escherichia coli BL21 (DE3). The specific activity of the purified recombinant enzyme rAqGBE was 2850 U/mg with potato starch as the optimal substrate, and the Km and Vmax values of rAqGBE were 1.18 mg/mL and 588.2 µmol/min/mg, respectively. Enzymological characterization showed that rAqGBE exhibits its optimal activity under the condition of 40 °C and pH 7.0, respectively, which is independent of calcium ions. Otherwise, rAqGBE-treated potato starch showed different chain length distribution compared with control, the numbers of short chains (degree of polymerization, DP < 7) and long chains (DP > 25) increased from 4.5% to 9.6% and 6.1%-15.7% after enzymatic treatment, respectively. In starch anti-ageing assay, with minimum usage of 0.8 mg rAqGBE per g starch, the rAqGBE-treated potato starch exhibited reduced retrogradation properties. Our results indicate that the branching enzyme AqGBE may therefore be a promising tool for the enzymatic modification of starch.


Asunto(s)
Enzima Ramificadora de 1,4-alfa-Glucano , Proteínas Bacterianas , Burkholderiales/genética , Almidón/química , Enzima Ramificadora de 1,4-alfa-Glucano/biosíntesis , Enzima Ramificadora de 1,4-alfa-Glucano/química , Enzima Ramificadora de 1,4-alfa-Glucano/genética , Enzima Ramificadora de 1,4-alfa-Glucano/aislamiento & purificación , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Burkholderiales/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
12.
Phys Chem Chem Phys ; 23(39): 22451-22465, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34585687

RESUMEN

Modulating the distribution of various states in protein ensembles through distal sites may be promising in the evolution of enzymes in desired directions. However, the prediction of distal mutation hotspots that stabilize the favoured states from a computational perspective remains challenging. Here, we presented a strategy based on molecular dynamics (MD) and Markov state models (MSM) to predict distal mutation sites. Extensive MD combined with MSM was applied to determine the principally distributed metastable states interconverting at a slow timescale. Then, molecular docking was used to classify these states into active states and inactive ones. Distal mutation hotspots were targeted based on comparing the conformational features between active and inactive states, where mutations destabilize the inactive states and show little influence on the active state. The proposed strategy was used to explore the highly dynamic MHETase, which shows a potential application in the biodegradation of poly(ethylene terephthalate) (PET). Seven principally populated interrelated metastable states were identified, and the atomistic picture of their conformational changes was unveiled. Several residues at distal positions were found to adopt more H-bond occupancies in inactive states than active states, making them potential mutation hotspots for stabilizing the favoured conformations. In addition, the detailed mechanism revealed the significance of calcium ions at a distance from the catalytic centre in reshaping the free energy landscape. This study deepens the understanding of the conformational dynamics of α/ß hydrolases containing a lid domain and advances the study of enzymatic plastic degradation.


Asunto(s)
Hidrolasas/metabolismo , Biodegradación Ambiental , Burkholderiales/enzimología , Hidrolasas/química , Simulación de Dinámica Molecular , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Conformación Proteica
13.
Biochem J ; 477(12): 2313-2325, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32469391

RESUMEN

The unique isocyclic E ring of chlorophylls contributes to their role as light-absorbing pigments in photosynthesis. The formation of the E ring is catalyzed by the Mg-protoporphyrin IX monomethyl ester cyclase, and the O2-dependent cyclase in prokaryotes consists of a diiron protein AcsF, augmented in cyanobacteria by an auxiliary subunit Ycf54. Here, we establish the composition of plant and algal cyclases, by demonstrating the in vivo heterologous activity of O2-dependent cyclases from the green alga Chlamydomonas reinhardtii and the model plant Arabidopsis thaliana in the anoxygenic photosynthetic bacterium Rubrivivax gelatinosus and in the non-photosynthetic bacterium Escherichia coli. In each case, an AcsF homolog is the core catalytic subunit, but there is an absolute requirement for an algal/plant counterpart of Ycf54, so the necessity for an auxiliary subunit is ubiquitous among oxygenic phototrophs. A C-terminal ∼40 aa extension, which is present specifically in green algal and plant Ycf54 proteins, may play an important role in the normal function of the protein as a cyclase subunit.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Oxígeno/metabolismo , Oxigenasas/metabolismo , Protoclorofilida/biosíntesis , Proteínas Recombinantes/metabolismo , Secuencia de Aminoácidos , Arabidopsis/enzimología , Proteínas de Arabidopsis/genética , Burkholderiales/enzimología , Chlamydomonas reinhardtii/enzimología , Proteínas de Cloroplastos/genética , Escherichia coli/enzimología , Oxigenasas/genética , Proteínas Recombinantes/genética , Homología de Secuencia
14.
Proc Natl Acad Sci U S A ; 115(19): E4350-E4357, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29666242

RESUMEN

Poly(ethylene terephthalate) (PET) is one of the most abundantly produced synthetic polymers and is accumulating in the environment at a staggering rate as discarded packaging and textiles. The properties that make PET so useful also endow it with an alarming resistance to biodegradation, likely lasting centuries in the environment. Our collective reliance on PET and other plastics means that this buildup will continue unless solutions are found. Recently, a newly discovered bacterium, Ideonella sakaiensis 201-F6, was shown to exhibit the rare ability to grow on PET as a major carbon and energy source. Central to its PET biodegradation capability is a secreted PETase (PET-digesting enzyme). Here, we present a 0.92 Å resolution X-ray crystal structure of PETase, which reveals features common to both cutinases and lipases. PETase retains the ancestral α/ß-hydrolase fold but exhibits a more open active-site cleft than homologous cutinases. By narrowing the binding cleft via mutation of two active-site residues to conserved amino acids in cutinases, we surprisingly observe improved PET degradation, suggesting that PETase is not fully optimized for crystalline PET degradation, despite presumably evolving in a PET-rich environment. Additionally, we show that PETase degrades another semiaromatic polyester, polyethylene-2,5-furandicarboxylate (PEF), which is an emerging, bioderived PET replacement with improved barrier properties. In contrast, PETase does not degrade aliphatic polyesters, suggesting that it is generally an aromatic polyesterase. These findings suggest that additional protein engineering to increase PETase performance is realistic and highlight the need for further developments of structure/activity relationships for biodegradation of synthetic polyesters.


Asunto(s)
Proteínas Bacterianas/química , Burkholderiales/enzimología , Esterasas/química , Tereftalatos Polietilenos/química , Proteínas Bacterianas/genética , Burkholderiales/genética , Cristalografía por Rayos X , Esterasas/genética , Ingeniería de Proteínas , Especificidad por Sustrato
15.
Int J Mol Sci ; 22(5)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652738

RESUMEN

Esters are organic compounds widely represented in cellular structures and metabolism, originated by the condensation of organic acids and alcohols. Esterification reactions are also used by chemical industries for the production of synthetic plastic polymers. Polyester plastics are an increasing source of environmental pollution due to their intrinsic stability and limited recycling efforts. Bioremediation of polyesters based on the use of specific microbial enzymes is an interesting alternative to the current methods for the valorization of used plastics. Microbial esterases are promising catalysts for the biodegradation of polyesters that can be engineered to improve their biochemical properties. In this work, we analyzed the structure-activity relationships in microbial esterases, with special focus on the recently described plastic-degrading enzymes isolated from marine microorganisms and their structural homologs. Our analysis, based on structure-alignment, molecular docking, coevolution of amino acids and surface electrostatics determined the specific characteristics of some polyester hydrolases that could be related with their efficiency in the degradation of aromatic polyesters, such as phthalates.


Asunto(s)
Proteínas Bacterianas , Burkholderiales/enzimología , Esterasas , Poliésteres , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Esterasas/química , Esterasas/metabolismo , Poliésteres/química , Poliésteres/metabolismo
16.
Molecules ; 27(1)2021 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-35011351

RESUMEN

The effect of aqueous solutions of selected ionic liquids solutions on Ideonella sakaiensis PETase with bis(2-hydroxyethyl) terephthalate (BHET) substrate were studied by means of molecular dynamics simulations in order to identify the possible effect of ionic liquids on the structure and dynamics of enzymatic Polyethylene terephthalate (PET) hydrolysis. The use of specific ionic liquids can potentially enhance the enzymatic hydrolyses of PET where these ionic liquids are known to partially dissolve PET. The aqueous solution of cholinium phosphate were found to have the smallest effect of the structure of PETase, and its interaction with (BHET) as substrate was comparable to that with the pure water. Thus, the cholinium phosphate was identified as possible candidate as ionic liquid co-solvent to study the enzymatic hydrolyses of PET.


Asunto(s)
Burkholderiales/enzimología , Hidrolasas/metabolismo , Líquidos Iónicos/química , Tereftalatos Polietilenos/química , Enlace de Hidrógeno , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Ácidos Ftálicos/química , Conformación Proteica , Solventes/química
17.
Biochem Biophys Res Commun ; 508(1): 289-294, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30502092

RESUMEN

Polyethylene terephthalate (PET) hydrolase from Ideonella sakaiensis (IsPETase) can be used to degrade PET. In order to use IsPETase in industry, we studied the enzymatic activity of IsPETase in different conditions containing environmental and physicochemical factors commonly found in nature. We observed that salts and glycerol enhanced the enzymatic activity, while detergents and organic solvents reduced the enzymatic activity. IsPETase hydrolyzed p-nitrophenyl (p-NP) esters instead of naphthyl esters. To make IsPETase an enzyme capable of hydrolyzing naphthyl esters, site-directed mutagenesis was carried out based on the structural information provided by the crystal structure. We found that the IsPETaseS93M, IsPETaseW159F, and IsPETaseN241F mutants can hydrolyze naphthyl esters. IsPETase engineering can direct researchers to use this α/ß-hydrolase protein scaffold to design enzymes that can hydrolyze a variety of polyesters.


Asunto(s)
Burkholderiales/enzimología , Hidrolasas/metabolismo , Tereftalatos Polietilenos/metabolismo , Hidrolasas/química , Hidrolasas/genética , Modelos Moleculares , Tereftalatos Polietilenos/química , Conformación Proteica
18.
Biochem Biophys Res Commun ; 508(1): 250-255, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30477746

RESUMEN

Poly(ethylene terephthalate) (PET) is the most commonly used polyester polymer resin in fabrics and storage materials, and its accumulation in the environment is a global problem. The ability of PET hydrolase from Ideonella sakaiensis 201-F6 (IsPETase) to degrade PET at moderate temperatures has been studied extensively. However, due to its low structural stability and solubility, it is difficult to apply standard laboratory-level IsPETase expression and purification procedures in industry. To overcome this difficulty, the expression of IsPETase can be improved by using a secretion system. This is the first report on the production of an extracellular IsPETase, active against PET film, using Sec-dependent translocation signal peptides from E. coli. In this work, we tested the effects of fusions of the Sec-dependent and SRP-dependent signal peptides from E. coli secretory proteins into IsPETase, and successfully produced the extracellular enzyme using pET22b-SPMalE:IsPETase and pET22b-SPLamB:IsPETase expression systems. We also confirmed that the secreted IsPETase has PET-degradation activity. The work will be used for development of a new E. coli strain capable of degrading and assimilating PET in its culture medium.


Asunto(s)
Burkholderiales/enzimología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Hidrolasas/biosíntesis , Tereftalatos Polietilenos/metabolismo , Señales de Clasificación de Proteína
19.
Appl Microbiol Biotechnol ; 102(23): 10245-10257, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30215127

RESUMEN

Biodegradation of poly(cis-1,4-isoprene) (rubber) by Gram-negative bacteria has been investigated on the enzymatic level only in Steroidobacter cummioxidans 35Y (previously Xanthomonas sp. 35Y). This species produces two kinds of rubber oxygenases, RoxA35Y and RoxB35Y, one of which (RoxB35Y) cleaves polyisoprene to a mixture of C20- and higher oligoisoprenoids while the other (RoxA35Y) cleaves polyisoprene and RoxB35Y-derived oligoisoprenoids to the C15-oligoisoprenoid 12-oxo-4,8-dimethyltrideca-4,8-diene-1-al (ODTD). ODTD can be taken up by S. cummioxidans and used as a carbon source. Gram-positive rubber-degrading bacteria employ another type of rubber oxygenase, latex clearing protein (Lcp), for the initial oxidative attack of the polyisoprene molecule. In this contribution, we examined which type of rubber oxygenase is present in the only other well-documented Gram-negative rubber-degrading species, Rhizobacter gummiphilus NS21. No homologue for an Lcp protein but homologues for a putative RoxA and a RoxB protein (the latter identical to a previously postulated LatA-denominated rubber cleaving enzyme) were identified in the genome of strain NS21. The roxANS21 and roxBNS21 genes were separately expressed in a ∆roxA35Y/∆roxB35Y background of S. cummioxidans 35Y and restored the ability of the mutant to produce oligoisoprenoids. The RoxANS21 and RoxBNS21 proteins were each purified and biochemically characterised. The results-in combination with in silico analysis of databases-indicate that Gram-negative rubber-degrading bacteria generally utilise two synergistically acting rubber oxygenases (RoxA/RoxB) for efficient cleavage of polyisoprene to ODTD.


Asunto(s)
Proteínas Bacterianas/genética , Burkholderiales/enzimología , Burkholderiales/genética , Oxigenasas/genética , Goma/metabolismo , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Clonación Molecular , ADN Bacteriano/genética , Genoma Bacteriano , Oxigenasas/metabolismo
20.
ChemSusChem ; 17(10): e202301752, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38252197

RESUMEN

Biocatalytic degradation of plastic waste is anticipated to play an important role in future recycling systems. However, enzymatic degradation of crystalline poly (ethylene terephthalate) (PET) remains consistently poor. Herein, we employed functional assays to elucidate the molecular underpinnings of this limitation. This included utilizing complementary activity assays to monitor the degradation of PET disks with varying crystallinity (XC), as well as determining enzymatic kinetic parameters for soluble PET fragments. The results indicate that an efficient PET-hydrolase, LCCICCG, operates through an endolytic mode of action, and that its activity is limited by conformational constraints in the PET polymer. Such constraints become more pronounced at high XC values, and this limits the density of productive sites on the PET surface. Endolytic chain-scissions are the dominant reaction type in the initial stage, and this means that little or no soluble organic product are released. However, endolytic cuts gradually and locally promote chain mobility and hence the density of attack sites on the surface. This leads to an upward concave progress curve; a behavior sometimes termed lag-phase kinetics.


Asunto(s)
Tereftalatos Polietilenos , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Cinética , Cristalización , Hidrolasas/metabolismo , Hidrolasas/química , Biocatálisis , Burkholderiales/enzimología , Hidrólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA